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Abstract

This paper ensures an extensive survey of the generalization of the various hybrid numbers
and hybrid polynomials especially as part of its enhancing importance in the disciplines
of mathematics and physics. In this paper, by using the Horadam polynomials, we define
the Horadam hybrid polynomials called Horadam hybrinomials. We obtain some special
cases and algebraic properties of the Horadam hybrinomials such as recurrence relation,
generating function, exponential generating function, Binet formula, summation formulas,
Catalan’s identity, Cassini’s identity and d’Ocagne’s identity, respectively. Moreover, we
give some applications related to the Horadam hybrinomials in matrices.

1. Introduction

Horadam defined the sequence wn = wn(a,b; p,q) by the recurrence relation

wn = pwn−1 +qwn−2, n≥ 2

with the initial values w0 = a and w1 = b. For different values p,q,a,b ∈ Z, Horadam sequence turns into several well-known
sequences such as Fibonacci, Lucas, Pell and so on. These sequences are studied in many areas such as physics, number theory,
algebra, geometry, and combinatorics. For more details, we refer to [1]-[6].
In [7], the Horadam polynomials hn(x) = hn(x;a,b; p,q) are defined by the recurrence relation

hn(x) = pxhn−1(x)+qhn−2(x), n≥ 3 (1.1)

with the initial values h1(x) = a and h2(x) = bx. Let α =
px+
√

p2x2+4q
2 and β =

px−
√

p2x2+4q
2 be the real roots of the

characteristic equation t2− pxt−q = 0. The Binet formula for the polynomial hn(x) is given by

hn(x) = Aα
n−1 +Bβ

n−1, (1.2)

where A = bx−aβ√
p2x2+4q

and B = aα−bx√
p2x2+4q

.

The generating function of the Horadam polynomials is

∞

∑
n=0

hn(x)tn =
a+ xt(b−ap)
1− pxt−qt2 . (1.3)

Hybrid numbers were studied by Ozdemir in [8], extensively. A hybrid number is defined as

K=
{

a+bi+ cε +dh : a,b,c,d ∈ R, i2 =−1, ε
2 = 0, h2 = 1, ih = hi = ε + i

}
.
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Addition and subtraction of hybrid numbers are done by adding and subtracting corresponding terms. Two hybrid numbers are
equal if all their components are equal, one by one.
Using the equalities i2 =−1, ε2 = 0, h2 = 0, ih =−hi = ε + i, the multiplication table of the basis of hybrid numbers is as
follows:

Table 1: Multiplication table for K

. 1 i ε h
1 1 i ε h
i i −1 1−h ε + i
ε ε h+1 0 −ε

h h −ε− i ε 1

Recently, many researchers have studied related to hybrid numbers. For example, in [9] Szynal-Liana and Wloch considered the
Fibonacci hybrid numbers and obtained some properties of this numbers. In [10, 11] the authors also defined and examined the
Jacosthal and Jacosthal–Lucas hybrid numbers and the Pell and Pell–Lucas hybrid numbers respectively. In [12] Szynal-Liana
generalized their results and defined the Horadam hybrid numbers. In [13] Kızılateş introduced the another generalization of
hybrid numbers and gave miscellaneous properties of these numbers. For more details, we refer to [8]-[23].
We now turn to a recent investigation by Szynal-Liana and Wloch [24], who defined and studied a family of the special
polynomials and the special numbers which are related to the Fibonacci hybrinomials and Lucas hybrinomials. The Fibonacci
hybrinomials and Lucas hybrinomials are defined as follows:

FHn(x) = Fn(x)+Fn+1(x)i+Fn+2(x)ε+Fn+3(x)h,

and

LHn(x) = Ln(x)+Ln+1(x)i+Ln+2(x)ε+Ln+3(x)h.

For n≥ 2, the recurrence relations of the Fibonacci hybrinomials and the Lucas hybrinomials are

FHn(x) = xFHn−1(x)+FHn−2(x),

and

LHn(x) = xLHn−1(x)+LHn−2(x),

with the initial values FH0(x) = i+xε+(x2 +1)h, FH1(x) = 1+xi+(x2 +1)ε+(x3 +2x)h, LH0(x) = 2+xi+(x2 +2)ε+(x3 +
3x)h and LH1(x) = x+ (x2 + 2)i+(x3 + 3x)ε+(x4 + 4x2 + 2)h, respectively. The Fibonacci hybrinomials and the Lucas
hybrinomials, namely polynomials, are a generalization of the Fibonacci hybrid and Lucas hybrid numbers.
Motivated by some of the above-mentioned recent papers, we introduce here new polynomials which are called Horadam
hybrinomials. This definition brings about a more general hybrid polynomial sequence by taking components from Horadam
polynomials. Thanks to this generalization, we obtain the Fibonacci hybrinomials FHn(x), the Lucas hybrinomials LHn−1(x),
the Pell hybrinomials PHn(x), the Pell-Lucas hybrinomials QHn−1(x), the Chebyshev hybrinomials of the first kind T Hn−1(x),
the Chebyshev hybrinomials of the second kind UHn−1(x) and the Balancing hybrinomials BHn(x). We also obtain various
results for the Horadam hybrinomials. Moreover, we give some applications of Horadam hybrinomials in matrices.

2. Horadam hybrinomials

In this section, we define the Horadam hybrinomials. Then we give some special cases of Horadam hybrinomials such
as the Fibonacci hybrinomials, the Fibonacci hybrid numbers, the Lucas hybrinomials, the Lucas hybrid numbers, the
Pell hybrinomials, the Pell hybrid numbers, the Pell-Lucas hybrinomials, the Pell-Lucas hybrid numbers, the Chebyshev
hybrinomials of the first kind, the Chebyshev hybrid numbers of the first kind, the Chebyshev hybrinomials of the second kind,
the Chebyshev hybrid numbers of the second kind, the Balancing hybrinomials and the Balancing hybrid numbers. Finally we
obtain some algebraic properties of Horadam hybrinomials.

Definition 2.1. For n≥ 1, the nth Horadam hybrinomials are defined by

Hn(x) = hn(x)+hn+1(x)i+hn+2(x)ε +hn+3(x)h. (2.1)

Some special cases of Horadam hybrinomials are as follows:

1. For a = b = p = q = 1, the Horadam hybrinomials Hn(x) become the Fibonacci hybrinomials FHn(x),
2. For a = 2 and b = p = q = 1, the Horadam hybrinomials Hn(x) become the Lucas hybrinomials LHn−1(x),
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3. For a = q = 1 and b = p = 2, the Horadam hybrinomials Hn(x) become the Pell hybrinomials PHn(x),
4. For a = b = p = 2 and q = 1, the Horadam hybrinomials Hn(x) become the Pell-Lucas hybrinomials QHn−1(x),
5. For a = b = 1, p = 2, and q =−1, the Horadam hybrinomials Hn(x) become the Chebyshev hybrinomials of the first

kind T Hn−1(x),
6. For a = 1, b = p = 2, and q =−1, the Horadam hybrinomials Hn(x) become the Chebyshev hybrinomials of the second

kind UHn−1(x),
7. For a = 1, b = p = 6, and q =−1, the Horadam hybrinomials Hn(x) become the Balancing hybrinomials BHn(x),
8. For x = 1, the Fibonacci hybrinomials FHn(x), reduce to the Fibonacci hybrid numbers FHn,
9. For x = 1, the Lucas hybrinomials LHn−1(x), reduce to the Lucas hybrid numbers LHn−1,

10. For x = 1, the Pell hybrinomials PHn(x), reduce to the Pell hybrid numbers PHn,
11. For x = 1, the Pell-Lucas hybrinomials QHn−1(x), reduce to the Pell-Lucas hybrid numbers QHn−1,
12. For x = 1, the Chebyshev hybrinomials of the first kind T Hn−1(x), reduce to the Chebyshev hybrid numbers of the first

kind T Hn−1,
13. For x = 1, the Chebyshev hybrinomials of the second kind UHn−1(x), reduce to the Chebyshev hybrid numbers of the

second kind UHn−1,
14. For x = 1, the Balancing hybrinomials BHn(x), reduce to the Balancing hybrid numbers BHn.

Using (2.1) and (1.1), we obtain that for n > 2,

Hn(x) = pxhn−1(x)+qhn−2(x)+(pxhn(x)+qhn−1(x)) i
+(pxhn+1(x)+qhn(x))ε +(pxhn+2(x)+qhn+1(x))h

= pxHn−1(x)+qHn−2(x)

and so

Hn(x) = pxHn−1(x)+qHn−2(x),

with the initial values H1(x) = a+ bxi+(bpx2 + aq)ε+(bp2x3 +(apq+ bq)x)h and H2(x) = bx+(bpx2 + aq)i+(bp2x3 +
(apq+bq)x)ε +(bp3x4 +(ap2q+2bpq)x2 +aq2)h.

Theorem 2.2. The Binet formula for the Horadam hybrinomial Hn(x) is

Hn(x) = Aα
n−1

α̃ +Bβ
n−1

β̃ , (2.2)

where α̃ = 1+αi+α2ε +α3h and β̃ = 1+β i+β 2ε +β 3h.

Proof. Due to (1.2) and (2.1), we find that

Hn(x) = (Aα
n−1 +Bβ

n−1)+(Aα
n +Bβ

n)i+(Aα
n+1 +Bβ

n+1)ε+(Aα
n+2 +Bβ

n+2)h
= Aα

n−1(1+αi+α
2
ε +α

3h)+Bβ
n−1(1+β i+β

2
ε +β

3h)
= Aα

n−1
α̃ +Bβ

n−1
β̃ .

We now give the generating function and exponential generating function for the Horadam hybrinomials.

Theorem 2.3. The generating function for the Horadam hybrinomial Hn(x) is

∞

∑
n=0

Hn(x)tn =
H0(x)+(H1(x)− pxH0(x)) t

1− pxt−qt2 . (2.3)

Proof. Suppose that the generating function for the Horadam hybrinomials
{
Hn(x)∞

n=0
}
, has the following formal power

series
∞

∑
n=0

Hn(x)tn =H0(x)+H1(x)t + · · ·+Hk(x)tk + · · · . (2.4)

Hence

pxt
∞

∑
n=0

Hn(x)tn = pxH0(x)t + pxH1(x)t2 + · · ·+ pxHk(x)tk+1 + · · · , (2.5)

qt2
∞

∑
n=0

Hn(x)tn = qH0(x)t2 +qH1(x)t3 + · · ·+qHk(x)tk+2 + · · · . (2.6)
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From (2.4), (2.5) and (2.6), we find that

(1− pxt−qt2)
∞

∑
n=0

Hn(x)tn =H0(x)+(H1(x)− pxH0(x)) t.

So
∞

∑
n=0

Hn(x)tn =
H0(x)+(H1(x)− pxH0(x)) t

1− pxt−qt2 .

Corollary 2.4. ([24, Theorem 2.10]) The generating function for the Fibonacci hybrinomial FHn(x) is

∞

∑
n=0

FHn(x)tn =
i+xε+(x2 +1)h+(1+ ε+xh)t

1− xt− t2 .

Proof. If we take a = b = p = q = 1 in Equation (2.3), the proof is completed.

Corollary 2.5. ([24, Theorem 2.11]) The generating function for the Lucas hybrinomial LHn(x) is

∞

∑
n=0

LHn(x)tn =
LH0(x)+(LH1(x)− xLH0(x)) t

1− xt− t2 .

Proof. If we take a = 2 and b = p = q = 1 in Equation (2.3), the proof is completed.

Theorem 2.6. The exponential generating function for the Horadam hybrinomial Hn(x) is

∞

∑
n=0

Hn(x)
tn

n!
= Aα

−1
α̃eαt +Bβ

−1
β̃eβ t .

Proof. Using the Equation (2.2), we find that

∞

∑
n=0

Hn(x)
tn

n!
=

∞

∑
n=0

(Aα
n−1

α̃ +Bβ
n−1

β̃ )
tn

n!

=
Aα̃

α

∞

∑
n=0

(αt)n

n!
+

Bβ̃

β

∞

∑
n=0

(β t)n

n!

=
Aα̃

α
eαt +

Bβ̃

β
eβ t

= Aα
−1

α̃eαt +Bβ
−1

β̃eβ t .

So the proof is completed.

We now give the following interesting identities.

Theorem 2.7. (Catalan’s Identity). For positive integers n and r, with n≥ r, the following identity is true:

Hn+r(x)Hn−r(x)−H2
n(x) = (−q)n−1AB

(
α̃β̃

((
β

α

)r

−1
)
+ β̃ α̃

((
α

β

)r

−1
))

. (2.7)

Proof. Using the Equation (2.2), we obtain the LHS of the equality (2.7),

Hn+r(x)Hn−r(x)−H2
n(x) =

(
Aα

n−r−1
α̃ +Bβ

n−r−1
β̃

)(
Aα

n+r−1
α̃ +Bβ

n+r−1
β̃

)
−
(

Aα
n−1

α̃ +Bβ
n−1

β̃

)2

= AB(αβ )
n−1

α
−r

β
r
α̃β̃ +BA(βα)

n−1
β
−r

α
r
β̃ α̃

−AB(αβ )
n−1

α̃β̃ −BA(βα)
n−1

β̃ α̃.

Then, we have

Hn+r(x)Hn−r(x)−H2
n(x) = (−q)n−1AB

(
α̃β̃

((
β

α

)r

−1
)
+ β̃ α̃

((
α

β

)r

−1
))

.
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Theorem 2.8. (Cassini’s Identity). For n≥ 1, the following equality holds:

Hn+1(x)Hn−1(x)−H2
n(x) = (−q)n−1AB

(
α̃β̃

(
β

α
−1
)
+ β̃ α̃

(
α

β
−1
))

. (2.8)

Proof. If we take r = 1, in (2.7), we obtain the assertion of the theorem.

Theorem 2.9. (d’Ocagne’s Identity) Let m≥ 0 and n≥ 0 be integers such that m > n+1. Then we have

Hm(x)Hn+1(x)−Hm+1(x)Hn(x) =
√

∆AB(−q)n−1
(

β
m−n

β̃ α̃−α
m−n

α̃β̃

)
, (2.9)

where ∆ = p2x2 +4q.

Proof. By virtue of Equation (2.2), we get

Hm(x)Hn+1(x)−Hm+1(x)Hn(x) =
(

Aα
m−1

α̃ +Bβ
m−1

β̃

)(
Aα

n
α̃ +Bβ

n
β̃

)
−
(

Aα
m

α̃ +Bβ
m

β̃

)(
Aα

n−1
α̃ +Bβ

n−1
β̃

)
= ABα

m−1
β

n
α̃β̃ −ABα

m
β

n−1
α̃β̃

+BAα
n
β

m−1
β̃ α̃−BAα

n−1
β

m
β̃ α̃.

After some calculations, we can easily see that

Hm(x)Hn+1(x)−Hm+1(x)Hn(x) =
√

∆AB(−q)n−1
(

β
m−n

β̃ α̃−α
m−n

α̃β̃

)
.

If we take a = b = p = q = 1 in (2.7), (2.8) and (2.9), we obtain the Catalan, the Cassini and the d’Ocagne identities for the
Fibonacci hybrinomials [24, Theorem 2.4], [24, Corollary 2.6] and [24, Theorem 2.7], respectively. Similarly, if we take
a = 2 and b = p = q = 1 in (2.7), (2.8) and (2.9), we obtain the Catalan, the Cassini and the d’Ocagne identities for the Lucas
hybrinomials [24, Theorem 2.5], [24, Corollary 2.6] and [24, Theorem 2.9], respectively.

Theorem 2.10. Let n≥ 2 be an integer. Then we obtain

n−1

∑
k=1

Hk(x) =
H1(x)−Hn(x)+q(H0(x)−Hn−1(x))

1− px−q
. (2.10)

Proof. By virtue of Equation (2.2), we find that

n−1

∑
k=1

Hk(x) =
n−1

∑
k=1

(
Aα

k−1
α̃ +Bβ

k−1
β̃

)
= Aα̃

n−1

∑
k=1

α
k−1 +Bβ̃

n−1

∑
k=1

β
k−1

= Aα̃

(
1−αn−1

1−α

)
+Bβ̃

(
1−β n−1

1−β

)
=

Aα̃ (1−β )(1−αn−1)+Bβ̃ (1−α)
(
1−β n−1

)
1− px−q

.

Utilizing the last equation, we have

n−1

∑
k=1

Hk(x) =
H1(x)−Hn(x)+q(H0(x)−Hn−1(x))

1− px−q
.

Corollary 2.11. ([24, Theorem 2.13]) Let n≥ 2 be an integer. Then we have

n−1

∑
k=1

FHk(x) =
FHn(x)+FHn−1(x)−FH0(x)−FH1(x)

x
.

Proof. If we take a = b = p = q = 1 in Equation (2.10), the proof is completed.
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Corollary 2.12. ([24, Theorem 2.15]) Let n≥ 2 be an integer. Then we have

n−1

∑
k=1

LHk(x) =
LHn(x)+LHn−1(x)−LH0(x)−LH1(x)

x
.

Proof. If we take a = 2 and b = p = q = 1 in Equation (2.10), the proof is completed.

Theorem 2.13. For n≥ 0, we have

qn
n

∑
i=0

(
n
i

)(
px
q

)n−i

Hn−i(x) =H2n(x). (2.11)

Proof. Because of the Binet formula of the Horadam hybrinomials, we have the LHS of the equality (2.11),

qn
n

∑
i=0

(
n
i

)
(px)n−i qi

(
Aα

n−i−1
α̃ +Bβ

n−i−1
β̃

)
= Aα̃α

−1
n

∑
i=0

(
n
i

)
(pxα)n−i qi +Bβ̃β

−1
n

∑
i=0

(
n
i

)
(pxβ )n−i qi

= Aα̃α
−1 (pxα +q)n +Bβ̃β

−1 (pxβ +q)n

= Aα̃α
2n−1 +Bβ̃β

2n−1

= H2n(x).

Thus the proof is completed.

Corollary 2.14. For n≥ 0, we have
n

∑
i=0

(
n
i

)
xn−iFHn−i(x) = FH2n(x).

Proof. If we take a = b = p = q = 1 in Equation (2.11), the proof is completed.

Corollary 2.15. For n≥ 0, we have
n

∑
i=0

(
n
i

)
(2x)n−i PHn−i(x) = PH2n(x).

Proof. If we take a = q = 1 and b = p = 2 in Equation (2.11), the proof is completed.

Corollary 2.16. For n≥ 0, we have
n

∑
i=0

(−1)n
(

n
i

)
(−6x)n−i BHn−i(x) = BH2n(x).

Proof. If we take a = 1, b = p = 6, and q =−1 in Equation (2.11), the proof is completed.

3. An application of Horadam hybrinomials in matrices

In this section, we derive the matrix representation of the Horadam hybrinomials. Then we obtain closed formula for the
Horadam hybrinomials Hn(x), in terms of tridiagonal determinant (see [26]-[28]).

Theorem 3.1. Let n≥ 1 be an integer. The following equality holds:[
Hn+3(x) Hn+2(x)
Hn+2(x) Hn+1(x)

]
=

[
H3(x) H2(x)
H2(x) H1(x)

][
px 1
q 0

]n

. (3.1)

Proof. For the proof, we use induction method on n. The equality holds for n = 1. Now suppose that the equality is true for
n > 1. Then we can verify it for n+1 as follows:[

H3(x) H2(x)
H2(x) H1(x)

][
px 1
q 0

]n+1

=

[
H3(x) H2(x)
H2(x) H1(x)

][
px 1
q 0

]n [ px 1
q 0

]
=

[
Hn+3(x) Hn+2(x)
Hn+2(x) Hn+1(x)

][
px 1
q 0

]
=

[
Hn+4(x) Hn+3(x)
Hn+3(x) Hn+2(x)

]
.

So the proof is completed.
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Corollary 3.2. ([24, Theorem 2.16]) Let n≥ 1 be an integer. The following equality holds:[
FHn+3(x) FHn+2(x)
FHn+2(x) FHn+1(x)

]
=

[
FH3(x) FH2(x)
FH2(x) FH1(x)

][
x 1
1 0

]n

.

Proof. If we take a = b = p = q = 1 in Equation (3.1), the proof is completed.

Corollary 3.3. ([24, Theorem 2.17]) Let n≥ 1 be an integer. The following equality holds:[
LHn+3(x) LHn+2(x)
LHn+2(x) LHn+1(x)

]
=

[
LH3(x) LH2(x)
LH2(x) LH1(x)

][
x 1
1 0

]n

.

Proof. If we take a = 2 and b = p = q = 1 in Equation (3.1), the proof is completed.

The nth term of Horadam hybrinomial can be obtained via the computation of the determinant of the tridiagonal matrix
Mn−1(x).

Proposition 3.4. The n×n tridiagonal matrices

MHn(x) =



H2(x) H1(x)
−q px 1

−q px 1
. . .

. . .
. . .
−q px 1

−q px


, (3.2)

satisfy

|MHn(x)|=Hn+1(x).

Corollary 3.5. The n×n tridiagonal matrices

MFn(x) =



FH2(x) FH1(x)
−1 x 1

−1 x 1
. . .

. . .
. . .
−1 x 1

−1 x


,

satisfy

|MFn(x)|= FHn+1(x).

Proof. If we take a = b = p = q = 1 in Equation (3.2), the proof is completed.

Corollary 3.6. The n×n tridiagonal matrices

MPn(x) =



PH2(x) PH1(x)
−1 2x 1

−1 2x 1
. . .

. . .
. . .
−1 2x 1

−1 2x


,

satisfy

|MPn(x)|= PHn+1(x).

Proof. If we take a = q = 1 and b = p = 2 in Equation (3.2), the proof is completed.
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Corollary 3.7. The n×n tridiagonal matrices

MBn(x) =



BH2(x) BH1(x)
1 6x 1

1 6x 1
. . .

. . .
. . .
1 6x 1

1 6x


,

satisfy

|MBn(x)|= BHn+1(x).

Proof. If we take a = 1, b = p = 6 and q =−1 in Equation (3.2), the proof is completed.

Note that, Horadam hybrinomial can be obtained using the another tridiagonal matrix.

Proposition 3.8. For n≥ 1, we have

Hn(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

H1(x) H2(x) 0 0 · · · 0 0
−1 0 q 0 · · · 0 0
0 −1 px q · · · 0 0
...

...
...

. . .
. . .

...
...

0 0 0 0 · · · px q
0 0 0 0 · · · −1 px

∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

. (3.3)

Corollary 3.9. For n≥ 1, we have

FHn(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

FH1(x) FH2(x) 0 0 · · · 0 0
−1 0 1 0 · · · 0 0
0 −1 x 1 · · · 0 0
...

...
...

. . .
. . .

...
...

0 0 0 0 · · · x 1
0 0 0 0 · · · −1 x

∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

.

Proof. This follows from setting a = b = p = q = 1 in the Equation (3.3).

Corollary 3.10. For n≥ 1, we have

PHn(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

PH1(x) PH2(x) 0 0 · · · 0 0
−1 0 1 0 · · · 0 0
0 −1 2x 1 · · · 0 0
...

...
...

. . .
. . .

...
...

0 0 0 0 · · · 2x 1
0 0 0 0 · · · −1 2x

∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

.

Proof. This follows from taking a = q = 1 and b = p = 2 in the Equation (3.3).

Corollary 3.11. For n≥ 1, we have

BHn(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

BH1(x) BH2(x) 0 0 · · · 0 0
−1 0 −1 0 · · · 0 0
0 −1 6x −1 · · · 0 0
...

...
...

. . .
. . .

...
...

0 0 0 0 · · · 6x −1
0 0 0 0 · · · −1 6x

∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

.

Proof. This follows from setting a = 1, b = p = 6, and q =−1 in the Equation (3.3).

Remark 3.12. This paper is a slightly corrected and revised version of the electronic preprint [29].
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4. Conclusion

In our present research, we have studied Horadam hybrinomials which are defined by dint of the Horadam polynomials. We
have obtained some properties of Horadam hybrinomials. Finally in Section 3, with the help of the two different tridiagonal
matrix, we have obtained the nth term of Horadam hybrinomials. According to the special cases of a, b, p and q, all the results
given in Section 2 and Section 3 are applicable to all hybrinomials and hybrid numbers mentioned in this paper. The Horadam
hybrinomials that we have defined include previously introduced the Fibonacci hybrinomials FHn(x), the Fibonacci hybrid
numbers FHn, the Lucas hybrinomials LHn−1(x), the Lucas hybrid numbers LHn−1, the Pell hybrinomials PHn(x), the Pell
hybrid numbers PHn, the Pell-Lucas hybrinomials QHn−1(x), the Pell-Lucas hybrid numbers QHn−1 (see, [24, 25]). From the
definition of the Horadam hybrinomials, we also have obtained the Chebyshev hybrinomials of the first kind T Hn−1(x), the
Chebyshev hybrid numbers of the first kind T Hn−1, the Chebyshev hybrinomials of the second kind UHn−1(x), the Chebyshev
hybrid numbers of the second kind UHn−1, the Balancing hybrinomials BHn(x) and the Balancing hybrid numbers BHn.
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