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Abstract  

Propensity score analysis, such as propensity score matching and propensity score weighting, is becoming 

increasingly popular in educational research. When a propensity score analysis is conducted, examining the 

covariate balance is considered to be crucial to justify the quality of the analysis results. However, it has been 

pointed out that solely considering how covariates balance after matching may not be enough for justifying the 

quality of the propensity score analysis results. Suitable covariate balance may still yield biased estimates of 

treatment effects. The current study aimed to systematically demonstrate this problem by a series of simulation 

studies. As a result, it was revealed that a good covariate balance on the mean and/or the variance does not 

guarantee reduced bias on an estimated treatment effect. It was also found that estimation of the treatment effect 

can be unbiased to some degree, even with a lack of balance under specific conditions.  

 

Key Words: Propensity score analysis, covariate balance, unbiased treatment effect. 

 

INTRODUCTION  

Propensity score (PS) analysis is becoming increasingly popular in educational research that adopts 

quasi-experimental design. PS analysis allows researchers to create a balance between treatment and 

control groups in order to estimate unbiased treatment effect when a randomized control design is not 

possible or is considered unethical/impractical (Guo & Fraser, 2015; Rosenbaum & Rubin, 1983). A 

challenge with the application of PS analysis is how to ensure that we have obtained an improved 

treatment effect estimate, ideally an unbiased estimate of the population treatment effect. 

Typically, a researcher will go through a series of steps, and back steps, when conducting PS analysis. 

First, researchers identify the covariates to be included in the PS model and select a method (e.g., logistic 

regression-LR) for obtaining the propensity scores (PSs). Second, researchers conduct the analysis to 

estimate PSs and use them to balance the treatment and control groups in terms of covariate distributions. 

Third, researchers examine the quality of covariate balance and either go back to the first step and/or 

account for any insufficiently balanced covariates in the outcome analysis. Fourth, researchers conduct 

the outcome analysis for treatment effect estimation. 

An important factor affecting PS analysis results is the type of covariates (i.e., associated only with the 

outcome, treatment assignment, or both) used to estimate PSs. Researchers have investigated the effects 

of including different covariate types in PS models in an effort to identify the most appropriate covariates 
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to include. Covariates that yield balanced treatment and control groups and ultimately unbiased 

treatment effects would be the desired ones to use in PS analysis. There have been some studies that 

revealed the importance of including covariates strongly associated with the outcome and not with the 

treatment assignment (Brookhart et al., 2006; Myers et al., 2011). Some studies also highlighted the 

negative effect of intrinsic covariates (mostly associated with the treatment assignment and showed little 

association with the outcome) on PS models and recommended avoiding them due to inconsistencies in 

the PS analyses (Bhattacharya & Vogt, 2007) or increased bias in the estimation of treatment effects 

(Patrick et al., 2011). Similarly, What Works Clearinghouse-WWC (2017) also highlighted the negative 

effects of using intrinsic covariates on the estimation of the treatment effect. Researchers also explored 

that including covariates those strongly associated with both treatment assignment and outcome, yields 

the least bias (Brookhart et al., 2006; Hong, Aaby, Siddique, & Stuart, 2018; Myers et al., 2011; Steiner, 

Cook, Shadish, & Clark, 2010). 

Another important factor is the method utilized for obtaining PSs. The standard method is traditional 

LR in most applications. There have been more advanced methods that involve a combination of 

adjustments within the calculations/algorithms for obtaining PSs. For example, researchers have found 

that non-parametric and adaptive approaches (e.g., generalized boosted regression-GBR, classification 

and regression trees-CART, nearest neighbor matching-NNM, etc.) are more promising than LR in terms 

of covariate balance and treatment effect estimation (Cannas & Arpino, 2019; Lee, Lessler, & Stuart, 

2010; McCaffrey, Ridgeway, & Morral, 2004; Setoguchi, Brookhart, Glynn, & Cook, 2008; Westreich, 

Lessler, & Funk, 2010). Other researchers found that certain PSs, such as the covariate balancing 

propensity scores (CBPS), perform very well in terms of balancing treatment and control groups (Kainz 

et al., 2017). In the current study, we consider multiple methods for estimating the PSs, which are 

elaborated in the methods section. 

The most important overall goal for PS analysis is the reduction of confounding by balancing the 

treatment and control groups. In other words, PS analysis aims to reduce the confounding effect of 

external variables on the estimation of the true treatment effect. For this reason, examining covariate 

balance is crucial in justifying PS analysis results (Kainz et al., 2017). Researchers commonly evaluate 

the first moment of the covariate distributions between treatment and control groups by using the 

standardized absolute mean difference (SAMD).  As also implied by Stuart, Lee, and Leacy (2013), 

SAMD is the most common measure of balance that is calculated similarly to effect size. It simply 

checks the magnitude of the mean differences in absolute scale compared to standardized mean 

difference (SMD). According to Rubin (2001), SAMD values from 0.1 to 0.25 are considered to be 

acceptable as indicators of good mean balance.  Nevertheless, it was seen that applied researchers 

generally follow a stricter criterion as 0.05, which was suggested by WWC (2017) accessible through 

the Institute of Education Sciences as part of the US Department of Education.  

In addition to checking the balance in terms of means, researchers may aim to evaluate other 

characteristics of covariate distributions in treatment and control groups. Along with SAMD, the 

literature has suggested the use of a combination of several criteria, including goodness-of-fit measures 

for covariate distributions (e.g., Kolmogorov-Smirnov test: Austin, 2009; Kainz et al., 2017; Stuart, 

2010) and variance ratio (Kainz et al., 2017). Variance ratio (VR) is simply the ratio of a covariate’s 

variance in the treatment and control group with a value of one indicating identical variances. According 

to Rubin (2007) VR values lower than 0.5 or higher than two are considered to be indicators of variance 

imbalance. We consider SAMD and VR as two widely-used standard measures of covariate balance in 

the current study. Readers are referred to Austin (2009) for a detailed overview of common balance 

measures and to Stuart, Lee, and Leacy (2013) for alternative balance measures such as prognostic score-

based solutions.  

 

Purpose of the Study 

Obtaining good balance, such as a SAMD of 0.05 or less (What Works Clearinghouse, 2017), is standard 

practice when estimating treatment effects in PS analysis. Nevertheless, solely considering how 

covariates balance after matching may not be enough for justifying the quality of the PS analysis results. 
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Suitable covariate balance may still yield biased treatment effects (Lee, Lessler, & Stuart, 2010; Stuart, 

Lee, & Leacy, 2013). More specifically, Belitser et al. (2011) showed that following various balance 

diagnostic approaches might result in different levels of treatment effect bias. More interestingly, having 

measurement error in covariates might lead to a problematic estimate of the treatment effect even with 

a good level of covariate balance (Hong, Aaby, Siddique, & Stuart, 2018). Lastly, it was also shown that 

the balance of specific covariates could have more influence on the treatment effect bias (Stuart, Lee, & 

Leacy, 2013). All mentioned evidence from the literature points out the same conclusion: obtaining a 

good level of overall covariate balance might not be enough for estimating an unbiased treatment effect. 

There can be several other factors that can deteriorate the estimation of the true treatment effect even 

with a good amount of overall covariate balance.  

Although there have been some studies that have discussed a potential lack of the direct relation between 

covariate balance and treatment effect bias (Hong, Aaby, Siddique, & Stuart, 2018; Lee, Lessler, & 

Stuart, 2010; Stuart, 2013), no study to our knowledge has demonstrated this problem by systematically 

examining it in the context of the aforementioned factors that are important to PS analysis, as well as 

other key factors such as sample size, the proportion of treatment group, and the association between 

covariates. Therefore, the current study aims to investigate the inconsistent relation between covariate 

balance and bias in treatment effect estimation. In other words, this study aims to systematically explore 

the effects of covariate balance on treatment effect estimation by considering many conditions that 

applied researchers encounter in their PS analyses. To facilitate a better examination of the current study 

results, we utilized the PSs estimated from different methods as weights for determining the treatment 

and control groups across all conditions (Guo & Fraser, 2015; Rosenbaum & Rubin, 1983). 

 

METHOD 

A simulation study was conducted to evaluate the performance of three PS estimation methods for 

recovering the population treatment effect and establishing the covariate balance in terms of means and 

variances. The three PS methods considered were the traditional LR, GBR, and CBPS. LR is the widely-

used method among educational researchers and predicts the PSs through a logistic regression model. 

The GBR method uses a nonparametric, automated machine learning technique to estimate the PSs and 

associated weights (Ridgeway, McCaffrey, Morral, Griffin, & Burgette, 2017). The GBR method can 

predict the treatment assignment using a large number of covariates and is flexible in that it can handle 

nonlinear relationships between PSs and covariates (McCaffrey, Ridgeway, & Morral, 2004). The CBPS 

method simultaneously derives the PSs and weights for observations to optimize covariate balance 

between the treatment and control groups (Fong, Ratkovic, & Imai, 2019). Readers are referred to the 

cited literature for detailed explanations of the mentioned PS estimation methods.  

 

Simulation Design 

In addition to the three PS estimation methods, the current study also investigated the effect of using 

different types of covariates on the estimation quality of the treatment effect in relation to balance. 

Twenty-four covariates were classified into three different types (eight covariates per type) depending 

on their relationship with the treatment assignment and the outcome variable. Types of covariates were 

referred to as 1) type-W: correlated with both treatment assignment and the outcome variables, 2) type-

X: correlated only with the outcome variable, and 3) type-Z: correlated only with the treatment 

assignment variable. A total of 108 simulation conditions were considered by crossing three PS 

estimation methods (LR, GBR, and CBPS), three covariate types (type-W, type-X, and type-Z), three 

sample sizes (500, 1,000, and 5,000), two proportions of treatment group (0.25 and 0.45), and two 

scenarios for the correlations among the covariates (uncorrelated and correlated). 

Simulation conditions were mainly identified based on practical considerations that aim to guide applied 

researchers. LR was selected to represent the simplistic yet widely-used method among practitioners. 

CBPS and GBR were selected to represent more advanced methods compared to LR. It is known that 

CPBS is also a popular method in applied PS analysis studies and GBR is being recognized by many 
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practitioners who aim to use more advanced methods, namely machine learning-based approaches. 

Sample sizes were identified to reflect small to extremely large conditions. Group proportions were 

identified considering scenarios with low and medium/ levels of treatment group availability. It wouldn’t 

be wrong to say that PS analysis studies mostly have larger sample sizes for the control group rather 

than the treatment group. Thus, we limited the maximum proportion of the treatment group to be 45% 

to represent a more realistic condition.  

Some other magnitudes and/or parameters were fixed in the current simulation. The number of the 

covariates per type (fixed to eight) was identified randomly yet as a typical size of covariate availability 

in applied PS analysis studies. The magnitudes of the correlations between covariates were fixed to 0.05 

and 0.15 for the uncorrelated vs. correlated covariates conditions. These values were identified in 

reference to the magnitudes used in other PS analysis simulation studies as well as thinking realistic 

magnitudes relative to the correlation values between covariates and treatment/outcome variables. We 

avoided high correlations among the covariates themselves in order to better reveal the effect of 

covariate and treatment/outcome relation. Lastly, the effect size was fixed to 0.8 and not varied in the 

current simulation. We chose a relatively high effect size in order to eliminate the side effects of having 

a small effect during the estimation phase. In other words, we intended to examine the performance of 

the methods under various conditions when the effect size is already known to be large.  

 

Data Generation 

Consider observations of the form (𝐖𝑖, 𝐗𝑖, 𝐙𝑖 , 𝐵𝑖, 𝑌𝑖),  𝑖 = 1,… , 𝑛 where 𝐖𝑖, 𝐗𝑖, 𝐙𝑖 are type-W, type-X, 

and type-Z covariates with size 𝑚𝑊, 𝑚𝑋, and 𝑚𝑍 respectively. As explained above, the number of the 

covariates for each covariate type was fixed to eight, thus 𝑚𝑊 = 𝑚𝑋 = 𝑚𝑍 = 8. Additionally, 𝐵𝑖 is an 

indicator as to whether an observation belongs to the control (𝐵𝑖 = 0) or treatment (𝐵𝑖 = 1) group, and 

𝑌𝑖 is the outcome of interest. As described earlier, it is assumed that covariates 𝐖𝑖 and 𝐙𝑖 affect the 

probability of treatment group membership, while 𝐖𝑖 and 𝐗𝑖 affect the outcome after the group 

membership has been determined. For notational convenience, let 𝚺𝑊, 𝚺𝑋, and 𝚺𝑍 denote the covariance 

matrices of 𝐖, 𝐗, and 𝐙. Also, let 𝚺𝑊𝑋, 𝚺𝑊𝑍, and 𝚺𝑋𝑍 denote the cross-covariance matrices. Note that 

former matrices contain the covariances between the same-type covariates, whereas the latter ones 

contain the covariances between different covariate types. For example, 𝚺𝑊 is the 8x8 covariance matrix 

of eight type-W covariates. 𝚺𝑊𝑍 is the 8x8 covariance matrix of eight type-W covariates and eight type-

Z covariates. Then 𝚺𝑊 and 𝚺𝑊𝑍 matrices are combined for the generation of the treatment group 

membership. Other matrices can be interpreted in a similar way. 

To simulate treatment group membership, let  

𝜋(𝐖,𝐙) = logit(𝛼0 + 𝛂𝑊
⊤ 𝐖+𝛂𝑍

⊤𝐙). (1) 

Then, for the 𝑖th simulated case, 

𝐵𝑖 ∼ Ber[𝜋(𝐖𝑖, 𝐙𝑖)]. (2) 

 

Note that 𝜋 is the probability of being in the treatment group, and Ber stands for Bernoulli distribution. 

Also, terms with T superscripts refer to the transpose of a relevant matrix. The most important question 

here is how to choose the constant 𝛼0 in (1), as this controls the proportion of cases that belong to the 

treatment and control groups. If [𝐖𝑖, 𝐙𝑖] follows a zero-mean multivariate normal distribution (𝛷 is the 

inverse of the cumulative normal distribution function), then the choice 

𝛼0 = −𝜎𝑊𝑍𝛷
−1(1 − 𝑝) (3) 

with 
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𝜎𝑊𝑍 = √[𝛂𝑊
⊤ , 𝛂𝑍

⊤] [
𝚺𝑊 𝚺𝑊𝑍

𝚺𝑊𝑍 𝚺𝑍
] [
𝛂𝑊
𝛂𝑍

] (4) 

will result in a proportion 𝑝 of the cases being associated with a success probability 𝜋(𝐖, 𝐙) greater 

than 0.5 and a proportion 1 − 𝑝 with success probability less than 0.5. Once the treatment group 

memberships have been generated, the outcome 𝑌𝑖 is generated according to 

𝑌𝑖 = 𝛽0 + 𝛽𝑇𝐵𝑖 + 𝛃𝑊
⊤ 𝐖𝑖 + 𝛃𝑋

⊤𝐗𝑖 + 𝜀𝑖, (5) 

where 𝜀 ∼ 𝑁(0, 𝜎𝜀
2) and 𝛽

𝑇
= 𝐷. 𝜎𝜀 with 𝐷 being the effect size, which is fixed to 0.8, assuming the 

existence of a large treatment effect. The population values in (4) and (5) were set to 𝛂𝑊 = −1.0, 𝛂𝑍 =

1.0, 𝛃
𝑊
= 1.0, and 𝛃

𝑋
= 2.0. Note that varying the population values of these parameters regulates the 

level of association between the covariates and treatment assignment/outcome. We selected these values 

somewhat arbitrarily yet in the light of the other PS simulation studies, including Brookhart et al. (2006).  

The covariance matrices between the same- (𝚺𝑊, 𝚺𝑋, and 𝚺𝑍) and cross-type covariates (𝚺𝑊𝑋, 𝚺𝑊𝑍, and 

𝚺𝑋𝑍) were varied depending on the magnitude of the relationship among the covariates as a simulation 

condition. Since all covariates were assumed to have a zero mean and a unit variance, covariance 

matrices were also the correlation matrices. For the conditions that assumed no relationship among the 

covariates, all correlations were fixed to zero. Thus, the same- and cross-type matrices were 8x8 identity 

and 8x8 zero matrices, respectively. For the conditions that assumed a relationship among the covariates, 

0.15 and 0.05 were assigned to the correlations among the same- and cross-type covariates and were 

used to create the relevant covariance matrices. 

Two hundred data sets were generated per simulation condition with R (R Core Team, 2018) and 

analyzed with the relevant PS analysis method, as elaborated in the next section. Note that the data were 

generated by considering all three types of covariates as predictors of the treatment assignment and 

outcome variables. In other words, the treatment assignment was generated by using the W- and Z-type 

covariates (8+8=16 predictors in total), and the outcome measure was generated by using the W- and 

X-type covariates (8+8=16 predictors in total). During the PS model fitting procedure, however, only 

one type of covariate (8 in total) was used for each analysis in order to examine the effect of covariate 

type as a simulation condition. 

 

Analysis 

PS weights were computed to estimate the average treatment effect for the treated (ATT), utilizing 

weighting by the odds (Hirano, Imbens, & Ridder, 2003). Therefore, weights for observations in the 

treatment group were fixed to be 𝑤𝑡𝑖 = 1.0 and weights for observations in the control group were 

computed by 𝑤𝑐𝑖 = (𝑝𝑠𝑖)/(1 − 𝑝𝑠𝑖), where 𝑝𝑠𝑖 is the estimated PS for the 𝑖th observation. 𝑤𝑡𝑖 and 𝑤𝑐𝑖 

values were then used to compute weighted standardized treatment effect for the outcome variable. For 

covariates, the weights were applied to compute the SAMD and VR as the indicators of covariate 

balance per covariate. SAMD and the VR values (after adjusting for the treatment/control group as the 

denominator) for eight covariates were further averaged to obtain the overall balance indicators per 

simulated data set, which are referred to as average SAMD (ASAMD) and average VR (AVR) in the 

following sections.  

We intended to use the default PS estimation options as much as possible for the three methods in their 

relevant R functions, considering a typical user without deep knowledge. Nevertheless, we modified 

some options for GBR method in order to prevent masking its performance compared to simpler 

methods. The traditional LR method was conducted by the MatchIt R package (Ho, Imai, King, & Stuart, 

2008), adopting the default specifications for PS estimation with NNM. The GBR method was utilized 

by the twang R package (Ridgeway, McCaffrey, Morral, Griffin, & Burgette, 2017) with default 

specifications except for the stopping method, which was modified to assess the maximum balance 

matrix for Kolmogorov-Smirnov statistic. We also modified the estimand option to be ATT (as it was 
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the adopted method in the current study), which was ATE-Average Treatment Effect by default. The 

CBPS R package (Fong, Ratkovic, & Imai, 2019; Imai & Ratkovic, 2014) was used to estimate the PSs 

by the CBPS method with default options. Readers are referred to relevant resources for more details 

about the R functions of each method.  

 

Evaluation Criteria 

In an effort to derive a consistent measure of covariate balance and treatment effect, we utilized the 

cobalt R package (Greifer, 2019) to compute the ASAMD and AVR between treatment and control 

groups per generated data set. The cobalt package is commonly used as a supplement to the balance 

diagnostic tools and provides efficient summary tables of balance diagnostics for each covariate. 

For the evaluation of overall covariate balance performance, ASAMD and AVR values were further 

averaged across 200 data sets generated per simulation condition. Average ASAMD values closer to 0 

and average AVR values closer to 1 are considered to be good indicators of overall covariate balance in 

terms of mean and variance, respectively. Recovery of the population treatment effect (𝐷 = 0.8) was 

evaluated by the absolute bias (AB) and standard error (SE), which were calculated by equations (6) and 

(7), respectively. 

𝐴𝐵(�̂�) = |𝐷�̂� − 𝐷| (6) 

𝑆𝐸(�̂�) = √∑ (𝑀
𝑚 �̂� − 𝐷�̂�)

2

𝑀
(7) 

Note that 𝐷 and �̂� are the population and estimated values of the treatment effect. Also, 𝑀 represents 

the total number of replications (200 in our case), 𝑚 is a specific step of those 𝑀 replications, and 𝐷�̂� 

is the average of the estimated effect sizes across 𝑀 replications. 

 

RESULTS 

 

Recovery of the Treatment Effect 

It was confirmed that the use of type-W covariates provided the lowest ABs for the recovery of the 

treatment effect under all simulation conditions (Figure 1). This result is consistent with the existing 

literature that encourages researchers/practitioners to use covariates that correlate with both outcome 

and treatment indicators (Brookhart et al., 2006; Hong, Aaby, Siddique, & Stuart, 2018; Myers et al., 

2011; Steiner, Cook, Shadish, & Clark, 2010). However, contrary to our expectation, the performance 

of type-X covariates (correlated with the outcome) was not as good as type-W covariates. Rather, their 

performance was close to type-Z covariates (correlated with the treatment condition), especially when 

there was no correlation among covariates. Nevertheless, the ABs were lower for type-X covariates (all 

below 0.6) than type-Z covariates for all simulation conditions. Lastly, the bias was slightly lower when 

the type-W covariates were correlated vs. they were not.  
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Figure 1. Absolute Bias of the Estimated Treatment Effect 

 

In general, the three PS estimation methods performed similarly for recovering the population treatment 

effect under common conditions. This was especially true for conditions with type-X covariates. 

However, for conditions with type-W covariates, GBR did not perform as well as CBPS and LR, while 

CBPS and LR performed similarly. These tendencies were observed for all conditions, regardless of 

sample size, proportion of the treatment group, and correlation among covariates. Interestingly, GBR 

had the lowest AB values when type-Z covariates were used. However, the ABs were large, and the 

differences between GBR and the other two methods were not large enough to claim that GBR would 

be useful with type-Z covariates. 

Regarding the sample size, there was no clear effect on the AB values for any of the three PS estimation 

methods. Only a slight decreasing tendency of AB with increased sample size was observed with the 

use of GBR method in conditions with type-W covariates. On the other hand, a clear effect of sample 

size was observed for SE values (Figure 2), which were in decreasing trend with the increase of sample 

size as expected. The proportion of the treatment group also did not show a considerable effect for AB 

values. Lastly, the effect of the correlation among the selected covariates showed different trends 

depending on a specific condition. For example, the AB values were lower when type-W covariates 

were correlated regardless of the proportion of the treatment group. This was also the case for type-X 

covariates; however, the change was not as clear as for the type-W covariates. An opposite tendency 

was observed for type-Z covariates. Namely, the AB values were higher when the covariates were 

correlated for both proportions of the treatment group. Thus, the amount of correlation between type-W 
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covariates seems to provide extra information for a better recovery of the treatment effect. Conversely, 

intercorrelated type-Z covariates seem to deteriorate the estimation of the treatment effect. Although we 

don’t have an exact explanation for this phenomenon, we suspect that the intercorrelated treatment 

assignment predictors led to problematic balancing hence to slightly higher bias in the treatment effect 

estimation. Moreover, it is known that the use of only type-Z predictors is expected to result in a higher 

bias in the treatment effect estimation (Patrick et al., 2011). Thus, with the intercorrelated type-Z 

covariates, this negative effect seemed to be slightly larger.  

 

 

Figure 2. Standard Error of the Estimated Treatment Effect 

 

In summary, our results demonstrated that the use of covariates that are related to both treatment 

indicator and the outcome resulted in a better recovery of the treatment effect nearly under all studied 

simulation conditions. Also, it was demonstrated that LR and CBPS produced better performance than 

GBR when type-W covariates were used. It is important to note that such a result might be explained by 

the data generation model, where we used only the first-level terms in the logistic regression of the 

treatment assignment. In other words, no higher-level terms (such as square of the predictors) or 

interactions were used in the generation of the treatment assignment. Thus, this is in line with the 

estimation of a plain logistic regression model adopted in LR method. GBR is known to examine also 

the prediction power of higher-level and interaction terms automatically. Thus, better performance of 

the LR compared to a more advanced method like GBR might be a result of this. Additionally, if selected 



Journal of Measurement and Evaluation in Education and Psychology 

____________________________________________________________________________________ 

___________________________________________________________________________________________________________________ 

ISSN: 1309 – 6575   Eğitimde ve Psikolojide Ölçme ve Değerlendirme Dergisi 
Journal of Measurement and Evaluation in Education and Psychology 382 

covariates are correlated only with the outcome, selection of the PS estimation method would not matter 

so much, as the three performed similarly. 

 

Covariate Balance 

Means  

It was demonstrated that the mean balance was consistently better for the type-X covariates (correlated 

only with the outcome) under all conditions (Figure 3). Furthermore, the average ASAMD values for 

the type-X covariates were always below 0.05 regardless of the simulation condition, indicating that 

they met the threshold by WWC- What Works Clearinghouse, Institute of Education Sciences, U.S. 

Department of Education (2017). Therefore, a practitioner would interpret that the PS analysis went 

well. This result requires special attention, as it was demonstrated in the previous section that type-X 

covariates did not produce good AB for the recovery of the population treatment effect, compared to 

type-W covariates (correlated with the outcome and treatment condition). In other words, these results 

demonstrate that good covariate balance on means does not necessarily guarantee a good estimate of the 

treatment effect. 

 

 

Figure 3. Covariate Balance on Means 
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On the other hand, when type-W covariates were used, the average ASAMD values met the WWC 

criterion of 0.05 or lower only in conditions with CBPS as the method used for PS analysis. It was also 

observed that conditions with GBR approached the WWC criterion with the largest sample size (𝑛 = 

5,000) by the use of type-W covariates. Nevertheless, none of the two conditions resulted in low AB 

values, and GBR’s AB values were the highest with the use of type-W covariates. Thus, these findings 

also support the fact that good mean-based covariate balance does not necessarily result in a less biased 

treatment effect estimate. 

Looking at the results with the use of type-Z covariates (correlated only with the treatment condition) a 

similar trend was observed, where CPBS had the uniformly low average ASAMD values and GBR 

approached the WWC’s criterion with the highest sample size. Nevertheless, the lowest AB was 

observed consistently for GBR, and surprisingly, the AB values were increased by the increase of the 

sample size. It is also worth noting that the average ASAMD values for LR were severely affected by 

the proportion of the treatment group when type-W and type-Z covariates were used. Related to this, 

LR was not the best performing method in terms of mean balance, compared to its good performance in 

terms of recovery of the treatment effect. This difference is more important for the use of type-W 

covariates. A potential explanation for this might be the simplicity of the LR method for computation 

of the PSs compared to CBPS and GBR. In other words, simple LR does not account for complex 

relationships during the balancing procedures as CBPS and GBR do. 

 

Variances  

Overall, GBR outperformed the other two PS estimation methods, producing better covariate balance 

with respect to variance ratio. This is not surprising because we set up GBR to derive PSs by evaluating 

the maximum of the balance matrices based on Kolmogorov-Smirnov statistic, which evaluates the 

difference in distribution shapes, as opposed to the difference in the means only. Exceptions were 

observed when the treatment group was 45% and 𝑛 = 5,000 for type-W (correlated with the outcome 

and treatment condition) and type-Z covariates (correlated only with the treatment condition), where 

CBPS produced slightly better variance ratios than GBR. Unlike the mean balance of covariates, it was 

clear that the variance balance was affected by the sample size (Figure 4). All three PS estimation 

methods provided better variance ratios in conditions with larger sample sizes. It was demonstrated that 

sample size mattered more for CBPS than the other two methods. 
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Figure 4. Covariate Balance on Variances 

 

Similar to mean balance results, it was revealed that a PS estimation method that provided good variance 

balance did not necessarily do the same for the estimation of the treatment effect. Based on this 

determination, we can summarize our findings under two main statements. First, similar to mean balance 

results, the variance ratios were generally better for the type-X covariates (correlated only with the 

outcome) than the type-W and type-Z covariates across all conditions. However, as pointed out in the 

previous section, type-X covariates did not produce better AB values for the recovery of the treatment 

effect. Second, although GBR generally provided better variance ratios compared to the other two 

methods, it did not perform as well, in terms of AB, as CBPS and LR under conditions with type-W 

covariates. Also, LR provided the worst variance ratios for all conditions with type-X covariates; 

however, in terms of recovery of the treatment effect, LR performed as well as CBPS and GBR in 

conditions with type-X covariates. Therefore, based on our simulation results, we cannot conclude that 

variance ratios provided additional information to identify less biased treatment effect. Nevertheless, 

they provide more information about covariate balance in addition to mean balance. 

 

DISCUSSION and CONCLUSION  

Based on the simulation results, obtaining good covariate balance in terms of mean and variance ratio 

is likely when covariates are correlated only with the outcome variable (i.e., type-X covariates). The 

average mean balance across all conditions for this covariate type was below 0.05 on the standardized 
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scale, which meets the WWC criterion. The variance ratio for type-X covariates was consistently lower 

than other types of covariates in comparable conditions. However, the recovery of the treatment effect 

was not the best when only this type of covariates was used. Therefore, researchers/practitioners need 

to be cautious while using covariates that are mainly correlated with the outcome and not with the 

treatment assignment. Moreover, it is clear that in applied research that utilizes PS analysis, the true 

treatment effect will never be known. Thus, practitioners are encouraged to pay as much attention to the 

characteristics of the covariates as the level of balance they obtain after their selection. If the availability 

of the covariates is somewhat limited, practitioners can rely on the strengths of other PS estimation 

methods. For example, it was demonstrated that GBR provided slightly lower AB values when the 

covariates were the ones that only related to the treatment assignment. Nevertheless, we do not 

recommend solely relying on such an improvement since the bias values still were high in absolute 

values.  

Also, obtaining a good mean covariate balance is more likely when the CBPS method is used regardless 

of the covariate type used, whether covariates are correlated or not, sample size, and the proportion of 

the treatment group. In all of the conditions this study investigated, the mean balance met the WWC 

criterion with the CBPS. However, it was revealed that the magnitude of AB was affected more by the 

types of covariates used, as already implied above. When the CBPS was used with covariates that are 

correlated with the outcome variable and treatment condition (i.e., type-W covariates), AB was quite 

small, especially when covariates were correlated with each other. However, it is not only for the CBPS; 

LR performed equally well, and the performance of the GBR was just slightly worse than the CBPS and 

LR.  

Can an examination of the second moment (i.e., the variance ratio) help researchers/practitioners 

evaluate/predict the quality of an estimated treatment effect? Not likely. When the sample size was large, 

the variance ratio became very close to 1.05 for CBPS and GBR. However, this happened for all 

covariate types, including the ones that are correlated only with the treatment assignment (i.e., type-Z 

covariates). On the other hand, when the sample size was small (𝑛 = 500), variance ratios for CBPS 

and LR were large, up to 1.20 in the condition with correlated covariates with a 25% treatment group 

ratio. In conclusion, we can’t recommend that using VR as a complement to ASAMD will be strong 

enough to predict the performance of the PS methods that would lead to less bias of treatment effect 

estimation. Rather, practitioners should pay more attention to the characteristics of the covariates they 

are planning to use for the estimation of PSs rather than solely relying on the level of balance.  

It would not be wrong to say that CBPS can be suggested as the optimal method considering the general 

simulation conditions since it showed the best performance for the mean balance and better or nearly 

equal performance with two other methods for the recovery of the treatment effect. On the other hand, 

practitioners who mainly use type-X covariates would feel better by the good mean balance and variance 

ratio diagnostics they get. Nevertheless, they should be cautious about the estimation of the treatment 

effect since the type-W covariates (correlated both with the outcome and the treatment condition) 

showed better recovery results. In conclusion, it can be suggested to use covariates that are equally 

relevant to the treatment assignment and the outcome.  

 

Limitations and Future Research 

As explained in the methods section, specifications of the population values for the coefficients of 

different covariate types were somewhat arbitrary. It is likely that the results may change based on 

different specifications of those population values during the data generation phase. This is true for 

changing either the LR coefficients for the generation of the treatment indicator or the linear model for 

the generation of the outcome variable. Nevertheless, we tried to assign reasonable values for those 

parameters depending on their relation with the treatment condition and the outcome variable. We also 

checked other studies (e.g., Brookhart et al., 2006) as references for identifying typical values that are 

expected to be encountered in applied research. Also, data generation models did not assume any higher-

level terms (e.g., quadratic effects) or interactions between covariates.  
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The number of covariates were limited to eight in derivations of PSs. Although this number is realistic 

in many applications of PS analysis, a larger number of covariates may change the results. Also, our 

simulations investigated three different covariate types (i.e., type-W, type-X, and type-Z) in turn only, 

meaning none of our PSs were estimated using a combination of different covariate types. Although this 

does not sound realistic, we intentionally performed that in order to reveal the isolated effect of each 

covariate type. This also mimics the scenario where applied researchers miss using a specific type of 

covariates that potentially might change the results of the PS analyses.  

Although our study indicates that practitioners utilizing PS analysis should not rely on mean-based 

covariate balance, it is still unclear which diagnostic measure is ideal when conducting PS analysis. It 

could be that the ideal diagnostic measure depends on the method used to estimate the PSs (e.g., LR, 

GBR, CBPS) or on the approach used to apply the PSs (e.g., weighting, subclassification, etc.) in 

balancing treatment and control groups. The cobalt R package is able to work with the PS methods we 

explored in this study to provide weights. It could be that the “power” behind each method relies on 

using the weighting values generated from within each method rather than pulling the PSs to generate 

weights outside of each method. Future studies could investigate how different PS methods in 

combination with the cobalt R package generate weights and how these might affect covariate balance 

diagnostics and treatment effect bias. 

Last, this study systematically demonstrated the effect of various conditions on covariate balance and 

estimation of the treatment effect through a series of simulated data. While results were quite promising, 

an empirical data set was not analyzed. We believe that a real data set would be helpful to confirm our 

simulation findings. Therefore, an empirical data analysis can be considered in a future study by using 

various PS estimation methods. 
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