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Abstract
In this paper, we are proposing a flexible method for constructing a bivariate generalized
Farlie-Gumbel-Morgenstern (G-FGM) copula family. The method is mainly developed
around the function ϕ(t) (t ∈ [0, 1]), where ϕ is the generator of the G-FGM copula.
The proposed construction method has useful advantages. The first of which is the direct
relationship between the ϕ function and Kendall’s tau. The second advantage is the
possibility of constructing a multi-parameter G-FGM copula which allows us to better
harmonize empirical instruction with the model. The construction method is illustrated
by three real data examples.
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1. Introduction
When the researchers are interested in statistical modeling in many applications, the

main objective is to determine the best fit for observed random variables within its de-
pendence structure. One possible solution is to model the observed data among existing
copulas that perform best according to the statistical tests. Another possibility is con-
structing an ideal copula with multi-parameter that can be estimated from observed data.

In this paper, the contribution is made on the last possibility. For this purpose, we aim
to construct a multi-parameter G-FGM copula based on the generator function ϕ. In the
literature, there are many papers for constructing G-FGM copula with only one or two
parameters. For a review, see [2]. Contrary to existing methods, in this paper, we aim
to construct a multi-parameter G-FGM copula family in order to achieve the best-fitted
model for observed data according to the goodness of fit tests. Our generator function is
developed using Bernstein polynomials which has useful properties. For instance, we may
easily determine the shape of Bernstein polynomials and also its derivatives by managing
the control points. Moreover, the first and the last points of Bernstein polynomial coincide
with the first and last control points. Thus, we can easily define the Bernstein polynomials
which satisfy all properties of G-FGM copula generator function. For usage of Bernstein
polynomial in various ways in the copula theory, see ([3, 12,14,17–21]).
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The paper is organized as follows: In Section 2, the basic concept of G-FGM copula, its
definition and dependence properties are given. In section 3, the generator function type
of G-FGM copula constructed from Bernstein polynomial is given and some dependence
characteristics are investigated. In Section 4, new G-FGM copula is applied to three real
data sets. And the last section is devoted to the conclusion.

2. Basic concepts
Let X and Y be random variables having a joint cumulative distribution function (c.d.f.)

H(x, y) = P (X ≤ x, Y ≤ y) and margins F (x) = P (X ≤ x), G(y) = P (Y ≤ y), respec-
tively. Sklar [15] defines a copula representation of H as given by H(x, y) = C(F (x), G(y)),
where C is a unique c.d.f. having uniform margins on unit interval. A copula must satisfy
the following properties:

Definition 2.1. A bivariate copula is a function with following properties:
(1) C is 2-increasing function for all x1 ≤ x2, y1 ≤ y2 ∈ [0, 1] such that

C(x2, y2) − C(x2, y1) − C(x1, y2) + C(x1, y1) ≥ 0,

(2) C is grounded such that C(x, 0) = C(0, y) = 0 for all x, y ∈ [0, 1],
(3) C has uniform margins such that C(x, 1) = x and C(1, y) = y for all x, y ∈ [0, 1].

For any bivariate copula C and margins F and G, H = C(F, G) is a c.d.f.. For more
details about the copula, see [10].

This paper mainly focuses on the G-FGM copula families which have quite natural
forms. This class is mainly characterized by their generator function ϕ that makes us
possible to construct copulas from this class. Rodriguez Lallena [13] introduced the G-
FGM copula class with a generator function ϕ defined on [0, 1]2 by

Cθ,ϕ(u, v) = uv + θϕ(u)ϕ(v), θ ∈ [−1, 1], (2.1)
where ϕ is a function on I. Also, Amblard and Girard [1] investigated sufficient and
necessary conditions on ϕ to ensure that Cθ is a copula by following theorem:

Theorem 2.2. ϕ generates a parametric family of copulas Cθ,ϕ, θ ∈ [−1, 1], if and only
if it satisfies the following conditions:

(1) ϕ(0) = ϕ(1) = 0.
(2) ϕ is a 1-Lipschitz, such that |ϕ(u) − ϕ(v)| ≤ |u − v|, u, v ∈ I.

Furthermore, Cθ is absolutely continuous.

The following theorem provided in [1] provides a new characterization of the generator
functions ϕ constructing G-FGM copulas.

Theorem 2.3. ϕ generates a parametric family of copulas Cθ,ϕ, θ ∈ [−1, 1], if and only
if it satisfies the following conditions:

(1) ϕ is absolutely continuous.
(2)

∣∣ϕ′(x)
∣∣ ≤ 1 almost everywhere in the unit range,

(3)
∣∣ϕ(x)

∣∣ ≤ min(x, 1 − x), x ∈ [0, 1].
In such a case, Cθ is absolutely continuous.

In view of Definition 2.1 and Theorem 2.2, it is clearly obvious that Theorem 2.3 (1)
and 2.3 (2) are both satisfied whenever Cθ,ϕ is a copula. Assuming that ϕ is a 1-Lipschitz,
we put t2 = 1 and t1 = 0 in the equation |ϕ(t2) − ϕ(t1)| ≤ |t2 − t1| then Theorem 2.3 (3) is
satisfied. We note that, from Theorem 2.3 (3) the graph of the concave ϕ lies underneath
a triangle in s 1, 3.
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For dependence measures and coefficients, Amblard and Girard [1] defined the associa-
tion coefficients by the following theorem:

Theorem 2.4. Let X and Y be a random variable with copula Cθ,ϕ given by (1). Kendall’s
tau (τ) and Spearman’s rho (ρ) can be defined as

τθ,ϕ = 8θ
( ∫ 1

0
ϕ(x)dx

)2

and

ρθ,ϕ = 12θ
( ∫ 1

0
ϕ(x)dx

)2
= 3

2
τθ,ϕ.

As a conclusion from the last theorem, there is a clear link between Kendalls tau and
the G-FGM copula generator function. Thus, for an estimated value of Kendalls tau
from observed data and for any feasible generator function ϕ, the possible G-FGM copula
dependence structures can be explored.

We end this section with the introduction of a G-FGM copula based on a generator
function which is the main focus of this article. We intend to create a new G-FGM copula
model allowing high dependence association, and to create a multi-parameter G-FGM
copula to increase modeling freedom, hence these makes it possible to work with powerful
models that may provide much better goodness-of-fit results.

3. Proposed concave generator function
In many statistical applications, researchers usually work with bivariate one-parameter

copula families. For applications of one-parameter copulas to survival analysis and quality
control, see the books of [7] and [16]. This type of copula family has simpler forms and it
is practical to make calculations on these models. However, the multi-parameter copula
models will probably have a better fit for data since they are more flexible in terms of
adjusting. Therefore, in this section, we explain how the generator function ϕ can be used
in order to construct multi-parameter bivariate G-FGM copulas with the help of Bernstein
polynomials. We construct a feasible generator function ϕ such that the properties defined
in Theorem 1 are satisfied.

Let ϕm be a Bernstein polynomial with degree (m > 0) and control points αk defined
as

ϕm(t) =
m∑

k=0
αkPk,m(t), t ∈ [0, 1],

where Pk,m(t) are the binomial coefficients defined as Pk,m(t) =
(m

k

)
tk(1−t)m−k. The next

proposition shows that ϕm is a L-Lipschitz function where L is the Lipschitz constant. It
will be of great help later.

Proposition 1. Let ϕm be a Bernstein function with order m > 0. Then ϕm is a Lipschitz
with Lipschitz constant L.

Proof. We should prove that ϕm is L-Lipschitz, where L is Lipschitz constant. Let t2 ≥ t1
be any points of [0, 1]. We show that∣∣ϕm(t2) − ϕm(t1)

∣∣ ≤ L
∣∣t2 − t1

∣∣,
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where L is a Lipschitz constant. Then

ϕm(t2) =
m∑

j=0
αj

(
m

j

)
(1 − t2)m−j(t1 + (t2 − t1)

)j
=

m∑
j=0

αj

(
m

j

)
(1 − t2)m−j

( j∑
k=0

(
j

k

)
tk
1(t2 − t1)j−k)

=
m∑

j=0

j∑
k=0

αj
m!tk

1(t2 − t1)j−k(1 − t2)m−j

k!(j − k)!(n − j)!
.

We can invert the order of the summation and write k + l = j, then

ϕm(t2) =
m∑

k=0

m−k∑
l=0

αk+l
m!

k!l!(m − k − l)!
tk
1(t2 − t1)l(1 − t2)m−k−l.

In the similar way, we can construct δα,m(t1),

ϕm(t1) =
m∑

k=0
αk

(
m

k

)
tk
1
(
(t2 − t1) + (1 − t2)m−k)

=
m∑

k=0
αk

(
m

k

)
tk
1
(m−k∑

l=0
(t2 − t1)l(1 − t2)m−k−l)

=
m∑

k=0

m−k∑
l=0

αk
m!

k!l!(m − k − l)!
tk
1(t2 − t1)l(1 − t2)m−k−l.

Then, ∣∣ϕm(t2) − ϕm(t1)
∣∣

=
∣∣ m∑

k=0

m−k∑
l=0

m!
k!l!(m − k − l)!

tk
1(t2 − t1)l(1 − t2)m−k−l(αk+l − αk

)∣∣
≤ L

∣∣ m∑
k=0

m−k∑
l=0

m!
k!l!(m − k − l)!

tk
1(t2 − t1)l(1 − t2)m−k−l

∣∣
= L

∣∣ m∑
l=0

m−k∑
l=0

(t2 − t1)lm!
l!(m − l)!

l

m

(m−l∑
k=0

(
m − l

k

)
tk
1(1 − t2)m−l−k)∣∣

= L
∣∣ m∑

l=0

(
m

l

)
(t2 − t1)l l

m
(t1 + 1 − t2)m−l

∣∣
= L

∣∣Pl,m(t2 − t1)
∣∣

≤ L|t2 − t1|.

It is obvious that Lipschitz constant L depends on the control points α. Also, Lipschitz
constant L can be written as L = sup

t∈[0,1]

∣∣ϕ′
m(t)

∣∣. �

The next proposition shows that any ϕm function satisfying following requirements will
provide a valid concave generator function for G-FGM copula.

Proposition 2. Let ϕm be a concave Bernstein polynomial with order m > 0. Then, ϕm

is valid a generator function for G-FGM copula if the following constraints hold:
(1) If α0 = αm = 0, then ϕm(0) = ϕm(1) = 0,
(2) If αk+2 − 2αk+1 + αk ≤ 0, k = 0, . . . , m − 2, then ϕm is concave,
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(3) If ∣∣m(αm − αm−1)
∣∣ ≤ 1,∣∣m(α1 − α0)

∣∣ ≤ 1,

then, ϕm is 1-Lipschitz.

Proof. ϕm(0) =
∑m

k=0 αkPk,m(0) = 0 holds since α0 = 0. Similarly,

ϕm(1) =
m∑

k=0
αkPk,m(1) = 0

holds since αm = 1. Also,

ϕ′′
m(t) = m(m − 1)

m−2∑
k=0

(αk+2 − 2αk+1 + αk)Pk,m−2(t) ≤ 0

if Proposition 2 (2) satisfied. See, [5].
Also, as a result of Proposition 1, ϕm is Lipschitz with Lipschitz constant L = sup

t∈[0,1]

∣∣ϕ′
m(t)

∣∣.
The inequality L ≤ 1 ensures that the condition defined in Theorem 1.2 is satisfied. Be-
cause ϕ is a concave function with ϕm(0) = ϕm(1) = 0, then ϕ′

m(t) > 0, t ∈ [0, c),
ϕ′

m(t) < 0, t ∈ (c, 1], ϕ′(c) = 0 and also ϕ′
m is decreasing function. Hence it is obvious that

ϕ′
m(0) = m(α1 − α0) > 0 and ϕ′

m(1) = m(αm − αm−1) < 0. Thus ϕm is 1-Lipschitz when
both of the following conditions are satisfied:∣∣m(αm − αm−1)

∣∣ ≤ 1,∣∣m(α1 − α0)
∣∣ ≤ 1.

�

The next proposition reveals that the proposed copula Cθ,ϕm generalizes the classical
FGM copula with a generator function ϕF GM (t) = t(1 − t).

Proposition 3. Let ϕm be a concave Bernstein type generator function with order m > 0.
If the control points are determined as

αk = k2

m
− k(k − 1)

m − 1
, k = 0, . . . , m.

Then, copula Cθ,ϕm is reduced to the classical FGM copula.

Proof. Primarily, we note that Pk,m(t) = P (T = k) where T is a binomial random variable
with parameters m and t. Then,

E(T r) =
m∑

k=0
krPk,m(t). (3.1)

We know that mean and variance of the binomial variable T are mt and mt(1 − t), respec-
tively. Also,

E(T 2) = V ar(T ) + E(T )2 = mt(1 − t) + m2t2.

If we determine the control points as αk = k2

m − k(k−1)
m−1 , k = 0, . . . , m then ϕm can be

written as following equation:

ϕm(t) =
m∑

k=0

(k2

m
− k(k − 1)

m − 1
)
Pk,m(t) = E(T 2

m
) − E( T 2

m − 1
) + E( T

m
) = t(1 − t).

�

The following theorem defined in [8] helps us to prove the uniform convergence of the
ϕm(t) to any generator function ϕ(t) which satisfies to properties defined in Theorem 2.2.
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Theorem 3.1. If f(t) is a bounded and continuous function on the interval [0, 1], then as
m → ∞

f∗
m(t) =

m∑
k=0

f( k

m
)Pk,m(t) → f(t)

uniformly for t ∈ [0, 1].

The αk can be interpreted as f( k
m), k = 0, . . . , m for a suitable function f over [0, 1|.

Proposition 4. Let ϕm be a Bernstein type generator function with order m > 0. For
any valid generator function ϕ(t), ϕm(t) converges uniformly to ϕ(t) as m goes to infinity
if the control points are determined as αk = ϕ( k

m), k = 0, . . . , m.

The proof can be easily established using the Theorem 3.1. Moreover, it can be easily
shown that ϕm with control points αk = ϕ( k

m), k = 0, . . . , m satisfies the properties of the
generator function defined in Theorem 2.2. If the control points are determined as

αk = ϕF GM ( k

m
) = k

m
(1 − k

m
), k = 0, . . . , m.

Then, recalling the Equation (3.1), ϕm converges uniformly to ϕF GM as shown below:

lim
m→∞

ϕm(t) = lim
m→∞

m∑
k=0

( k

m
(1 − k

m
)
)
Pk,m(t) = lim

m→∞
t(1 − t)m − 1

m
= t(1 − t).

The Proposition 4 reveals that this generator function based method is different from
the existing methods in terms of obtaining G-FGM but also it is generalized form of the
G-FGM and can be reduced FGM when m goes to infinity.

Now, we derive the most common measures of concordance between the components of
a pair of random variables with copula Cθ,ϕm

Proposition 5. Let ϕm be a generator function for G-FGM copula. Then Kendall’s tau
and Spearman’s rho based on ϕm are given by

τθ,ϕm = 8θ
m∑

k=0

m∑
p=0

αkαp

(
m

k

)(
m

p

)
β(k + p + 1, 2m − k − p + 1)

and
ρθ,ϕm = 3

2
τθ,ϕm ,

where β(., .) is the beta function defined as β(v1, v2) =
∫ 1

0 tv1−1(1 − t)v2−1dt for v1, v2
positive integers.

Table 1. Maximum value of the parameters αm and Kendall’s tau τ .

Copula θ α0 α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 τ

Cθ,ϕ3 ±1 0 1
3

1
3 0 — — — — — — — ±0.2666

Cϕ4 ±1 0 1
4

2
4

1
4 0 — — — — — — ±0.3936

Cϕ5 ±1 0 1
5

2
5

2
5

1
5 0 — — — — — ±0.3936

Cϕ6 ±1 0 1
6

2
6

3
6

2
6

1
6 0 — — — — ±0.4586

Cϕ7 ±1 0 1
7

2
7

3
7

3
7

2
7

1
7 0 — — — ±0.4586

Cϕ8 ±1 0 1
8

2
8

3
8

4
8

3
8

2
8

1
8 0 — — ±0.4981

Cϕ9 ±1 0 1
9

2
9

3
9

4
9

4
9

3
9

2
9

1
9 0 — ±0.4981

Cϕ10 ±1 0 1
10

2
10

3
10

4
10

5
10

4
10

3
10

2
10

1
10 0 ±0.5248
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As a consequence of Proposition 4, above Kendall’s tau and Spearman’s rho can be
used as an approximation to the true Kendall’s tau and Spearman’s rho of the copula
defined in Equation (2.1). If αk = 0; k = 0, . . . , m, then τθ,ϕm = ρθ,ϕm = 0, and bivariate
independent copula is obtained. Maximum and minimum value Kendall’s tau obtained
by the concave Bernstein generator function for the copula Cθ,ϕm with maximum value
of control points and θ = ±1 for degree m = 3, . . . , 10 are summarized in Table 1. It is
obvious that the range of the Kendall’s tau increases when the degree of ϕm increases. The
classical FGM copula has the limited Kendall’s tau range (τ ∈ [−0.22, 0.22]). However
by the use of our new G-FGM copula, the Kendall’s tau has improved greatly. A wider
range for Kendall’s tau (±0.5248) were obtained for Cθ,ϕ10 . This enables us to modeling
bivariate data sets with higher dependence structures.

Now, we pay our attention to the visual behavior of the generator function ϕm when it
comes to the construction of copulas. In Figure 1 graphs are shown from ϕ10 with different
control points. In Figure 1(a) graph of symmetric ϕ10 with control points

α =
(
0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.4, 0.3, 0.2, 0.1, 0

)
,

and θ = 1, in Figure 1(c) graph of right skewed ϕ10 with control points

α =
(
0, 0.1, 0.2, 0.3, 0.4, 0.35, 0.27, 0.19, 0.16, 0.06, 0

)
,

and θ = 1, in Figure 1(e) graph of left skewed ϕ10 with control points

α =
(
0, 0.06, 0.16, 0.19, 0.27, 0.35, 0.4, 0.3, 0.2, 0.1, 0

)
and θ = 1 are shown. The latter figures are represented by means of simulating observa-
tions from (U, V ) ∼ Cθ,ϕ10 . The idea here is to show how well the generator function ϕm

behaves as a univariate representative of the affiliated copula. There are clear relationships
between the visual behavior of the generator function ϕm and simulating observations from
(U, V ) ∼ Cθ,ϕ10 .

4. Case study
In this section, we compare the new G-FGM copula with the commonly used one-

parameter copulas from Archimedean (Clayton, Gumbel, Frank) and elliptical (normal,
student-t) and a classical FGM, Minimum and Sinus copulas. Their formulae and coeffi-
cients range are given in Table 2. Especially, in this case study, it is aimed to investigating
the goodness of fit performance of proposed G-FGM copulas under the different depen-
dence structures. We use uranium data set available in R package “copula”. For more
detail about “copula” package, see [9]. According the this package “These data consist
of log concentrations of 7 chemical elements in 655 water samples collected near Grand
Junction, CO (from the Montrose quad-rangle of Western Colorado). Concentrations were
measured for the following elements: Uranium (U), Lithium (Li), Cobalt (Co), Potassium
(K), Cesium (Cs), Scandium (Sc), And Titanium (Ti).” We prefer to modeling the pairs
of variables K-Ti, Co-Ti and K-Sc.

To avoid a decision about marginal distributions, the observations were transformed to
pseudo-observation (normalized ranked data) by their corresponding empirical distribution
functions. Figure 2(a), 2(c) and 2(e) show the scatter plots of pseudo-observation for the
pairs K-Ti, Co-Ti and K-Sc, respectively. Looking at the data, strong positive dependence
structure with τ = 0.3647, mild positive dependence structure with τ = 0.0406 and mild
negative dependence structure with τ = −0.1368 can be observed for the pairs of Co-Ti,
K-Ti and K-Sc, respectively.
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(a) Graph of generator functions. (b) Random sample from Cθ,ϕ10 .

(c) Graph of generator functions. (d) Random sample from Cθ,ϕ10 .

(e) Graph of generator functions. (f) Random sample from Cθ,ϕ10 .

Figure 1. Illustration of a G-FGM copula with ϕ10.

In order to asses goodness of fit we use Cramér-von Mises distance which measure
the distance between empirical copula and hypothesized parametric copula distribution
functions are given by

CvM =
∫ 1

0

∫ 1

0
n
(
Cn(u, v) − Cθ,ϕm(u, v)

)2
dCn(u, v). (4.1)



626 S.O. Susam

Table 2. Copulas definition and dependence range.

Copula Cθ(u, v) θ ∈ τ ∈

Gumbel exp
(

−
(
(− log u)θ+1 + (− log v)θ+1)

) 1
θ+1
)

[0, ∞) [0, 1)

Clayton
(

u−θ + v−θ − 1
)− 1

θ (0, ∞) [0, 1)

Frank −1
θ

log
(

1 +
(

exp(−θu) − 1
)(

exp(−θv) − 1
)(

exp(−θ) − 1
) )

(−∞, ∞)\{0} (−1, 1)

Normal Φθ

(
Φ−1(u) + Φ−1(v)

)
[−1, 1] [−1, 1]

FGM uv + θ(1 − u)u(1 − v)v [−1, 1] [−0.22, 0.22]

SINUS uv + θ
1
π

sin(πu) 1
π

sin(πv) [−1, 1] [−0.33, 0, 33]

MIN uv + θ min(u, 1 − u) min(v, 1 − v) [−1, 1] [−0.5, 0.5]
*Φ, Φ−1, denote c.d.f. and the quantile function of normal distribution whereas Φθ denotes
the c.d.f. of joint normal distribution with parameter θ.

where Cn is the empirical copula defined as

Cn(u, v) = 1
n

n∑
i=1

n∑
j=1

I(Ui ≤ u, Vi ≤ v).

Thus, the test statistic defined in Equation (4.1) allows us to compare the distances
from the empirical copula among null hypothesis copulas (the smaller the better) while
the p-value, simulated in 1000 Monte Carlo samples of bootstrap procedure, evaluates the
null hypothesis that a copula is suitable for modeling the dependence structure in data.
Also, the parameters of the Cϕm are estimated by minimizing the Equation (4.1) under
the consideration of constraints defined in Proposition 2. We note that Weiß [23] states
minimum distance (MD) estimators suffer from large biases for smaller samples sizes. If
this is the case, we recommend to use Maximum likelihood estimation (MLE) method to
estimate the parameters of the proposed G-FGM copula for smaller sample sizes. For more
details and the performance comparisons of the minimum distance and MLE methods, see
[23].

Table 3. Goodness-of-Fit results for K-Ti.

Copula θ̂ α̂0 α̂1 α̂2 α̂3 α̂4 α̂5 α̂6 α̂7 α̂8 α̂9 α̂10 τ̂ CvM P-Value
CFGM 0.1827 — — — — — — — — — — — 0.0406 0.0555 0.0428
CSIN 0.1506 — — — — — — — — — — — 0.0494 0.0523 0.0405
CMIN 0.0937 — — — — — — — — — — — 0.0468 0.0500 0.0491
CFrank 0.3659 — — — — — — — — — — — 0.0405 0.0553 0.0414
CGumbel 0.0423 — — — — — — — — — — — 0.0405 0.0671 0.0014
CClayton 0.0846 — — — — — — — — — — — 0.0405 0.0458 0.0574
CNormal 0.0637 — — — — — — — — — — — 0.0405 0.0573 0.0414
Cθ,ϕ3 0.4474 0 0.3333 0.1666 0 — — — — — — — 0.0681 0.0427 0.0625
Cθ,ϕ4 0.7240 0 0.25 0.1666 0.0833 0 — — — — — — 0.0715 0.0374 0.1052
Cθ,ϕ5 1 0 0.2 0.1500 0.1000 0.0500 0 — — — — — 0.0692 0.0353 0.1123
Cθ,ϕ6 1 0 0.1666 0.1689 0.1266 0.0844 0.0422 0 — — — — 0.0705 0.0352 0.1217
Cθ,ϕ10 0.9393 0 0.1 0.1895 0.1675 0.1437 0.1198 0.0958 0.0719 0.0479 0.0239 0 0.0729 0.0341 0.1296

Table 3 shows the goodness of fit results and estimated parameters for the pair K-Ti.
According the this table, Cϕ10 is the best performing copula model since it possesses the
greatest p-value (0.1296) and lowest CvM (0.0341) values. Also, the p-values and CvM
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test statistics decease when the degree of generator function ϕm increases for the copula
Cϕm . Similarly, from Tables 4 and 5, the best fit among all copulas for the pairs of Co-Ti
and K-Sc are Clayton (P-val:0.1837) and Cϕ10 (p-val:0.0903), respectively. Although the
best fit for the pair of Co-Ti is Clayton copula according to GoF results represented in
Table 4, G-FGM copula Cϕm for m > 4 has the acceptable fits according to p-values
(p>0.05).

Table 4. Goodness-of-Fit results for Co-Ti.

Copula θ̂ α̂0 α̂1 α̂2 α̂3 α̂4 α̂5 α̂6 α̂7 α̂8 α̂9 α̂10 τ̂ CvM P-Value
CFGM 1 — — — — — — — — — — — 0.2222 0.3659 0.0005
CSIN 1 — — — — — — — — — — — 0.3285 0.0416 0.0568
CMIN 0.5893 — — — — — — — — — — — 0.2946 0.1238 0.0001
CFrank 3.6941 — — — — — — — — — — — 0.3647 0.0222 0.1873
CGumbel 0.5742 — — — — — — — — — — — 0.3647 0.0757 0.0005
CClayton 1.1484 — — — — — — — — — — — 0.3647 0.1411 0.0005
CNormal 0.5421 — — — — — — — — — — — 0.3647 0.0351 0.0664
Cθ,ϕ3 1 0 0.3333 0.3333 0 — — — — — — — 0.2666 0.2653 0.0000
Cθ,ϕ4 1 0 0.25 0.4999 0.25 0 — — — — — — 0.3936 0.0426 0.0514
Cθ,ϕ5 1 0 0.2 0.3999 0.3999 0.2 0 — — — — — 0.3936 0.0426 0.0563
Cθ,ϕ6 1 0 0.1666 0.3333 0.4151 0.3333 0.1666 0 — — — — 0.4031 0.0415 0.0591
Cθ,ϕ10 1 0 0.1 0.1999 0.2999 0.3217 0.3429 0.3640 0.2998 0.1999 0.0999 0 0.4036 0.0391 0.0638

Table 5. Goodness-of-Fit results for K-Sc.

Copula θ̂ α̂0 α̂1 α̂2 α̂3 α̂4 α̂5 α̂6 α̂7 α̂8 α̂9 α̂10 τ̂ CvM P-Value
CFGM -0.6157 — — — — — — — — — — — -0.1368 0.1362 0.0001
CSIN -0.4414 — — — — — — — — — — — -0.1450 0.1325 0.0002
CMIN -0.2623 — — — — — — — — — — — -0.1311 0.1515 0.0004
CFrank -1.2506 — — — — — — — — — — — -0.1368 0.1346 0.0004
CGumbel 0 — — — — — — — — — — — 0 0.3930 0.0000
CClayton -0.2407 — — — — — — — — — — — -0.1368 0.2109 0.0000
CNormal -0.2133 — — — — — — — — — — — -0.1368 0.1365 0.0004
Cθ,ϕ3 -1 0 0.1996 0.3333 0 — — — — — — — -0.1719 0.0967 0.0278
Cθ,ϕ4 -1 0 0.1412 0.2825 0.25 0 — — — — — — -0.1769 0.0845 0.0453
Cθ,ϕ5 -1 0 0.1023 0.2046 0.3070 0.2 0 — — — — — -0.181 0.0786 0.0543
Cθ,ϕ6 -1 0 0.0785 0.1571 0.2357 0.3143 0.1666 0 — — — — -0.1849 0.0606 0.0795
Cθ,ϕ10 -0.9929 0 0.0456 0.0892 0.1313 0.1726 0.2135 0.2542 0.2942 0.1978 0.1 0 -0.1863 0.0503 0.0903

In order to assess graphical goodness of fit to pairs of Co-Ti, K-Ti and K-Sc for G-FGM
copula, we generate random samples of size 655 using the estimated dependence parame-
ters in Tables 3–5. Figures 2(b)-2(d) and 2(f) display the simulated random sample from
the G-FGM copula functions with m = 10. these figures reveal that the G-FGM copulas
provide an acceptable fit to the actual pairs of Co-Ti, K-Ti and K-Sc. In addition to
that, Figure 3 represents to parametric estimation of the generator functions for the Cϕm .
In each graph, generator functions are visualized for the degrees m = 3, 10. According
the Figure 3, left-skewed, symmetric and right-skewed generator functions posses to pairs
K-Ti, Co-Ti and K-Sc, respectively. We may conclude from this figure that if the data
has mild negative dependence association, the graph of the generator function of Cϕm is
a left-skewed. On the contrary, if the data has mild positive dependence association, the
graph of the generator function of Cϕm is a right-skewed. For the strong positive depen-
dence structure as could be observed in the pair Co-Ti, the generator function for the Cϕm

has the symmetric.
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(a) Scatterplot for K-Ti. (b) Cϕ10 with paramaters
estimated from K-Ti.

(c) Scatterplot for Co-Ti. (d) Cϕ10 with paramaters
estimated from Co-Ti.

(e) Scatterplot for K-Sc. (f) Cϕ10 with paramaters
estimated from K-Sc.

Figure 2. Scatter plots of Pseudo-observations for real datasets.
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(a) Generator functions
of Cϕm for K-Ti.

(b) Generator functions
of Cϕm for Co-Ti.

(c) Generator functions
of Cϕm for K-Sc.

Figure 3. Graph of the generator functions for real datasets.

5. Conclusion
We have introduced the Bernstein polynomial type generator function of a new multi-

parametric G-FGM family of copulas, describing its Kendall’s tau with closed-form. The
method is illustrated using m = 3, 4, 5, 6, 10 parameters of G-FGM copula models. It
is also shown that, when constructing generator function with Bernstein polynomials, a
multi-parameter G-FGM copula family can be constructed in an organized way. The
proposed G-FGM copula makes it possible to work with powerful models that can provide
a much better goodness-of-fit results according to its flexibility.

In the case study, researchers may use the MLE method to estimate the parameters
of G-FGM copula. We know that MLE is an efficient estimator, also even for the small
samples. Furthermore, the MLE can also facilitates the Akaike information criterion for
model selection accounting for the number of parameters. In this study, we use MD estima-
tor(s) since we study on the large samples, and these estimators have also asymptotically
minimum variance, see [23].

Notice that for identically distributed random variables, exchangeability is equivalent
to the symmetry of the copula: C(u, v) = C(v, u), u, v ∈ [0, 1] [6, 11]. When this is
not satisfied, then copula C is said to be non-exchangeable [4]. In this framework, this
paper is mainly developed around the G-FGM copula with exchangeable random variables.
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But, researches might be interested to modeling the dependence structure of the non-
exchangeable random variables using the asymmetric G-FGM copula given by

C(u, v) = uv + θa(u)b(v), θ ∈ [−1, 1]

where a and b are functions defined on the unit interval. [22] states that necessary and
sufficient conditions for C(u, v) to be a valid copula are a(0) = a(1) = b(1) = b(0) = 0 and∣∣a(x2) − a(x1)

∣∣ ∣∣b(y2) − b(y1)
∣∣ ≤

∣∣x2 − x1
∣∣ ∣∣y2 − y1

∣∣,
for all x2, x1, y2, y1 on unit interval. Our further work will consist in constructing the
asymmetric G-FGM copula with the generator function constructed from the Bernstein
polynomials.
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