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Abstract
In this paper we initiate an investigation into the class of meet semilattices endowed
with an endomorphism. A consideration of the subdirectly irreducible algebras leads to a
description of a subclass of those algebras (S; ∧, k) in which (S; ∧) is a meet semilattice
and k is an endomorphism on S characterised by the property k > idS . We particularly
show that such an algebra is subdirectly irreducible if and only if it is a chain with one of
the following forms :

(1) · · · < aj < aj−1 < · · · < a0;
(2) 0 < · · · < aj < aj−1 < · · · < a0

in which k(aj) = aj−1 for j > 1, k(0) = 0 and k(a0) = a0.
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1. Introduction
An ordered set (S;6) is a meet-semilatice if for any x, y ∈ S, the greatest lower bound
inf{x, y} of x and y exists, denoted by x∧ y. A mapping k : S → S is said to be endomor-
phism if k(x ∧ y) = k(x) ∧ k(y) for every x, y ∈ S. For any additional background see, for
example, either of the texts Blyth [1] or Grätzer [5].

Throughout what follows, we shall use the terminology (S; ∧) to denote a meet- semi-
lattice.

In 1991, Ježek [8] initiated a study of the class of semilattices with an automorphism by
characterising its subdirectly irreducible members. In 2004, Jackson [7] introduced a class
of closure semilattices. In particular, he gave a representation of semilattices by means of
topological Boolean algebras. Furthermore, the other related topics can be found in [2,6].

Here our objective is to initiate an investigation into the class of semilattices (S; ∧)
endowed with an endomorphism k. We shall say that such an algebra (S; ∧, k) is an SLE-
algebra; namely, an SLE-algebra is an algebra (S; ∧, k) of type ⟨2, 1⟩ where (S; ∧) is a
meet-semilattice, and k is an endomorphism on S.

In what follows we shall denote by SLE the class of SLE-algebras.

Example 1.1. Every meet-semilattice gives to an SLE-algebra. For example, if (S; ∧) is
a semilattice, then (S; ∧, idS) ∈ SLE.
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Example 1.2. Let (S; ∧) be a meet-semilattice and a ∈ S. If define k : S → S by
k(x) = a ∧ x, then clearly (S; ∧, k) ∈ SLE.

Example 1.3. Consider a semilattice (S; ∧) described as the following Hasse diagram:q q· · · · · ·qq q q q q
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in which S = A ∪ {0} where A = {ai | i ∈ N} is an anti-chain, and 0 < ai for all i ∈ N.
Define k : S → S given by k(0) = 0 and k(ai) = ai+1 for each i ∈ N. Then (S; ∧, k) ∈ SLE.

Example 1.4. Consider an infinite SLE-algebra (S; ∧, k) depicted as follows:
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in which ci = ai ∧ bi (i = 1, 2, · · · ), the endomorphism k : S → S is defined by k(0) = 0
and k(xi) = xi+1 where xi ∈ {ai, bi, ci}.

2. Congruences
By a semilattice congruence we shall mean an equivalence relation φ on a semilattice (S; ∧)
satisfying the following condition:

(∀x, y ∈ S) (∀z ∈ S) (x, y) ∈ φ =⇒ (x ∧ z, y ∧ z) ∈ φ.

As usual we shall denote by ω and ι the equality relation and the universal relation,
respectively. For a, b ∈ S with a 6 b, we denote by θS(a, b) the principal semilattice
congruence that collapses a and b; i.e., the smallest semilattice congruence on S generated
by a and b.

The following description of the principal semilattice congruences is due to Dean and
Oehmke (see [3] or [4]).

Lemma 2.1. [4, Lemma 2.1] If (S; ∧) is a semilattice and a 6 b in S. Then

(x, y) ∈ θS(a, b) ⇐⇒ x = y or x ∧ a = y ∧ a with x, y 6 b.

Furthermore, for arbitrary a and b in S, θS(a, b) = θS(a ∧ b, a) ∨ θS(a ∧ b, b).

As a consequence of the above, the following lemma is immediate:

Lemma 2.2. If (S; ∧) is a semilattice then the following statements hold :
(1) If a, b, c ∈ S with a 6 b and a 6 c then

θS(a, b) ∧ θS(a, c) = θS(a, b ∧ c).

(2) If a, b, c, d ∈ S with a 6 b 6 c 6 d then

θS(a, b) ∧ θS(c, d) = ω.
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By a congruence on an SLE-algebra (S; k) we shall mean a semilattice congruence ϑ
that satisfies the condition

(x, y) ∈ ϑ =⇒ (k(x), k(y)) ∈ ϑ.

In what follows for a, b ∈ S with a 6 b, we shall denote by θ(a, b) the principal con-
gruence on (S; k) that collapses a and b; i.e., the smallest semilattice congruence on S
generated by a and b

A description of principal congruences on an SLE-algebra (S; ∧, k) can be given as
follows.

Theorem 2.3. If (S; ∧, k) ∈ SLE and a 6 b in S then we have
θ(a, b) =

∨
i>0

θS(ki(a), ki(b)).

Proof. Let φ(a, b) be the right side of the stated equality. Then clearly φ(a, b) is a
semilattice congruence that collapses a and b. To see that φ(a, b) is a SLE-congruence, it
suffices to verify that for every i > 0,

(x, y) ∈ θS(ki(a), ki(b)) =⇒ (k(x), k(y)) ∈ θS(ki+1(a), ki+1(b)).
In fact, if (x, y) ∈ θS(ki(a), ki(b)) then we have either x = y or x ∧ ki(a) = y ∧ ki(a) with
x, y 6 ki(b), so either k(x) = k(y) or k(x) ∧ ki+1(a) = k(y) ∧ ki+1(a) with k(x), k(y) 6
ki+1(b). It then follows that (k(x), k(y)) ∈ θS(ki+1(a), ki+1(b)). Hence, φ(a, b) is a SLE-
congruence.

If now ψ is a congruence on (S; ∧, k) that collapses a and b, then for every i > 0, we
have (ki(a), ki(b)) ∈ ψ, so θS(ki(a), ki(b)) 6 ψ, and so

φ(a, b) =
∨

i>0
θS(ki(a), ki(b)) 6 ψ.

Consequently, it follows that φ(a, b) = θ(a, b), as our required. �
By Theorem 2.3, the following corollary is immediate.

Corollary 2.4. Let (S; ∧, k) ∈ SLE and a 6 b in S. Then we have the followings :
(1) If km+1(x) = km(x) for some m > 0 where x = a or x = b, then

θ(km(a), km(b)) = θS(km(a), km(b);
(2) If kn(a) = kn(b) for some n > 1, then we have

θ(a, b) =
n−1∨
i=0

θS(ki(a), ki(b)).

Here we shall be concerned with those SLE-algebras (S; ∧, k) in which k satisfies the
property k > idS . Clearly, if (S; ∧, k) is such an algebra then we have

x 6 k(x) 6 k2(x) 6 · · · 6 kn(x) 6 · · ·
for every x ∈ S.

Example 2.5. The constructions in Examples 1.1 and 1.4 give the SLE-algebras (S; ∧, k)
for which k > idS .

For the later purpose, we require the following basic properties.

Theorem 2.6. Let (S; ∧, k) ∈ SLE with k > idS. If a, b ∈ S with a 6 b are such that
kn+1(x) = kn(x) for some n > 0 where x = a or x = b, then we have the following
properties :

(1) θ(a, kn(a)) = θS(a, kn(a));
(2) if k(b) = b then θ(a, b) = θS(a, b);
(3) if k(a) = a then θ(a, b) = θS(a, kn(b)).



504 J. Fang

Proof. (1) Since ki(kn(a)) = kn(a) for each i, we have by Theorem 2.3 that

θ(a, kn(a)) =
∨

i>0
θS(ki(a), ki(kn(a))) =

n∨
i=0

θS(ki(a), kn(a)).

Note that a 6 ki(a) for each i, then we have θS(ki(a), kn(a)) 6 θS(a, kn(a)). Thus it
follows that θ(a, kn(a)) = θS(a, kn(a)).

(2) If k(b) = b then, since a 6 ki(a), we have θS(ki(a), b) 6 θS(a, b) for each i. It follows
by Theorem 2.3 that

θ(a, b) =
n∨

i=0
θS(ki(a), b) = θS(a, b).

(3) If k(a) = a then θ(a, b) =
n∨

i=0
θS(a, ki(b)). Since ki(b) 6 kn(b), we have θS(a, ki(b)) 6

θS(a, kn(b)) for each i. Thus the stated equality holds. �

3. Subdirectly irreducible
Our main interest here will be in the subdirectly irreducible algebras. We recall (see [1]
or [5]) that an algebra A is said to be subdirectly irreducible if for any family {ϑi | i ∈ I}
of congruences on A,

∧
i∈I

ϑi = ω implies ϑi = ω for some i; equivalently, there exists a

smallest nontrival congruence ϑ on A such that φ > ϑ for every congruence φ ̸= ω on A.
The following result will play an important rôle.

Theorem 3.1. Let (S; ∧, k) ∈ SLE with k > idS. If S is subdirectly irreducible algebra
then for every a ∈ S there exists some n > 0 such that kn+1(a) = kn(a).

Proof. Let S be subdirectly irreducible, and suppose, by the way of contradiction, that
there exists some a ∈ S such that kn+1(a) ̸= kn(a) for all n. Then we have

a < k(a) < k2(a) < · · · < kn(a) < · · · .

Thus for all i > 0, θ(ki(a), ki+1(a)) > ω. If

(♮) (x, y) ∈
∧

i>0
θ(ki(a), ki+1(a))

then for each i, we have

(x, y) ∈ θ(ki(a), ki+1(a)) =
∨

j>i
θS(kj(a), kj+1(a)).

It follows that there exists some r > i such that

(x, y) ∈
r−1∨
j=i

θS(kj(a), kj+1(a)) = θS(ki(a), kr(a)).

By (♮), we have also (x, y) ∈ θ(kr(a), kr+1(a)), and similarly, (x, y) ∈ θS(kr(a), kt(a)) for
some t > r. Thus

(x, y) ∈ θS(ki(a), kr(a)) ∧ θS(kr(a), kt(a)) = ω

whence we obtain x = y. It therefore follows that∧
i>0

θ(ki(a), ki+1(a)) = ω.

This contradicts the assumption of the subdirectly irreducibility. Hence, there is some
n > 0 such that kn+1(a) = kn(a). �
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Example 3.2. Consider an infinite SLE-algebra (S; ∧, k) depicted as follows:

q
q q· · · · · ·qq q q q q
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a

b

ci cj
C

in which S = {a, b} ∪C where C = {ci | i ∈ N} is an anti-chain, and a < b < ci, ci ∧ cj = b
for every i, j ∈ N (i ̸= j), and the endomorphism k : S → S is given by k(a) = k(b) = b
and k(ci) = ci for each i ∈ N. Then k > idS and clearly x 6 k(x) = k2(x) for every x ∈ S.
Observe that for any i, j with i ̸= j,

θ(b, ci) ∧ θ(b, cj) = θS(b, ci) ∧ θS(b, cj)
= θS(b, ci ∧ cj)
= θS(b, b)
= ω.

Then we see that (S; ∧, k) is not subdirectly irreducible.

For an SLE-algebra (S; ∧, k), an element x ∈ S is said to be fixed point if k(x) = x. We
shall denote by FixS the set of fixed points of S.

Theorem 3.3. Let (S; ∧, k) ∈ SLE with k > idS. If S is subdirectly irreducible algebra
then FixS is a singleton or an 2-element chain.

Proof. By Theorem 3.1, we have clearly that | FixS| > 1. Observe now that FixS is a
chain. In fact, if x, y ∈ FixS, then we have by Theorem 2.3 and Lemma 2.2 that

θ(x ∧ y, x) ∧ θ(x ∧ y, y) = θS(x ∧ y, x) ∧ θS(x ∧ y, y)
= θS(x ∧ y, x ∧ y)
= ω.

It follows by the subdirectly irreducibility that θ(x ∧ y, x) = ω or θ(x ∧ y, y) = ω, from
which it follows that x ∧ y = x or x ∧ y = y, whence x 6 y or y 6 x. Hence, FixS is a
chain.

If now | FixS| > 3, then there exist x, y, z ∈ FixS with x < y < z. It then follows the
contradiction that

θ(x, y) ∧ θ(y, z) = θS(x, y) ∧ θS(y, z) = ω.

Therefore, FixS must be a singleton or an 2-element chain. �

Corollary 3.4. A meet semilattice (S; ∧) is subdirectly irreducible if and only if it is a
singleton or an 2-element chain.

Proof. Note that (S; ∧) can be regarded as (S; ∧, idS), then FixS = S. Thus by Theorem
3.3, the conclusion is clear. �

In what follows for an ordered set S and a, b ∈ S, we shall write a ∦ b to denote that a
and b are comparable (in the sense that a 6 b or b 6 a), and write a ∥ b to denote that a
and b are incomparable (in the sense that a 
 b and b 
 a).

Theorem 3.5. Let (S; ∧, k) ∈ SLE with k > idS. If S is subdirectly irreducible then S is
a chain.

Proof. Suppose that S is subdirectly irreducible, and let a, b ∈ S. Then by Theorems
3.1 and 3.3, kn(a), kn(b) ∈ FixS with kn(a) ∦ kn(b) for some n > 0. We may assume that
kn(a) 6 kn(b). Let c = a ∧ b, then kn(c) = kn(a). If k(a) = k(b) then θ(c, a) ∧ θ(c, b) =
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θS(c, a) ∧ θS(c, b) = ω, from which it follows by subdirectly irreducibility that c = a or
c = b, whence a 6 b or b 6 a. Assume now that k(a) ̸= k(b). If kn(a) ̸= kn(b), then since

θ(kn−1(c), kn−1(a)) ∧ θ(kn(a), kn(b))
= θS(kn−1(c), kn−1(a)) ∧ θS(kn(a), kn(b))
= ω

it follows by the subdirectly irreducibility that kn−1(c) = kn−1(a). Then θ(kn−2(c), kn−2(a))
= θS(kn−2(c), kn−2(a)). Similar to the above, we can obtain kn−2(c) = kn−2(a). Continu-
ing in this way, we obtain c = a, whence a 6 b. Similarly, if kn(b) < kn(a), then we can
obtain that b 6 a.

If, on the other hand, kn(a) = kn(b), then since k(a) ̸= k(b), we have some m with
1 6 m 6 n− 1 such that km(a) ̸= km(b) and km+1(a) = km+1(b). Since

θ(km(c), km(a)) ∧ θ(km(c), km(b))
= θS(km(c), km(a)) ∧ θS(km(c), km(b))
= θS(km(c), km(a) ∧ km(b))
= ω

it follows by the subdirectly irreducibility that km(c) = km(a) or km(c) = km(b). Thus we
have km(a) < km(b) or km(b) < km(a). By a similar argument as above we also can show
that a ∦ b.

Therefore, we see that S is a chain. �
Example 3.6. Consider a finite chain S described as follows:

a1 < b1 < a2 < b2 < · · · < an−1 < bn−1 < an = bn.

If define k : S → S by k(ai) = ai+1, k(bi) = bi+1 for i = 1, 2, · · · , n − 1, and k(an) = an,
then (S; ∧, k) ∈ SLE with k > idS . Since

θ(an−1, bn−1) ∧ θ(bn−1, bn) = θS(an−1, bn−1) ∧ θS(bn−1, bn) = ω,

we see that S is clearly not subdirectly irreducible.

In what follows for a < b in S, if the interval [a, b] = {x ∈ S | a 6 x 6 b} is precisely the
2-element set {a, b}, then we say that b covers a or a is covered by b, denoted by a ≺ b.
We shall write a ≼ b to denote that a = b or a ≺ b.

Theorem 3.7. Let (S; ∧, k) ∈ SLE with k > idS. If S is subdirectly irreducible and a ∈ S,
then we have ki−1(a) ≼ ki(a) for every i > 1.

Proof. Let a ∈ S and suppose that b ∈ S is such that ki−1(a) 6 b 6 ki(a) for some i > 1.
If k(a) = a then there is nothing to do, and if k(b) = b, then we have clearly b = ki(a).
We may assume that k(a) ̸= a and k(b) ̸= b. Then by Theorem 3.1, we have m > 1 and
n > 1 such that

a < k(a) < · · · < kn−1(a) < kn(a) = kn+1(a);
b < k(b) < · · · < km−1(b) < km(b) = km+1(b).

Let t = n− i+ 1 then kt(b) = kn(a) ∈ FixS. Thus we have t > m. Write c = ki−1(a) then
kt(c) = kn(a) ∈ FixS, and since c 6 b 6 k(c), we have km+1(c) = km(b) ∈ FixS, there
follows that m+ 1 > t > m. Hence, there are two possibilities to consider:

(1) If t = m+ 1 then km(c) /∈ FixS. Thus we have km(c) ̸= km(b). Since by Corollary
2.4,

θ(km−1(b), km(c)) ∧ θ(km(c), km(b))
= θS(km−1(b), km(c)) ∧ θS(km(c), km(b))
= ω,
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it follows by the subdirectly irreducibility that km−1(b) = km(c). Then θ(km−2(b), km−1(c))
= θS(km−2(b), km−1(c)). Similar to the above, we can obtain km−2(b) = km−1(c). Contin-
uing in this way, we have b = k(c) = ki(a).

(2) If t = m then km(c) = km(b). Since km−1(b) < km(b) = km+1(b), we can obtain by
a similar argument as in (1) that b = c = ki−1(a).

Therefore, we see that ki−1(a) ≼ ki(a). �

With combination of Theorems 3.1, 3.3, 3.5 and 3.7, we now can give our main result
as follows.

Theorem 3.8. If (S; ∧, k) with k > idS is an SLE-algebra then S is subdirectly irreducible
if and only if it is a chain with one of the following forms :

(1) · · · < aj < aj−1 < · · · < a0;
(2) 0 < · · · < aj < aj−1 < · · · < a0

in which k(aj) = aj−1 for j > 1, k(0) = 0 and k(a0) = a0.

Proof. (⇒:) Suppose that S is subdirectly irreducible. Then by Theorem 3.5, S is a
chain. If |S| = 1; i.e., S = {0}, then we have clearly k(0) = 0. If |S| = 2 then S is clearly
an 2-element chain as 0 = k(0) < a0 = k(a0) or a1 < a0 with k(a1) = k(a0) = a0.

We now may assume that |S| > 3. Then since | FixS| 6 2, there exists a ∈ S with
k(a) ̸= a, and by Theorem 3.1 we have some n > 1 such that kn(a) ∈ FixS but kn−1(a) /∈
FixS. It then follows by Theorem 3.7 that

(†) a ≺ k(a) ≺ · · · ≺ kn−1(a) ≺ kn(a).
We shall show as follows that if b ∈ FixS with b ̸= kn(a) then b = 0, the bottom

element of S. Observe first that b < a. In fact, if b > a then b > kn(a), there follows the
contradiction that

θ(kn−1(a), kn(a)) ∧ θ(kn(a), b)
= θS(kn−1(a), kn(a)) ∧ θS(kn(a), b)
= ω.

Thus we have b < a. Now for x ∈ S, if x < b, then it follows by Theorem 2.6 the
contradiction that

θ(x, b) ∧ θ(a, kn(a)) = θS(x, b) ∧ θS(a, kn(a)) = ω.

Hence we have x > b, whence b = 0.
To see that S is of one of the stated forms, it suffices to show that for x ∈ S, if x /∈ FixS

and x ̸= ki(a) for each i, then kj(x) = a for some j. By Theorems 3.1, 3.3 and 3.7, we
have some m > 1 such that

(‡) x ≺ k(x) ≺ · · · ≺ km−1(x) ≺ km(x) = kn(a).
By (†) we have x /∈ [a, kn(a)]. It follows that x � a, so x < a < kn(a) = km(x). Thus we
obtain by (‡) that a = kj(x) for some j 6 m.

Therefore, if | FixS| = 1, say FixS = {kn(a)}, then S is of the form (1); and if
| FixS| = 2, say FixS = {b, kn(a)}, then S is of the form (2).

(⇐:) Suppose that S is one of the stated forms. If |S| 6 2 then it is clearly subdirectly
irreducible. We may assume that |S| > 3, and let φ ̸= ω be a congruence on S. In the
form (2), we see θ(0, ai) = θ(0, a0) = ι for every i. Thus in the either cases, we have i, j
with j > i > 0 such that (aj , ai) ∈ φ, then (aj−i, a0) = (ki(aj), ki(ai)) ∈ φ, and then, we
have

(a1, a0) ∈ θS(aj−i, a0) 6 θ(aj−i, a0) 6 φ

whence θ(a1, a0) 6 φ. Hence, it follows that θ(a1, a0) is the smallest nontrivial congruence
on S, and consequently, S is subdirectly irreducible. �
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By Theorem 3.8, the following corollary is clear.

Corollary 3.9. Let (S; ∧, k) ∈ SLE with k > idS. If S is finite, then S is subdirectly
irreducible if and only if it is a chain with one of the following forms :

(1) am < am−1 < · · · < a0;
(2) 0 < am < am−1 < · · · < a0

in which k(aj) = aj−1 for m > j > 1, k(0) = 0, k(a0) = a0.
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