

RESEARCH ARTICLE

Subdirectly irreducible semilattices with endomorphism

Jie Fang

School of Mathematics and System Science, Guangdong Polytechnic Normal University, China

Abstract

In this paper we initiate an investigation into the class of meet semilattices endowed with an endomorphism. A consideration of the subdirectly irreducible algebras leads to a description of a subclass of those algebras $(S; \land, k)$ in which $(S; \land)$ is a meet semilattice and k is an endomorphism on S characterised by the property $k \ge id_S$. We particularly show that such an algebra is subdirectly irreducible if and only if it is a chain with one of the following forms:

(1)
$$\cdots < a_j < a_{j-1} < \cdots < a_0;$$

(2) $0 < \cdots < a_j < a_{j-1} < \cdots < a_0$

in which $k(a_j) = a_{j-1}$ for $j \ge 1$, k(0) = 0 and $k(a_0) = a_0$.

Mathematics Subject Classification (2020). 06A12, 06A11, 06B10

Keywords. semilattice, endomorphism, subdirectly irreducible

1. Introduction

An ordered set $(S; \leq)$ is a *meet-semilatice* if for any $x, y \in S$, the greatest lower bound $\inf\{x, y\}$ of x and y exists, denoted by $x \wedge y$. A mapping $k: S \to S$ is said to be *endomorphism* if $k(x \wedge y) = k(x) \wedge k(y)$ for every $x, y \in S$. For any additional background see, for example, either of the texts Blyth [1] or Grätzer [5].

Throughout what follows, we shall use the terminology $(S; \wedge)$ to denote a meet- semilattice.

In 1991, Ježek [8] initiated a study of the class of semilattices with an automorphism by characterising its subdirectly irreducible members. In 2004, Jackson [7] introduced a class of closure semilattices. In particular, he gave a representation of semilattices by means of topological Boolean algebras. Furthermore, the other related topics can be found in [2,6].

Here our objective is to initiate an investigation into the class of semilattices $(S; \wedge)$ endowed with an endomorphism k. We shall say that such an algebra $(S; \wedge, k)$ is an SLEalgebra; namely, an SLE-algebra is an algebra $(S; \wedge, k)$ of type $\langle 2, 1 \rangle$ where $(S; \wedge)$ is a meet-semilattice, and k is an endomorphism on S.

In what follows we shall denote by **SLE** the class of SLE-algebras.

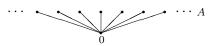
Example 1.1. Every meet-semilattice gives to an SLE-algebra. For example, if $(S; \wedge)$ is a semilattice, then $(S; \wedge, id_S) \in SLE$.

Email address: jfang@gpnu.edu.cn

Received: 12.09.2021; Accepted: 14.10.2021

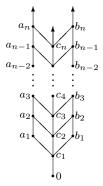
Example 1.2. Let $(S; \wedge)$ be a meet-semilattice and $a \in S$. If define $k: S \to S$ by $k(x) = a \wedge x$, then clearly $(S; \wedge, k) \in \mathbf{SLE}$.

Example 1.3. Consider a semilattice $(S; \wedge)$ described as the following Hasse diagram:



in which $S = A \cup \{0\}$ where $A = \{a_i \mid i \in \mathbb{N}\}$ is an anti-chain, and $0 < a_i$ for all $i \in \mathbb{N}$. Define $k: S \to S$ given by k(0) = 0 and $k(a_i) = a_{i+1}$ for each $i \in \mathbb{N}$. Then $(S; \land, k) \in \mathbf{SLE}$.

Example 1.4. Consider an infinite SLE-algebra $(S; \land, k)$ depicted as follows:



in which $c_i = a_i \wedge b_i$ $(i = 1, 2, \dots)$, the endomorphism $k: S \to S$ is defined by k(0) = 0and $k(x_i) = x_{i+1}$ where $x_i \in \{a_i, b_i, c_i\}$.

2. Congruences

By a *semilattice congruence* we shall mean an equivalence relation φ on a semilattice $(S; \wedge)$ satisfying the following condition:

$$(\forall x, y \in S) \ (\forall z \in S) \quad (x, y) \in \varphi \Longrightarrow (x \land z, y \land z) \in \varphi.$$

As usual we shall denote by ω and ι the equality relation and the universal relation, respectively. For $a, b \in S$ with $a \leq b$, we denote by $\theta_S(a, b)$ the principal semilattice congruence that collapses a and b; i.e., the smallest semilattice congruence on S generated by a and b.

The following description of the principal semilattice congruences is due to Dean and Oehmke (see [3] or [4]).

Lemma 2.1. [4, Lemma 2.1] If $(S; \wedge)$ is a semilattice and $a \leq b$ in S. Then

$$(x,y) \in \theta_S(a,b) \iff x = y \text{ or } x \land a = y \land a \text{ with } x, y \leq b.$$

Furthermore, for arbitrary a and b in S, $\theta_S(a,b) = \theta_S(a \wedge b, a) \vee \theta_S(a \wedge b, b)$.

As a consequence of the above, the following lemma is immediate:

Lemma 2.2. If $(S; \wedge)$ is a semilattice then the following statements hold:

(1) If $a, b, c \in S$ with $a \leq b$ and $a \leq c$ then

$$\theta_S(a,b) \wedge \theta_S(a,c) = \theta_S(a,b \wedge c).$$

(2) If $a, b, c, d \in S$ with $a \leq b \leq c \leq d$ then

$$\theta_S(a,b) \wedge \theta_S(c,d) = \omega.$$

By a *congruence* on an SLE-algebra (S; k) we shall mean a semilattice congruence ϑ that satisfies the condition

$$(x,y) \in \vartheta \Longrightarrow (k(x),k(y)) \in \vartheta.$$

In what follows for $a, b \in S$ with $a \leq b$, we shall denote by $\theta(a, b)$ the principal congruence on (S; k) that collapses a and b; i.e., the smallest semilattice congruence on S generated by a and b

A description of principal congruences on an SLE-algebra $(S; \wedge, k)$ can be given as follows.

Theorem 2.3. If $(S; \land, k) \in \mathbf{SLE}$ and $a \leq b$ in S then we have

$$\theta(a,b) = \bigvee_{i \ge 0} \theta_S(k^i(a), k^i(b)).$$

Proof. Let $\varphi(a, b)$ be the right side of the stated equality. Then clearly $\varphi(a, b)$ is a semilattice congruence that collapses a and b. To see that $\varphi(a, b)$ is a SLE-congruence, it suffices to verify that for every $i \ge 0$,

$$(x,y) \in \theta_S(k^i(a), k^i(b)) \Longrightarrow (k(x), k(y)) \in \theta_S(k^{i+1}(a), k^{i+1}(b)).$$

In fact, if $(x, y) \in \theta_S(k^i(a), k^i(b))$ then we have either x = y or $x \wedge k^i(a) = y \wedge k^i(a)$ with $x, y \leq k^i(b)$, so either k(x) = k(y) or $k(x) \wedge k^{i+1}(a) = k(y) \wedge k^{i+1}(a)$ with $k(x), k(y) \leq k^{i+1}(b)$. It then follows that $(k(x), k(y)) \in \theta_S(k^{i+1}(a), k^{i+1}(b))$. Hence, $\varphi(a, b)$ is a SLE-congruence.

If now ψ is a congruence on $(S; \wedge, k)$ that collapses a and b, then for every $i \ge 0$, we have $(k^i(a), k^i(b)) \in \psi$, so $\theta_S(k^i(a), k^i(b)) \le \psi$, and so

$$\varphi(a,b) = \bigvee_{i \ge 0} \theta_S(k^i(a), k^i(b)) \leqslant \psi.$$

Consequently, it follows that $\varphi(a, b) = \theta(a, b)$, as our required.

By Theorem 2.3, the following corollary is immediate.

Corollary 2.4. Let $(S; \land, k) \in SLE$ and $a \leq b$ in S. Then we have the followings:

(1) If
$$k^{m+1}(x) = k^m(x)$$
 for some $m \ge 0$ where $x = a$ or $x = b$, then

$$\theta(k^m(a), k^m(b)) = \theta_S(k^m(a), k^m(b);$$

(2) If $k^n(a) = k^n(b)$ for some $n \ge 1$, then we have

$$\theta(a,b) = \bigvee_{i=0}^{n-1} \theta_S(k^i(a), k^i(b)).$$

Here we shall be concerned with those SLE-algebras $(S; \wedge, k)$ in which k satisfies the property $k \ge id_S$. Clearly, if $(S; \wedge, k)$ is such an algebra then we have

$$x \leqslant k(x) \leqslant k^2(x) \leqslant \cdots \leqslant k^n(x) \leqslant \cdots$$

for every $x \in S$.

Example 2.5. The constructions in Examples 1.1 and 1.4 give the SLE-algebras $(S; \land, k)$ for which $k \ge id_S$.

For the later purpose, we require the following basic properties.

Theorem 2.6. Let $(S; \land, k) \in SLE$ with $k \ge id_S$. If $a, b \in S$ with $a \le b$ are such that $k^{n+1}(x) = k^n(x)$ for some $n \ge 0$ where x = a or x = b, then we have the following properties:

- (1) $\theta(a, k^n(a)) = \theta_S(a, k^n(a));$
- (2) if k(b) = b then $\theta(a, b) = \theta_S(a, b)$;
- (3) if k(a) = a then $\theta(a, b) = \theta_S(a, k^n(b))$.

J. Fang

Proof. (1) Since $k^i(k^n(a)) = k^n(a)$ for each *i*, we have by Theorem 2.3 that

$$\theta(a,k^n(a)) = \bigvee_{i \ge 0} \theta_S(k^i(a),k^i(k^n(a))) = \bigvee_{i=0}^n \theta_S(k^i(a),k^n(a)).$$

Note that $a \leq k^i(a)$ for each *i*, then we have $\theta_S(k^i(a), k^n(a)) \leq \theta_S(a, k^n(a))$. Thus it follows that $\theta(a, k^n(a)) = \theta_S(a, k^n(a))$.

(2) If k(b) = b then, since $a \leq k^i(a)$, we have $\theta_S(k^i(a), b) \leq \theta_S(a, b)$ for each *i*. It follows by Theorem 2.3 that

$$\theta(a,b) = \bigvee_{i=0}^{n} \theta_{S}(k^{i}(a),b) = \theta_{S}(a,b).$$

(3) If k(a) = a then $\theta(a, b) = \bigvee_{i=0}^{n} \theta_{S}(a, k^{i}(b))$. Since $k^{i}(b) \leq k^{n}(b)$, we have $\theta_{S}(a, k^{i}(b)) \leq \theta_{S}(a, k^{n}(b))$ for each *i*. Thus the stated equality holds. \Box

3. Subdirectly irreducible

Our main interest here will be in the subdirectly irreducible algebras. We recall (see [1] or [5]) that an algebra \mathcal{A} is said to be *subdirectly irreducible* if for any family $\{\vartheta_i \mid i \in I\}$ of congruences on \mathcal{A} , $\bigwedge_{i \in I} \vartheta_i = \omega$ implies $\vartheta_i = \omega$ for some *i*; equivalently, there exists a smallest nontrival congruence ϑ on \mathcal{A} such that $\varphi \geq \vartheta$ for every congruence $\varphi \neq \omega$ on \mathcal{A} .

The following result will play an important rôle.

Theorem 3.1. Let $(S; \land, k) \in \mathbf{SLE}$ with $k \ge \mathrm{id}_S$. If S is subdirectly irreducible algebra then for every $a \in S$ there exists some $n \ge 0$ such that $k^{n+1}(a) = k^n(a)$.

Proof. Let S be subdirectly irreducible, and suppose, by the way of contradiction, that there exists some $a \in S$ such that $k^{n+1}(a) \neq k^n(a)$ for all n. Then we have

$$a < k(a) < k^2(a) < \dots < k^n(a) < \dots$$

Thus for all $i \ge 0$, $\theta(k^i(a), k^{i+1}(a)) > \omega$. If

$$(\natural) \qquad (x,y) \in \bigwedge_{i \geqslant 0} \theta(k^i(a),k^{i+1}(a))$$

then for each i, we have

$$(x,y) \in \theta(k^i(a), k^{i+1}(a)) = \bigvee_{j \ge i} \theta_S(k^j(a), k^{j+1}(a)).$$

It follows that there exists some $r \ge i$ such that

$$(x,y) \in \bigvee_{j=i}^{r-1} \theta_S(k^j(a), k^{j+1}(a)) = \theta_S(k^i(a), k^r(a)).$$

By (\natural), we have also $(x, y) \in \theta(k^r(a), k^{r+1}(a))$, and similarly, $(x, y) \in \theta_S(k^r(a), k^t(a))$ for some $t \ge r$. Thus

$$(x,y) \in \theta_S(k^i(a),k^r(a)) \land \theta_S(k^r(a),k^t(a)) = \omega$$

whence we obtain x = y. It therefore follows that

$$\bigwedge_{i \geqslant 0} \theta(k^i(a), k^{i+1}(a)) = \omega$$

This contradicts the assumption of the subdirectly irreducibility. Hence, there is some $n \ge 0$ such that $k^{n+1}(a) = k^n(a)$.

Example 3.2. Consider an infinite SLE-algebra $(S; \land, k)$ depicted as follows:



in which $S = \{a, b\} \cup C$ where $C = \{c_i \mid i \in \mathbb{N}\}$ is an anti-chain, and $a < b < c_i, c_i \land c_j = b$ for every $i, j \in \mathbb{N}$ $(i \neq j)$, and the endomorphism $k: S \to S$ is given by k(a) = k(b) = band $k(c_i) = c_i$ for each $i \in \mathbb{N}$. Then $k \ge id_S$ and clearly $x \le k(x) = k^2(x)$ for every $x \in S$. Observe that for any i, j with $i \neq j$,

$$\theta(b, c_i) \land \theta(b, c_j) = \theta_S(b, c_i) \land \theta_S(b, c_j)$$

= $\theta_S(b, c_i \land c_j)$
= $\theta_S(b, b)$
= ω .

Then we see that $(S; \wedge, k)$ is not subdirectly irreducible.

For an SLE-algebra $(S; \land, k)$, an element $x \in S$ is said to be fixed point if k(x) = x. We shall denote by Fix S the set of fixed points of S.

Theorem 3.3. Let $(S; \land, k) \in \mathbf{SLE}$ with $k \ge \mathrm{id}_S$. If S is subdirectly irreducible algebra then Fix S is a singleton or an 2-element chain.

Proof. By Theorem 3.1, we have clearly that $|\operatorname{Fix} S| \ge 1$. Observe now that Fix S is a chain. In fact, if $x, y \in Fix S$, then we have by Theorem 2.3 and Lemma 2.2 that

$$\theta(x \wedge y, x) \wedge \theta(x \wedge y, y) = \theta_S(x \wedge y, x) \wedge \theta_S(x \wedge y, y)$$
$$= \theta_S(x \wedge y, x \wedge y)$$
$$= \omega$$

It follows by the subdirectly irreducibility that $\theta(x \wedge y, x) = \omega$ or $\theta(x \wedge y, y) = \omega$, from which it follows that $x \wedge y = x$ or $x \wedge y = y$, whence $x \leq y$ or $y \leq x$. Hence, Fix S is a chain.

If now $|\operatorname{Fix} S| \ge 3$, then there exist $x, y, z \in \operatorname{Fix} S$ with x < y < z. It then follows the contradiction that

$$heta(x,y)\wedge heta(y,z)= heta_S(x,y)\wedge heta_S(y,z)=\omega_S(y,z)$$

Therefore, Fix S must be a singleton or an 2-element chain.

Corollary 3.4. A meet semilattice $(S; \wedge)$ is subdirectly irreducible if and only if it is a singleton or an 2-element chain.

Proof. Note that $(S; \wedge)$ can be regarded as $(S; \wedge, \mathrm{id}_S)$, then Fix S = S. Thus by Theorem 3.3, the conclusion is clear.

In what follows for an ordered set S and $a, b \in S$, we shall write $a \not\parallel b$ to denote that a and b are comparable (in the sense that $a \leq b$ or $b \leq a$), and write $a \parallel b$ to denote that a and b are incomparable (in the sense that $a \notin b$ and $b \notin a$).

Theorem 3.5. Let $(S; \land, k) \in \mathbf{SLE}$ with $k \ge \mathrm{id}_S$. If S is subdirectly irreducible then S is a chain.

Proof. Suppose that S is subdirectly irreducible, and let $a, b \in S$. Then by Theorems 3.1 and 3.3, $k^n(a), k^n(b) \in \text{Fix } S$ with $k^n(a) \not\models k^n(b)$ for some $n \ge 0$. We may assume that $k^n(a) \leq k^n(b)$. Let $c = a \wedge b$, then $k^n(c) = k^n(a)$. If k(a) = k(b) then $\theta(c, a) \wedge \theta(c, b) = b$ $\theta_S(c,a) \wedge \theta_S(c,b) = \omega$, from which it follows by subdirectly irreducibility that c = a or c = b, whence $a \leq b$ or $b \leq a$. Assume now that $k(a) \neq k(b)$. If $k^n(a) \neq k^n(b)$, then since

$$\theta(k^{n-1}(c), k^{n-1}(a)) \wedge \theta(k^n(a), k^n(b))$$

= $\theta_S(k^{n-1}(c), k^{n-1}(a)) \wedge \theta_S(k^n(a), k^n(b))$
= ω

it follows by the subdirectly irreducibility that $k^{n-1}(c) = k^{n-1}(a)$. Then $\theta(k^{n-2}(c), k^{n-2}(a)) = \theta_S(k^{n-2}(c), k^{n-2}(a))$. Similar to the above, we can obtain $k^{n-2}(c) = k^{n-2}(a)$. Continuing in this way, we obtain c = a, whence $a \leq b$. Similarly, if $k^n(b) < k^n(a)$, then we can obtain that $b \leq a$.

If, on the other hand, $k^n(a) = k^n(b)$, then since $k(a) \neq k(b)$, we have some m with $1 \leq m \leq n-1$ such that $k^m(a) \neq k^m(b)$ and $k^{m+1}(a) = k^{m+1}(b)$. Since

$$\begin{aligned} \theta(k^m(c), k^m(a)) &\wedge \theta(k^m(c), k^m(b)) \\ &= \theta_S(k^m(c), k^m(a)) \wedge \theta_S(k^m(c), k^m(b)) \\ &= \theta_S(k^m(c), k^m(a) \wedge k^m(b)) \\ &= \omega \end{aligned}$$

it follows by the subdirectly irreducibility that $k^m(c) = k^m(a)$ or $k^m(c) = k^m(b)$. Thus we have $k^m(a) < k^m(b)$ or $k^m(b) < k^m(a)$. By a similar argument as above we also can show that $a \not | b$.

Therefore, we see that S is a chain.

Example 3.6. Consider a finite chain S described as follows:

$$a_1 < b_1 < a_2 < b_2 < \dots < a_{n-1} < b_{n-1} < a_n = b_n.$$

If define $k: S \to S$ by $k(a_i) = a_{i+1}$, $k(b_i) = b_{i+1}$ for $i = 1, 2, \dots, n-1$, and $k(a_n) = a_n$, then $(S; \wedge, k) \in \mathbf{SLE}$ with $k \ge \mathrm{id}_S$. Since

$$\theta(a_{n-1},b_{n-1})\wedge\theta(b_{n-1},b_n)=\theta_S(a_{n-1},b_{n-1})\wedge\theta_S(b_{n-1},b_n)=\omega,$$

we see that S is clearly not subdirectly irreducible.

In what follows for a < b in S, if the interval $[a, b] = \{x \in S \mid a \leq x \leq b\}$ is precisely the 2-element set $\{a, b\}$, then we say that b covers a or a is covered by b, denoted by $a \prec b$. We shall write $a \preceq b$ to denote that a = b or $a \prec b$.

Theorem 3.7. Let $(S; \land, k) \in \mathbf{SLE}$ with $k \ge \mathrm{id}_S$. If S is subdirectly irreducible and $a \in S$, then we have $k^{i-1}(a) \preceq k^i(a)$ for every $i \ge 1$.

Proof. Let $a \in S$ and suppose that $b \in S$ is such that $k^{i-1}(a) \leq b \leq k^i(a)$ for some $i \geq 1$. If k(a) = a then there is nothing to do, and if k(b) = b, then we have clearly $b = k^i(a)$. We may assume that $k(a) \neq a$ and $k(b) \neq b$. Then by Theorem 3.1, we have $m \geq 1$ and $n \geq 1$ such that

$$a < k(a) < \dots < k^{n-1}(a) < k^n(a) = k^{n+1}(a);$$

$$b < k(b) < \dots < k^{m-1}(b) < k^m(b) = k^{m+1}(b).$$

Let t = n - i + 1 then $k^t(b) = k^n(a) \in \text{Fix } S$. Thus we have $t \ge m$. Write $c = k^{i-1}(a)$ then $k^t(c) = k^n(a) \in \text{Fix } S$, and since $c \le b \le k(c)$, we have $k^{m+1}(c) = k^m(b) \in \text{Fix } S$, there follows that $m + 1 \ge t \ge m$. Hence, there are two possibilities to consider:

(1) If t = m + 1 then $k^m(c) \notin \text{Fix } S$. Thus we have $k^m(c) \neq k^m(b)$. Since by Corollary 2.4,

$$\theta(k^{m-1}(b), k^m(c)) \wedge \theta(k^m(c), k^m(b))$$

= $\theta_S(k^{m-1}(b), k^m(c)) \wedge \theta_S(k^m(c), k^m(b))$
= ω ,

it follows by the subdirectly irreducibility that $k^{m-1}(b) = k^m(c)$. Then $\theta(k^{m-2}(b), k^{m-1}(c)) = \theta_S(k^{m-2}(b), k^{m-1}(c))$. Similar to the above, we can obtain $k^{m-2}(b) = k^{m-1}(c)$. Continuing in this way, we have $b = k(c) = k^i(a)$.

(2) If t = m then $k^m(c) = k^m(b)$. Since $k^{m-1}(b) < k^m(b) = k^{m+1}(b)$, we can obtain by a similar argument as in (1) that $b = c = k^{i-1}(a)$.

Therefore, we see that $k^{i-1}(a) \leq k^i(a)$.

With combination of Theorems 3.1, 3.3, 3.5 and 3.7, we now can give our main result as follows.

Theorem 3.8. If $(S; \land, k)$ with $k \ge id_S$ is an SLE-algebra then S is subdirectly irreducible if and only if it is a chain with one of the following forms:

(1) $\cdots < a_j < a_{j-1} < \cdots < a_0;$

(2)
$$0 < \cdots < a_j < a_{j-1} < \cdots < a_0$$

in which $k(a_j) = a_{j-1}$ for $j \ge 1$, k(0) = 0 and $k(a_0) = a_0$.

Proof. (\Rightarrow :) Suppose that S is subdirectly irreducible. Then by Theorem 3.5, S is a chain. If |S| = 1; i.e., $S = \{0\}$, then we have clearly k(0) = 0. If |S| = 2 then S is clearly an 2-element chain as $0 = k(0) < a_0 = k(a_0)$ or $a_1 < a_0$ with $k(a_1) = k(a_0) = a_0$.

We now may assume that $|S| \ge 3$. Then since $|\operatorname{Fix} S| \le 2$, there exists $a \in S$ with $k(a) \ne a$, and by Theorem 3.1 we have some $n \ge 1$ such that $k^n(a) \in \operatorname{Fix} S$ but $k^{n-1}(a) \notin \operatorname{Fix} S$. It then follows by Theorem 3.7 that

$$(\dagger) \quad a \prec k(a) \prec \cdots \prec k^{n-1}(a) \prec k^n(a).$$

We shall show as follows that if $b \in \text{Fix } S$ with $b \neq k^n(a)$ then b = 0, the bottom element of S. Observe first that b < a. In fact, if $b \ge a$ then $b > k^n(a)$, there follows the contradiction that

$$\theta(k^{n-1}(a), k^n(a)) \wedge \theta(k^n(a), b)$$

= $\theta_S(k^{n-1}(a), k^n(a)) \wedge \theta_S(k^n(a), b)$
= ω .

Thus we have b < a. Now for $x \in S$, if x < b, then it follows by Theorem 2.6 the contradiction that

$$\theta(x,b) \wedge \theta(a,k^n(a)) = \theta_S(x,b) \wedge \theta_S(a,k^n(a)) = \omega.$$

Hence we have $x \ge b$, whence b = 0.

To see that S is of one of the stated forms, it suffices to show that for $x \in S$, if $x \notin \text{Fix } S$ and $x \neq k^i(a)$ for each *i*, then $k^j(x) = a$ for some *j*. By Theorems 3.1, 3.3 and 3.7, we have some $m \ge 1$ such that

$$(\ddagger) \quad x \prec k(x) \prec \dots \prec k^{m-1}(x) \prec k^m(x) = k^n(a).$$

By (†) we have $x \notin [a, k^n(a)]$. It follows that $x \not\ge a$, so $x < a < k^n(a) = k^m(x)$. Thus we obtain by (‡) that $a = k^j(x)$ for some $j \le m$.

Therefore, if $|\operatorname{Fix} S| = 1$, say $\operatorname{Fix} S = \{k^n(a)\}$, then S is of the form (1); and if $|\operatorname{Fix} S| = 2$, say $\operatorname{Fix} S = \{b, k^n(a)\}$, then S is of the form (2).

(\Leftarrow :) Suppose that S is one of the stated forms. If $|S| \leq 2$ then it is clearly subdirectly irreducible. We may assume that $|S| \geq 3$, and let $\varphi \neq \omega$ be a congruence on S. In the form (2), we see $\theta(0, a_i) = \theta(0, a_0) = \iota$ for every *i*. Thus in the either cases, we have i, j with j > i > 0 such that $(a_j, a_i) \in \varphi$, then $(a_{j-i}, a_0) = (k^i(a_j), k^i(a_i)) \in \varphi$, and then, we have

$$(a_1, a_0) \in \theta_S(a_{j-i}, a_0) \leqslant \theta(a_{j-i}, a_0) \leqslant \varphi$$

whence $\theta(a_1, a_0) \leq \varphi$. Hence, it follows that $\theta(a_1, a_0)$ is the smallest nontrivial congruence on S, and consequently, S is subdirectly irreducible.

J. Fang

By Theorem 3.8, the following corollary is clear.

Corollary 3.9. Let $(S; \land, k) \in SLE$ with $k \ge id_S$. If S is finite, then S is subdirectly irreducible if and only if it is a chain with one of the following forms:

- (1) $a_m < a_{m-1} < \cdots < a_0;$
- (2) $0 < a_m < a_{m-1} < \dots < a_0$

in which $k(a_j) = a_{j-1}$ for $m \ge j \ge 1$, k(0) = 0, $k(a_0) = a_0$.

Acknowledgment. The author is indebted to the referee for the valuable comments.

References

- [1] T.S. Blyth, Lattices and Ordered Algebraic Structures, Springer-Verlag, London, 2005.
- [2] I. Chajda, Congruences on semilattices with section antitone involutions, Discuss. Math. Gen. Algebra Appl. 30 (2), 207-215, 2010.
- [3] R.A. Dean and R.H. Ochmke, Idempotent semigroups with distributive right congruence lattices, Pacific J. Math. 14, 1187-1209, 1964.
- [4] Jie Fang and Zhongju Sun, Semilattices with the strong endomorphism kernel property, Algebra Universalis, 70 (4), 393-401, 2013.
- [5] G. Grätzer, General Lattice Theory, 2nd edn, Birkhäuser, Basel, 1998.
- [6] J. Hyndman, J.B. Nation and J. Nishida, Congruence lattices of semilattices with operations, Studia Logica, 104 (2), 305-316, 2016.
- [7] Marcel Jackson, Semilattices with closure, Algebra Universalis, 52 (1), 1-37, 2004.
- [8] J. Ježek, Subdirectly irreducible semilattices with an automorphism, Semigroup Forum, 43 (2), 178-186, 1991.