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Meme kanseri, kadınlar arasında büyük oranda artış göstermiştir. Ancak 

erken teşhisiyle, tedaviye olumlu cevap verilebilmektedir. Araştırmacılar, 

hastalığı erken ve doğru tespit edebilme adına görüntüleme yöntemlerinde 

çeşitli çalışmalar yapmaktadır. Bu çalışmada; TCİA görüntü veri 

bankasından alınan 9 kanserli görüntüde K ortalama kümeleme ve otsu 

eşikleme yöntemi ile tümör tespiti yapılmıştır. Radyolog tarafından işaretli 

referans görüntüleri ile (ground truth) ile karşılaştırarak, başarım 

(performans) metrikleri değerlendirilmiştir. Kümeleme işlemi için sırasıyla 

TPR (Doğru Pozitif Oranı) 0.89, FPR (Yanlış Pozitif Oranı) 0.14, benzerlik 

0.67, doğruluk 0.87, duyarlılık 0.89, hassasiyet 0.86, özgüllük 0.87, F puanı 

0.87 bulunmuştur. Otsu için TPR (Doğru Pozitif Oranı) 0.84, FPR (Yanlış 

Pozitif Oranı) 0.12, benzerlik 0.73, doğruluk 0.84, duyarlılık 0.84, hassasiyet 

0.86, özgüllük 0.87, F puanı 0.84 olarak hesaplanmıştır. Bu çalışmada, daha 

az veri kümesi ile daha kısa sürede, görüntü işleme yöntemlerini kullanarak, 

piksel tabanlı segmentasyon ile tümör sınırlarının daha doğru belirlenmesi, 

insana duyulan ihtiyacın azalması ve sağlık alanında sahada görüntülemede 

kullanılan tıbbi cihazların bilgisayar destekliyazılımlarla geliştirilmesi, 

mamografik tarama sistemlerinin doğru ve hızlı bir şekilde yapılabilmesi 

amaçlanmıştır.  Sonuç olarak, her iki yöntem de başarılı, sahada kullanılabilir 

ve birbirine yakın başarım değerleri bulunmuştur. 
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 Breast cancer has increased decidedly among women. But with early 

diagnosis, a positive response to treatment can be given. Researchers are 

conducting various studies in imaging methods to detect the disease early 

and accurately. In this study, 9 cancerous images taken from the TCİA image 

data bank were detected by K-mean clustering and the Otsu threshold 

method. Performance metrics were evaluated by comparing them with 

marked reference images (ground truth) by the radiologist. For the clustering 

process, TPR (True Positive Rate) 0.89, FPR (False Positive Rate) 0.14, 

similarity 0.67, accuracy 0.87, sensitivity 0.89, exact hit ratio 0.86, 

specificity 0.87, F Score 0.87 were found, respectively. For Otsu, TPR (True 

Positive Rate) 0.84, FPR (False Positive Rate) 0.12, similarity 0.73, accuracy 

0.84, sensitivity 0.84, exact hit 0.86, specificity 0.87, F Score 0.84 were 

calculated. The aim of this study is to determine the tumor boundaries more 

accurately and to use them in imaging devices in the field of health with 
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pixel-based segmentation. As a result, both methods were successful can be 

used in the field and close to each other. 

To Cite: Kuşcu AC., Erol H. Diagnosis of Breast Cancer by K-Mean Clustering and Otsu Thresholding Segmentation 
Methods.Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 2022; 5(1):258-281.  

 

Introduction 

Breast cancer is the most common cancer in women worldwide. According to the American Cancer 

Society (ACS) report, approximately 2.6 million women have been diagnosed with invasive breast 

cancer, and approximately 40.000 women have died in 2020 (Cancer Facts and Figures, 2020). 13% of 

cancers in Canada are breast cancer. An increase of 25% was observed in women and 1% in men 

(Canadian Cancer Statistics Advisory Committee, 2018; Toronto, 2018).  In Chinese women, it is 

twice as high as the global rate (Sun et al., 2018). 

The causes of breast cancer are often explained by uncontrolled malignant growth, although in some 

cases they remain unclear. Growth usually begins in the cells in the breast tissues, which can be 

managed or controlled at a certain level, without causing any problems in a healthy and normal state. 

In the case of breast cancer, it is impossible to control the regeneration and growth of cells. As soon as 

the repair does not take place, the final mutations proceed with the formation of a cancer tumor. After 

a cancer tumor has formed, the tumor increases in size and the patient begins to show other 

complications. The stage of tumor evolution varies from person to person. Other health parameters 

play an important role for each individual. Also, family history is considered an effective possibility 

for the genetic transmission of breast cancer. As well as late diagnosis, obesity, early or late 

menopause, have never given birth, fibrocystic diseases, the presence of abnormal cells, and the 

possibility of receiving hormone therapy are important factors in the formation of breast cancer. 

These lesions typically have a size in diameter due to their very small sizes, microcalcifications can be 

quite difficult to detect. In general, benign calcifications come in uniform sizes with round or large 

elliptical shapes, but non-uniform, small, polymorphic, and spreading calcifications with 

heterogeneous volume and morphology have a higher chance of becoming malignant (Tan et al., 

2020). Some anatomical structures, such as fibrous strands, breast borders, or hypertrophic lobules, are 

also similar to microcalcifications in the mammographic image. Their presence in the chest area can 

vary, and they can usually be distinguished by their bright color. On the other hand, these lesions can 

be different in size and shape, and their distribution may vary from patient to patient. Sometimes, 

because of the difference in density between suspicious spots and the area surrounding these lesions 

decays, low contrast in their color may be observed. Also, the proximity to the surrounding tissues can 

cause difficulty in their detection. In dense tissues, suspicious areas cannot be detected due to tissue 

overlap (Sankar and Thomas, 2010; Rao and Sannapareddy, 2021). 

Masses appear as dense zones of different characteristics and volumes. They can be lobular, circular, 

oval, or non-uniform/speculated. They are well defined and distinctly delimited. Previous studies have 

shown that, depending on the morphology, masses usually have several chances of malignancy. For 
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example, speculated and ill-defined boundaries are more likely to be malignant (Akay, 2006; Azhar, 

2021). The presence of elliptical or circular masses is a sign of benign. Studies show that the large 

variability of mass appearance is a challenge because it is an obstacle to accurate mammography 

analysis (Mini and Thomas, 2003). 

The normal configuration of the parenchyma is irregular, diffuse, without a visible center or mass, 

architectural defects are pronounced. It is very difficult to find them because they are very variable 

(Naranjo and Reymbaut, 2021). In addition to benign vascular calcifications, the classic “popcorn” for 

involutional fibro adenomas shows two well-defined masses containing calcifications (Gunderman, 

2006; Schönenberger and Hejduk, 2021) 

Detection of breast cancer in the very early stages is a very important advantage. Early detection with 

proper medical treatment and assistance can save tens of thousands of women's lives every year. 

Currently, there is no effective way to prevent breast cancer. However, successful early detection can 

play an important role in improving treatment options and patient survival before cancer spreads to 

other parts of the body (Birdwell et al., 2001; Manraj  et al., 2021) 

There are different imaging methods in the diagnosis of cancer; these are mammography, 

thermography, ultrasound imaging, and histopathology. Mammography is a traditional technique for 

diagnosing breast cancer. Image processing, on the other hand, is transforming the image into digital 

form for various purposes. Different techniques can be used in image processing. K-means clustering 

and the Otsu thresholding technique were used in this study. The previous studies on this topic are 

shown in Table 1. 

Table 1. A review of the relevant literature on the subject has been conducted and is given in the tabular form. 

The researcher Year The method he uses Performance measurements 

Podgornova and 

Sadykov 
2019 

Segmentation of the Basin, 

Mean Drift, and k Mean 

Clustering 

In this study, 57.2% of error 

detection results were found. 

Kaur and Singh 2019 

K-Mean Clustering for 

Accelerated Robust Features 

(SURF) Selection 

The average accuracy rates of 

the three classes using the 

proposed method, namely, 

normal, benign, and malignant 

cancers, were found to be 

95%, 94%, and 88%, 

respectively. 

Sadeghi et al. 2018 
Histogram Diagram for 

Calculating the Initial Threshold 

A sensitivity of 96.7% and a 

false positive result of 0.79 

were found. 

Andrik  2017 

Edge-Free Active Contour 

Models for Investigating the 

Real Boundary 

An accuracy rate of 82.33% 

has been achieved. 

Ciecholewski 2017 

A Computer-Aided Method for 

Segmenting Micro-

Calcifications on Mammograms 

Using Morphological 

Transformations 

A similarity index of 80.5%, 

an overlap ratio of 75.7%, an 

overlap value of 70.8%, and a 

difference of 19.8% were 

found. 
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Materials and Method 

This study aims to design a fully automated, computer-aided diagnosis (CAD) algorithm for manually 

segmented breast cancer images. 

 

Data Base and Used Programs 

The Cancer Imaging Archive (TCIA) is a service that de-identifies and hosts a large publicly available 

archive of medical images of cancer.  TCIA is funded by the Cancer Imaging Program (CIP), a part of 

the United States National Cancer Institute (NCI), and is managed by the Frederick National 

Laboratory for Cancer Research (FNLCR). 

The imaging data are organized as “collections” defined by a common disease, image modality or type 

(CT, MRI, etc) or research focus. Dicom is the primary file format used by TCIA for radiology 

imaging.  An emphasis is made to provide supporting data related to the images such as patient 

outcomes, treatment details, and expert analyses. 

Matlab is a programming and numeric computing platform used by millions of engineers and scientists 

to analyze data, develop algorithms, and create models. Matlab combines a desktop environment tuned 

for iterative analysis and design processes with a programming language that expresses matrix and 

array mathematics directly. It includes the Live Editor for creating scripts that combine code, output, 

and formatted text in an executable notebook. In this study, the editor and workspace pages of the 

Matlab program were mainly used. 

In this study; to distinguish the diseased and healthy breast tissue images from each other 

quantitatively, 9 cancerous breast images with the least noise were taken from the Tcia (The Cancer 

İmaging Archive) database. When triple clustering and Otsu were applied to 9 images, the number of 

analyzed images was 36. 8-bit gray-level images in different pixels were obtained by opening the data 

in Dicom format in the Matlab environment. 

The explanation of the methods used in the study and the performance metrics of the related methods 

are given below. The method consists of 4 main stages: 

In Stage 1, the unnecessary parts were cropped, the contrast was ensured to be in a certain range, the 

intensity was normalized and the noise generating regions were cleared. Thus, the image was ready for 

use (Image pre-processing). 

In Stage 2, breast tumors were segmented. The specifications used for segmentation could not be 

specified with strict boundaries. Because the method to be chosen depended largely on the tumor type, 

class, and subdivision. This difference was also reflected in the image. Image density wasused in the 

study. Because different tissues had different gray levels. 

In the breast mammography image, the hollow structures were black, the filled structures were white, 

and the gray parts were the pectoral muscles and soft tissues. Since the breast tissue had a hollow 

structure in general, the parts to be segmented manually were the parts that were displayed as white 

tumors. Images were fed into Matlab by using the dicomread function of the compiler's image 
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processing library (Khan and Ahmad, 2004; Kaur, 2017). Tumor edge detection was performed with a 

canny filter. This process was performed for each cell of the breast image and two mask values were 

obtained. The mask values obtained were passed through the morphology with the imopen and 

bwareaopen functions, and manually segmented images were obtained. Manually segmented images 

(ground truth) were binary images because they consisted of mask images. 

In stage 3, clustering and Otsu threshold segmentation algorithms were applied. K was determined as 

K=3, 4, and 5 by mean clustering algorithms. A clustering-independent Otsu thresholdwas then 

applied to the same images. Groundtruth reference images were compared (Table 3). Normally 

segmentation is used to analyze regions of different densities, but here it is used to determine tumor 

presence and to extract tumor location. 

In stage 4, the performance metrics of the tumor detection algorithms were calculated on the 

compared images (Table 13-14). TP, TN, FP, FN, FPR, TPR, similarity, accuracy, sensitivity, 

precision, specificity, F score were the performance metrics used in our study and measure the success 

of background and tumor differentiation. TP, TN, FP, FN were in pixels. The algorithm we use has 

been analyzed whether it is reliable and usable according to these metrics. Now let's tell about the 

details of these stages. 

K -Means Clustering 

K-means clustering is a clustering technique that can group large amounts of data with a relatively fast 

and more efficient processing time (Das, 2008). Similarities or closeness between data is expected. 

Thus, it can be divided into multiple clusters where a high degree of similarity between cluster points 

can be achieved (Shokrgozar and Sobhani, 2016). K tools are very simple, easy to measure the 

distance, and based on iteration termination requirements. K-means clustering is a local optimization, 

so it is sensitive to the first data point collection from the midpoint of each cluster (Khan and Ahmad, 

2004). The purpose of these adjustments is to achieve the best accuracy and fastest convergence. Also, 

choosing the starting position from the midpoint of a cluster places the K-means clustering algorithm 

in the optimal position (Kaur, 2017). The K-means clustering method randomly chooses the style from 

the center to k as the starting point (Yang and Sinaga, 2019). The iteration number with the cluster 

centroid is affected by the first randomly set cluster centroid (Lin and Ji, 2020). Therefore, it can be 

fixed to achieve higher performance by identifying the cluster centroid at high baseline data points 

(Aswathy and Jagannath, 2020). Since K-means clustering is usually applied, the data point {  ,{  , 

..., xn} is grouped into k clusters. It has high-performance computation and can handle multi-

dimensional vectors (Çiklaçandir et al., 2019; Bottou and Lin, 2007). Thus, it reduces the extent of 

distortion, increasing accuracy. Xi (j) is a chosen measure of the distance between the data point and 

the cluster center, cj is a measure of the distance between the n data points and their respective cluster 

centers (Tang, 2019). This correlation is shown in Eq.1. 

  ( )    ( )
           (1) 
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Start: Open image. 

Crop the image. 

Assign K-means number of 

centers (number of clusters). 

Calculate the number of 

centers using the mean values. 

Assign the mean value for 

each center. 

End:  Save new image. 

1. K points are placed in the area represented by the clustered objects and these points represent the 

first centroids. 

2. Each object group is assigned to the category with the closest center. 

3. The locations of the k centroids to which all objects will be allocated are recalculated. 

4. Steps 2 and 3 are repeated until the centroids move. 

This causes the objects to be divided into groups from which the metric to be minimized can be 

calculated (Katz and Barness, 2015). 

The K-means clustering algorithm is also versatile. There are two known tool clustering algorithms: 

the first requires a predefined cluster starting number k centroid as a prerequisite parameter for 

clustering, but generally, without prior knowledge, the best initial clustering number that a dataset can 

produce is unknown. The other feature is that each point is connected to the nearest cluster (Bottou 

and Lin, 2007; Tang et al., 2019). The pseudocode of the K-means clustering algorithm is shown in 

Figure 1. 

 

 

 

 

 

 

 

 

 

Figure 1. Pseudo code 

Otsu Thresholding 

This algorithm is based on the maximum inter-class variance between the background and the target 

image as the threshold selection rule. It separates the image into foreground and background based on 

its grayscale properties. When the best threshold is taken, the difference between the two parts is the 

largest. Since variance is an important measure of the uniform gray distribution, the larger the variance 

value, the greater the difference between the two parts of the graph. If some targets are erroneously 

divided into backgrounds, or if some backgrounds are divided into targets, the difference between the 

two parts becomes smaller. Therefore, as long as the variance between clusters is maximized, the 

possibility of misclassification will be minimized and thus perfect segmentation of an image will be 

achieved (Mittal and Saraswat, 2018). The Otsu threshold value of each image of the study is shown in 

Table 1. 

The basic principle of threshold segmentation based on Otsu is as follows: Assuming that the range of 

grayscale of the image is i = 0,1, ..., L -1 and the pixel number with grayscale k is nk, then the total 

number of pixels k in an image is shown in Equation 2. 
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  ∑                                                                                                                              
   
   (2) 

The probability of occurrence of gray level k is shown in Equation 3. 

   
  

 
 

  

∑   
   
   

                                                                                                                                             (3) 

The gray level threshold t can be used to divide the gray level of an image into two parts:  

C0 = (0,1,2,…, t), C1  = ( t  + 1, t  + 2,…, L -1), then the probability and mean of the 

class C0 and C1 are as follows:  

The probability P is calculated separately for each pixel value, as in Eq. 4. There is the following 

relationship between them: 

   ∑                                                                                                                                                           
   
   (4) 

For any value of t, equation is expressed as in 5,6. 

                                                                                                                                                        (5) 

                                                                                                                                                              (6) 

w0 = Probability of class 1(separated by threshold), w1=Probability of class2 (separated by threshold),  

u0= class mean u0, u1= class mean u1 

Eq.5, compute sigma variance (between class) 

Eq.6, the desired threshold corresponds to the maximum variance of between classes. 

When summing the variances of C0 and C1, equation is expressed as in 7,8. 

  
  ∑ (    )

      
 
                                      (7) 

  
  ∑

(    )
   

  
                                                                                                                                             

     (8) 

The inter-class variance is defined Eq.9. 

   
      

      
                                                                                                                            (9)                                                                                    

   and    = They are probabilities of two classes divided by a threshold. 

The population's inter-class variance is defined Eq.10. 

  
    

    
                                                                                                                                  (10) 

Introduction of decision criteria on t is defined Eq.11. 
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Through analysis, it is not difficult to see that the above three criteria are equivalent to each other. 

They all regard the best value t separated from the class C0 and C1 as the best threshold value. 

Therefore,  ( ),  ( ),  ( )are recognized as the maximum judgment criterion. Because,  
  is the 

statistical characteristics based on the first order, while,  
 and  

 are the functions of the threshold 

value t, so it is the simplest to choose  ( )of the three as the criterion, and the best threshold 

value t* can be obtained as a range with in shown Eq.19. 

                 ( )                                                                                                             (18) 

From the above deduction, it can be seen that when   
  is the maximum value, the best threshold 

value t  of t can be obtained. 

Performance Metrics 

Performance analysis is the determination of the accuracy of tumor detection algorithms. 

TP (True Positive): It is the result found if the tumor region is labeled as “Tumor” in the segmentation 

process. It is shown in white in our study. 

TN (True Negative): It is the result found if the non-tumor region is not labeled as “Tumor” in the 

segmentation process. It is shown in black in our study. 

FP (False Positive): It is the result found if the tumor region is not labeled as “Tumor” in the 

segmentation process. It means the wrong guess. It is shown in green in our study. 

FN (False Negative): It is the result found if the non-tumor region is labeled as “Tumor” in the 

segmentation process. It means the wrong guess. It is shown in pink in our study. 

This information alone may not be meaningful. Performance metrics are calculated using their values. 

Values ranging from [0, 1] are used to quantify the performance of the algorithms. Formulas for some 

performance metrics are given in shown Eq.20-27. 

   (                  )  
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Confusion Matrix 

A confusion matrix is a table that is often used to describe the performance of a classification model 

(or "classifier") on a set of test data for which the actual values are known. The values TP, TN, FP, 

and FN are transferred to a table defined as a Confusion Matrix or “Error Matrix”. This table contains 

the accuracy of the prediction results given by a given classifier on a given data set in a two-class data 

set. It is divided into 2 groups, namely, what actually happened and what was predicted. The 

predicted class is with tumors, the real class is without tumors. These statements are shown in a table 

in Table 2. 

Table 2. Confusion Matrix 

Confusion Matrix 
Estimated 

No Yes 

Real Value 

No True Negative, TN False Positive, FP 

Yes False Negative, FN True Positive, TP 

 

Results 

Clustering and Otsu thresholding were applied to the images. The 36 images and difference areas of 

the processes are shown in Table 3.The lesion sample marking via mammography image was shared 

as a binary image by the radiologist in the column titled "ground truth”.
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According to the images obtained after clustering and Otsu thresholding, it was observed that the tumor 

borders became clearer as the number of clusters increased. The white region in the table represents TP, the 

black region represents TN, the pink region represents FN, and the green region represents FP. These 

statements are shown in Tables 13,14. 

 

Table 4. Image 1 Confision Matrix

 

 

 

 

 

 

Predicted/ 

Actually 

Happening 

Positive Negative 

Predicted/ 

Actually 

Happening 

Positive Negative 

Predicted

/Actually 

Happenin

g 

Positive Negative 

Predicted

/Actually 

Happe-

nig 

Positive Negative 

Positive 

TP 

584287 

FN 

38193 

Positive 

 

TP 

616683 

 

FN 

65522 

Positive 

TP 

604262 

FN 

54167 

Positive 

 

TP 

658236 

 

FN 

30394 

Negative 

FP 

77458 

TN 

584062 

Negative 

FP 

45062 

TN 

556733 

Negative 

FP 

57483 

TN 

568088 

Negative 

FP 

3509 

TN 

445311 



 

271 
 

Table 5. Image 2 Confision Matrix 

 

Table 6. Image 3 Confision Matrix 
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Table 8. Image 5 Confision Matrix 
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Table 11. Image 8 Confision Matrix 
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Table 13. Performance metrics of processes 
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Table 14. Mean process performance metrics 

 TPR FPR Similarity Accuracy Sensitivity Precision Specificity F score 

Clustering 

Mean 

Performance 

Metrics 

0.89 0.14 0.77 0.87 0.89 0.86 0.87 0.87 

Otsu 

Threshold 

Mean 

Performance 

Metrics 

0.84 0.12 0.73 0.84 0.84 0.86 0.87 0.84 
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Discussion and Conclusion 

In this study, a fully automated computer-aided diagnosis (CAD) algorithm was designed for manually 

segmented breast cancer images. When the number of clusters was selected as 3, the pixels were seen 

in white, black, and gray tones. When 4 and 5 were selected, they were divided into black, white, and 

different shades of gray. It was seen only in the black and white (binary) form in Otsu. Images from 

the database weremarked by the expert radiologist. Ground truth (reference images) and tumor region 

images obtained as a result of clustering and the Otsu threshold process were compared. Performance 

metrics were used to determine segmentation performance. In performance measurement metrics, 

means were compared to make an overall comparison for 36 images. For the clustering process, TPR 

was 0.89, FPR was 0.14, the similarity was 0.67, accuracy was 0.87, sensitivity was 0.89, sensitivity 

was 0.86, specificity was 0.87, F score was 0.87. For Otsu, TPR was 0.84, FPR was 0.12, the 

similarity was 0.73, accuracy was 0.84, sensitivity was 0.84, sensitivity was 0.86, specificity was 0.87, 

F score was 0.84. Both methods were found to be successful and close to each other.  

FP (False Positive) is pixels that cannot be monitored as a radiologist's tumor section and were 

actually seen as tumors (in software) and were shown in green.  For FN (False Negative); working as a 

radiologist tumor zone was the part that was not actually seen as a tumor zone (in software). These 

encounters of his appearance were made pixel by pixel. This study aimed to reduce a radiographic 

error in examinations of cancerous tissue in patients diagnosed with breast cancer, which can be better 

determined with software. In the name of dividing into benign(benign) and malignant(malignant) 

tumor; determining the boundaries of the cancerous lesion was important for patients diagnosed with 

breast cancer who went to routine check-ups with short periods of time, comparing with previous 

tumor exams, whether the tumor was benign or malignant, and the course of treatment was before the 

opening. 

With a slight difference, it can be said that the clustering algorithm was more suitable and usable in 

terms of tumor detection. In addition, it can be given among its other advantages that it showed the 

pixel color toning in more detail, and the process wascompletedin a shorter time. On the other hand, 

the Otsu algorithm resulted in a much shorter time compared to the clustering algorithm. The tumor 

had also performed the results obtained in the determination of scientific data on the accuracy of 

criteria used in the studies are listed.These criteria were evaluated depending on the parameters TP, 

TN, FP, FN, the part that the radiologist marks as a tumor pixel by pixel, and the part that the software 

considers a tumor. In addition, coloring was done to distinguish it. The reason why it was made pixel-

based was to minimize the error rate in the study. 

Kapoor and Singhal compared K-Means, K-Means++, and Fuzzy C-Means clustering algorithms. 

Experimental results, similar to our study, showed that in case of an increase in the number of data 

points, the number of iterations, which greatly affects the cluster performance, was reduced, the 

duration was shortened, the fluctuations in the cluster center and the time complexity were reduced, in 

addition, the sum of the distance that changes the performance was minimized (Kapoor and Singhal, 
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2017). Dallali et al. (2018) found that the Otsu thresholding algorithm was less inaccurate and 

provided optimum performance with an accuracy of 98.83% in mammography images (Dallali et al., 

2018). Similarly, in a study conducted with 36 patient data, the area and volumes obtained using K-

means clustering and Otsu thresholding approaches on single or multi-section images were compared 

by a nuclear medicine specialist. As a result, it was observed that the Otsu thresholding algorithm was 

more selective (Tianwen et al., 2019). Malali et al. (2020), in their study, reached a 90% accuracy rate 

in mammography images with the K-means algorithm recommended in breast cancer (Malali et al., 

2020). The recommended algorithm increased the sensitivity by 21%. While Aswathy and Jagannath 

(2020) obtained 91% accuracy based on SVM, it had 93% maximum segmentation accuracy with K-

means clustering (Aswathy and Jagannath, 2020). K-means and Otsu thresholding were applied to 

mammogram images taken from MIAS. The results showed that the proposed methods were easy and 

high sensitivity of 92.93% was achieved with a high reduction in 1.98 FPPI (Aksebzeci, 2017). In the 

study of Dubey et al.(2018), the highest and lowest clustering accuracies were 94.7%, 77.1%, and 

94.4%, 88.5% for fuzzy and random centroid, respectively. The accuracy obtained with this approach 

was approximately 92% (Dubey et al., 2018). 

Bradley and Fayyad (1998) used the K-means algorithm to improve the starting points and achieved 

an acceptable low run time (Bradley and Fayyad, 1998). Similarly, Karen et al. (2021) used the K-

means algorithm to improve groups and used colony optimization to improve cluster quality (Karen et 

al., 2021). Ghosh and Dubey (2013) presented the comparison between KM and FCM based on 

sample number and K. Experimental results showed that the K-means clustering algorithm was much 

better than FCM because it took more time to perform fuzzymeasurement calculations (Ghosh and 

Dubey, 2013). 

Time complexity affected the outcome. Thus, there was no doubt that FCM produced results as good 

as those produced by KM results, but the time complexity was still relatively high. Banerjee et al. 

(2015) compared various variants of KM, bisecting KM, FCM, and genetic KM. Genetic KM 

performed best for both internal and external indices (Banerjee et al., 2015). On the other hand, 

Kaygisiz and Cakir (2020) achieved successful results with Otsu thresholding (Kaygisiz and Cakir, 

2020). 

In this study, it was aimed to create prototyping with a high success rate. More reliable results could 

be obtained with a richer data set. However, building a model was our main goal. In addition, we 

achieved high performance in a short time with our simple algorithm without the need for very 

complex processes. Our findings may prove that the algorithm can be used by doctors to diagnose 

breast cancer. This tool is more useful for areas far from urban or rural areas where medical 

professionals or oncologists may not be available. Thanks to advances in image acquisition and 

appropriate tools, the diagnosis can be confirmed using this system, serving the automated diagnosis 

of breast cancer. 
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However, in the study, images with a low accuracy rate were obtained as well as images with high 

accuracy. Radiologists may be mistaken when marking sites, or marked values may be only 

approximate. Therefore, ground truth accuracy is also a controversial issue. Also, after following the 

diagnostic system steps, the first stage is image development; however, breast images often contain 

artifacts such as uneven lighting, adipose tissue, milk ducts, and rich vascular structure. In conclusion, 

robust methods are needed to remove artifacts and detect lesion borders in breast images. In future 

work, we also plan to test our methods on advanced neural networks and machine learning so that we 

can shed some light on some of these "ground truth" issues. In this study, it was aimed to determine 

tumor boundaries more accurately with pixel-based segmentation, to reduce the need for human 

beings, and to develop medical devices used in field imaging in the field of health with computer-

aided software using image processing methods in a shorter time with fewer data sets. 

In future work, it is planned to diagnose breast cancer using deep learning methods. Deep learning has 

come to the forefront as the rising trend of recent years in the diagnosis of diseases from medical 

images. There are important studies in the literature on the diagnosis of various diseases with deep 

learning. To name a few examples, breast cancer diagnosis (Shen et al., 2019), brain tumor diagnosis 

(Irmak, 2021), malaria disease detection (Irmak, 2021), COVID-19 disease detection (Irmak, 2020) are 

some important applications of deep learning in the diagnosis of medical diseases. It will be interesting 

to use deep learning methods in the diagnosis of breast cancer.  
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