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2 B. V. ENUSTUN

of two volatile components, which cover the widest field, the
vapour/liquid equilibrium method is probably the most applicable
experimental approach. However, this method involves the diffi-
culty of determination of the composition of both phases with
high accuracy. Furthermore, unless such an investigation is
combined with an additional volumetric study of the system,
it is not possible to obtain the required thermodynamic quan-
tities.

It will be shown below that the excess- or non-ideal - diffe-
rential free energies of dilution can be obtained directly from
the azeotropic data at the azeotropic conditions without any of
the difficulties mentioned above. Therefore the azeotropic mix-

tures form a useful category for the application of statistical
treatments.

On the other hand, the prediction of azeotropic properties
of mixtures has a practical importance.

The aim of the present work is to examine a) the applica-
bility of certain statistical treatments and b) the possibility of
prediction of azeotropic behaviour of the systems on the basis
of these theories.

The general thermodynamics of azeotropy in binary mixtu-
res has been worked out by previous workers, ['l, (2], °], [4], [°]},
[°], [], [¥] almost in the same manner, paying little attention to
the justification of the approximations involved.

Herzfeld et’all?], Kireev[’], and Prigogine et’al{’] applied the
expression K x,? for the differential non-ideal free energy of di-

lution per mole of component (1) to certain azeotropes, where K
is an empirical constant for a given system and x, is the molar

fraction of compcnent (2) in the mixture, and obtained experi-
mental agreement with most of the azeotropic systems at cons-
tant pressure. This expression is a common result of the formu-
lae developed by various workers using different statistical mo-
dels, in a special case. In fact, if the molar volumes of the li-
quids concerned are identical, the formulae due to Van Laarl®], [*°]
and Hildebrand['], and Guggenheim’s[*?] <zeroth» approximation
lead to the above expression. All these treatments imply the as
sumption of ideal entropy of mixing, i.e. K x,* also equals to
the differential heat of dilution. K is calculable from the Van
der Waal constants of the species in Van Laar’s theory, from
the heats of vaporization of the components in Hildebrand’s
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the deviation from ideality is everywheere positive (i.e. AP":>0,
AP:>0) then T,<<T,< T, (i. e. azeotrope with minimum boi-
ling point), and if the deviation is everywhere negative (i. e.
Ap? <0, Ap; < 0) T,<T,<<T, (i.e. azeotrope with maximum
boiling point).

A further simplification can be introduced by assuming the

approximate validity of the relationship L;/T; = L,/T, (i. ¢ Trou-
ton’s rule) at atmospheric pressure, when from (5') and (5") we
obtain

C(T,—Ty)= Ap,; AR e (6)
where C=L,/T;=L,/T; (i.e. Trouton’s constant). Since ther-
modynamically

G’
t A = A 6),

Aty — ot < RES >T,P ®)
from (6) and (6') we have

G’
T\ —E ] e 7)
C(TZ Tl) ( Dx2 >Ta, P (

where AG'; is the non-ideal free energy of mixing per mole of
mixture. Therefore the critical factor for the existence of an
azeotrope is the slope of the AG. versus x, curve. For the sake

of brevity, let us neglect the dependence of AG. on tempera-

ture, which corresponds to the case of regular solutions. Then,
there must be a point somewhere in this curve where the slope
is equal to C(T,—T,) for the existence of an azeotrope. If the
maximum slope is smaller than C(T;—T;) no azeotrope is

formed. Otherwise there will be azeotrope. In other words, the
criterion for the existence of an azeotrope is

<MQ>
o mué C(Ty—Ty) reevrerorrenees (8).

If the maximum corresponds to x;=0 or x,=1 the sign of
equality should be dropped. It follows that the smaller the dif-

ference between the boiling points of components (1) and (2)
the more is the possibility of formation of an azeotrope.

b) The Shift of Azeotropic Equilibrium with Pressure:
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Ozet: Modern termodinamik metodlariyle ikili azeotroplarin termodina-
migi, tegekkiil gartlar), basmein azeotropik denge iizerindeki tesiri miinakaga
edilmis ve elde edilen miinasebetler yardimiyle non-elektrolitik ¢ézeitilerin
yakin senelerde ileri siiriilen statistik termodinamik teorilerinin reel sistem-
lere tatbik kabiliyeti ve bu teorilerden itibaren azeotropik vasiflarmn ne dere-

ceye kadar Onceden haber verilebilecegi incelenmis ve agagidaki sonuclara
varilmigtir ¢

Muhtelif mielliflerin  non-ideal karigma serbest enerjilerinin mol kes-
rinin basit parabolik bir denklemine uydugunu tesbit ettikleri polar azeo-
troplarin  dizgiin (regular) cozeltiler olmadigi gésterilmig, bu iki miiga-
hedenin - ancak - Guggenheim’in umumilegtirilmis teorisinin takribi gekli ile
telif edilebilecegi anlagilmig ve bu sistemlerde rastgele (random) karigma hi-
potezinin kabul edilebilecegi sonucu elde edilmigtir.

Aynmi  teori etil asetat-etil alkol sistemine tatbik edilerek normal
basingtaki azeotropik denge ve karigma isisindan itibaren hu dengenin ba-
singla degigimi hesaplanmig ve neticelerin tecriibe ile bulunmug degerlere daha
Gnceki aragtiricilarin non-ideal karigma entropisini ihmal eden teorilere daya-
nan hesap neticelerinden ¢ok daha yakin oldugu gdsterilmigtir. Bu suretle bu
teorinin polar karigimlara tathik edilebilecegi ve bu sistemlerin termodinamik
fonksiyonlarinin ekstrapolasyonunda faydali olacag ileri siiriilmektedir.

1. Introduction

Statistical thermodynamics of solutions of non-electrolytes has
received an extensive study in recent years. The experimental
verification of sach theoretical treatments requires accurate and
detailed thermodynamic data on binary mixtures. For wixtures
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More recently a new statistical treatment developed by Lon-
guent Higgins was applied successfully by D. Cooke to the change
of azeotropic equilibrium with pressure of the system ethylene
- CO,["]. This treatment is similar to Guggenheim’s theory just
mentioned in that it also leads to a non-ideal entropy and an
expression for the non-ideal free energy of the form Kux,? but
goes further to imply that the entropy deviation from the ideal
is proportional to the heat of mixing, the proportionality factor
being given by the thermal data on any one of the pure com-
ponents. If these data are available, on the basis of this treat-
ment it is possible to establish the thermodynamics of mixtures
from the heats of mixing observed, which is not the case with
Guggenheim’s generalized theory. Nevertheless, Cooke’s appli-
cation of the treatment is not based on the thermal data. He
uses empirical parameters which make up the factor K, calcu-
lated from vapour/liquid equilibrium data. It is, therefore, rea-
sonable to believe that an agreement to the same accuracy could
be obtained also by Guggenheim’s treatment since both equa-
tions are formally identical. In this application the advantage of
this theory over Guggenheim’s has not been made use of, and
it still remains to be seen whether it really has such an advan-
tage in practice,

It is clear from this review that the application of statistical
treatments to azeotropes has been so far superficial.

In this paper it will be shown that when the heats of mixing
of azeotropic mixtures of polar components are compared with
the non-ideal free energies of mixing obtained from the azeo-
tropic data large differences are observed even if some of these
systems satisfy the free energy expression K x,%.. Secondly, the
system ethyl acetate-EtOH will be subject to treatment within
the frame-work of Guggenheim’s generalized theoryl**] which
takes care of the non-ideal entropy, where we shall present a
better quantitative prediction of the shift of azeotropic equilib-
rium than that of Coulson and Herington, from the heat of mi-
xing and the azeotropic data at a single pressure.

First, the thermodynamics of binary azeotropes will be pre-
sented by the methods of modern thermodynamics using chemi-
cal potentials.
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2. Thermodynamics of Binary Azeotropes

a) Azeotropy at Constant Pressure:

Consider a binary solution of volatile components (1) and (2)
in equilibrium with the vapour phase at a constant pressure
P (ei. g. atmospheric pressure). Writing the chemical protentials
of component (1) in both phases, we have

(Liquid phase) p*=#>*(T,P)+ RTlog x* + RTlog vy} (1)

1

(Vapour phase) pP = p°f(T,P)+ RTlog x*+ RTlog v* (2)
1 1 g 1

1
where , ’s, x; 's and y,’s are the chemical potentials, molar
fractions and activity coefficients of this component, respec-
tively, in corresponding phases. Superscripts a and § refer to the

liquid and vapour phases, respectively. pf:“ (T, P) and Prﬁ(T, P)

are the chemical potentials of pure liquid (1) and pure vapour (1)
at temperature T and pressure P. R is the gas constant. At

equilibrium p* = P«lﬁ . from eqns. (1) and (2) we have
wP (T, P) —u*(T,P)=RT log x/x +RT log v{/1}  (3)
In the case of azeotropes we have xf= x?:;é 1. Hence, eqn.
(3) becomes
po (T,P) —p2* (T,P)=RT log v /7% ---.o.. (4),
where T =T, i.e. the boiling point of the azeotrope at pressure P.

We shall make an assumption here by setting
log y? < log YT
It is a property of gaseous state that lim v =1, and the above
P=0

approximation can be justified easily for low pressures of the
order of 1 at. This approximation never implies, however, that
the individual pure vapours behave ideally™®, but it is equiva-
lent to neglecting the non-ideality of the mixed vapours as a

(*) This point has not been made clear in the treatments of azeotropes
by previous workers.
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mixture compared to that of the liquid solution phase if the
former is not highly compressed. The same approximation has
been made also by other workers [*°],[**] which does not intro-
duce a serious uncertainty as long as the treatment is not exten-
ded to higher pressures. Hence, omitting the superscript % on
Y, eqn. (4) becomes

RO (T,, P) — p™(T,,P)=RT,log 4, <+ ).

The left hand side of this equation is the free energy of vapo-
rization of pure component (1) at temperature T, and pressure
P, while the right hand side is the differential non-ideal free
energy of dilution of the solution with this component. Hence

Td T(l
Li/Ty(Ty =T+ [ AC,dT —T,[ 4C,idlog T= k7 (5)
T, T,

where L, is the latent heat of vaporization of pure (1) at its
boiling point T, at pressure P, and AC,,1=CEI-——C°c - The

pl
sum of the two integrals in eqn. (5) is usually negligible, Then

this equation reduces to

Ll/Tl (Tl _ Ta) == A[Ja’: ............... (5’).
Similarly, for component (2) we have
L,/To(T,—T,)= Ap,: .............. (5.

Here AP-: and Ap: are the differential non-ideal free energies
of dilution of components (1) and (2), respectively. Eqns. (5") and

(5") , which are identical with those derived by earlier workers
[61, '], [(], determine the azeotropic conditions if the functions
Ap:(x, T) and A}’c: (x, T) are experimentally or theoretically es-
tablished. It appears from these equations that the azeotropy is
a manifestation of the non-ideal behaviour of solutions.

It is interesting to note that eqn. (5) (or (5’) and (5")) per-
mits the calculation of the non-ideal free energies of dilution at
the azeotropic conditions without any knowledge of the actual
composition and the volumetric behaviour of the phases.

Let T,<T,. It can be seen from eqns. (5") and (5") that if
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theory, but only from the heat of mixing in Guggenheim’s treat-
ment. None of the above authors considered, however, whether
the empirical parameter K (i.e. « in Prigogine’s eqn. 40.35),
obtainable from the azeotropic data, were consistent with the
thermal behaviour of these mixtures The systems chosen by
Prigogine et’al can hardly conform to the assumption of ideal
entropy of mixing, a8 admitted by the authors, since they con-
tain highly polar molecules which very likely cause orientations
or disorientations on mixing. Such a comparison would, there-
fore, fail to indicate the above mentioned consistency. Recently,
Kuhn and Massinil®] reported similar results on five azeotropic
hydrocarbon mixtures. They calculate K for these systems
a) from the azeotropic data, b) from the heat of mixing, and
c) from the London theory of dispersion forces. On the whole,
all these calculations give different results. Their argument lies,
however, within the assumption of the expression K x,? for which
it would be desirable to have some experimental confirmation.

 Hence, the applicability of these theories in the prediction
of azeotropic properties is not warranted by these formal ag-
reements. However, these agreements are significant in view of
a recent conception[®’] of the constant K. This point will be
discussed in Section 3.

These theories have been less successful in application to
the shift of azeotropic equilibrium with pressure. Carlson and
Colburn[4] applied the general Van Laar[’l. [**l equation to the
shift of azeotropic equilibrium of the system ethyl acetate -
EtOH using empirical parameters. However, the agreement was
poor. Later, the theory of strictly regular solutions due to Gug-
genheim[*?!] was applied, in its <zeroth» approximation, to the
same problem with the systems ethyl acetate - EtOH and HCI
- H;O by Coulson and Heringtonl’]. Although the former system
satisfies the expression K x,? well, they could not obtain any
better agreement either. Here again a comparison between the
parameters (A and B calculated by Carlson and Colburn, and
W,; in Coulson and Herington’s paper) and the thermal data is
lacking. This comparison would show that these systems exhi-
bited large non-ideal entropies of mixing. Apparently, this is the
reason for the discrepancy between the calculations of these
authors and the azeotropic data observed.
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Going back to eqn. (4"), we have

v Ap® (T, P) =An’ (x,, T,P)
and similarly, k, (T, P) R U 9),

Ap? (T, P) = Ay (x. T, P)

where AH: and Au;’ are the free energies of vaporization of

pure (1) and (2), respectively. Au" ’s have been already defined.
Eqns. (9) determine the azeotropic conditions. By eliminating
one of the three variables (x, T, P) in eqns. (9), in principle, we

obtain
X3 = x5 (T)
x; = x; (P)
P =P (T)

We shall, however, first work out the derivatives of these
functions. Differentiating eqns. (9) we obtain

2A 24 DA A
b?ﬂ+"wm.1m+ wm-“w}

[ (10).
DApz bApZ DA , bAp.z bAuz (10)
ST AT + 3p’ dP = St dxy+ 2 dT+ 2 dP

Now, eliminating dP, dT and dxy in (10) successwely

<bApf: bAuZ)(BAp: bApZ) <DAM‘2’ bAu:><bA"‘f bAp’:>
dey, _\dP P /\T " 3T / \®P T %P /\T T (11,2)
dT — n
<bAu dAp, )bApz <b_Ap‘2’ dAp, >DA}L
P 7 P /ox, P T P /3%y
dﬁ—_— Numerator of (11, a) (11,b)
P <DAp.: bAu:>bAP-: <DA;L;) Mu,")bAu:
3T = °T /dxs  \ T _ oT / ox,
dP _ Denominator of (1) .
dT ~ Denominator of 11,a) ’

It will be noticed that bAuf/bP and DAM;’/DP are the volume
changes on vaporization of pure liquids (1) and (2); dAp?dP and
bAp;‘/DP are the differential volume changes on dilution in the
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liquid phase; — dap;/oT :AS? and — DAP:/DT——‘ASZ i. e. the
ent}opies of vaporization of pure (1) and(2); — DAP:/DT=A§:

and —DAu /DT—AS i.e. the differential non-ideal entropies
of dilution at the azeotropic conditions of the components (1)
and (2), respectively. Here, we shall make two easily justifiable
approximations, viz.

(i) The volume of the liquid phase is negligible compared to
that of the vapour phase.

(ii) The molar volumes of pure vapours, at the same tempe-
rature and pressure, are identical. In other words, both vapours
have a common gas imperfection coefficient 3 defined by

V|EV2=RT/P+B.

This assumption cannot be far from reality and it is certainly
much safer than neglecting B’s all together.

Hence, eqns. (11,a), (11,b) and (11, ¢c) reduce to

dx, (AS?—AS?)—(AS— AS.)

axa__ e e 12),
dT 1/x, DAp™[ox, (
A S C. —as)) (85 -s5)
1xy0am, fox] (857 — A5 )x+(8S;— A5, )x,]
dP (ASO— Agn)m + (ASO —AS n)x,
and Jm=——1 YRTP 4P Nt LA (14),

respectively. Noting that
T[(aS; — AS)x; + (AS? — AS) )xy |= x, L+ xL;— AH.

where L and L are the latent heats of vaporization of com-

ponent (1) and (2) and AH, is the heat of mixing per mole of
mixture at the azeotropic conditions, eqns. (13) and (14) become

dx2

Rpp g pry B S) — (5, 788)
=(RT? /xZDAP‘:/bxz(x;Lj"i‘sz:—AHX) (

and



10 B. V. ENUSTOUN

dlogP le:l'**sz:—AHx
d1lT — ~ R4BPT

respectively. It will be seen from eqn. (13') that for a regular
solution (i.e. AS, = AS; =0), if AS]=AS;, the composition
of the azeotrope is not affected by the change of pressure. The
quantity le‘l'+x2L;‘—AHx in eqn. (14’) is the heat of va-

porization of one mole of azeotrope. Thence, this is formally a
Clausius-Clapeyron equation and can be used to calculate the heat

of mixing AH, from P-T-x data if L], L; and § are known.

3. Heat of Mixing and Azeotropy in Polar Systems
and the Significance of Agreement with the
Quadratic Free Energy Expression

In this section we shall evaluate the non-ideal free energies
of formation of certain azeotropes of polar liquids at atmosphe-
ric pressure from the azeotropic data and compare them with
the heats of formation determined calorimetrically.

From eqns. (5') and (5') we obtain the non-ideal free energy
of formation of one mole of azeotrope

AGa= x; Ly/T; (T, —T,) + %, Ly/T,(Ty — T,) (15)

where x; and x, refer to the azeotropic composition. AG: was
calculated from eqn. (15) for seven azeotropic polar systems on
which heat of mixing data were available in “International Cri-
tical Tables,, The results of these calculations are given in
Table I, together with the data used.
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Table I.

Heats, Non-ideal Free Energies and Entropies of Formation of
Azeotropes Containing Polar Liquids at Normal Pressure

Cal/Mol/Deg. Cal/Mol.

No. Comp. (1) Comp. (Z) Ty C* Ty °C Ly/Ty Ly/T; To°C x5 AGq AHq TLASh

MeOH Benzene
CS, Acetone
Acetone CHCl;
CHCl;  MeOH

64.7 80.2 24.95 20.86 58.3% 0.386 273 113 —160
46.25 55.25 20.04 21.98 89.25 0.39 231 3819 88
56.95 61.2 21.98 21.08 64.5 0.655—108 —450 —3842
6.2 647 21.03 24.95 535 0.85 203 10 —193

CHCl; EtOH 612 73.8 21.0826.79 593 0.16 115 110 —5

Acetone MeOH 56.4 64,7 21.98 2495 55.7 0.20 - 57 110 b3
Ethyl

acetate EtOH 77.15 78.30 21.69 26.82 71.81 0.461 141 824 183

The data on x’s, L’s and T’s were taken also from L C.T.
except for the system No. 7. For this system the boiling points
of components and the azeotropic data were taken from Hors-
ley’s [*"] Tables of Azeotropes and Non-azeotropes, L (9250 Cal/
Mol.) from the work of Fiock et’al [**], and L; (7600 Cal/Mol.)
from Young’s data given in “Landolt-Bdrnstein Tabellen,,(1935).
The heats of formation AH, which are tabulated in Tablel were
obtained by interpolating the data on heats of mixing in L.C.T.
to azeotropic compositions. It will be seen from this table that
there are significant differences between the heats and non-ideal
free energies of formation (or mixing) leading to very appre-

a3 O U W I

ciable non-ideal entropies of mixing AS;l which are also given in
Table I, except in the case of system No 5. The apparent agree-

ment between AGZ and AH, for this system is quite coinciden-
tal, since Scatchard et’al [’f] have shown that the system is by

no means regular and that AS_takes positive and negative va-

lues depending upon the composition. At a particular composition

AS: becomes zero. Now, the azeotropic composition happens to
be in the neighbourhood of this point.

Since, -according to eqns. (5') and (5), the non-ideal free

energy determines the azeotropic properties of mixtures, it is,
therefore, clear that these properties cannot be predicted from

the heat of mixing alone, indeed by any theory which neglects
the non-ideal entropy.
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However, as previous workers point out (see Sec. 1), some
of these azeotropes do satisfy the non-ideal free energy expres-
sions of the form

n 2

Ap.l = sz

n 2

Auz —le

which, as mentioned earlier, are common results of various such
theories. This agreement is also shown here in Fig. 1. At the

azeotropic conditions, from eqns. (5), (5") and (16) we obtain
the relationship

v
1 -+
O
2
1000 é
Lr To-7a
% Tx7 5
t S
7 (o]
Q,
500
6
%500 500 1000 T
L! c'ra
7, 15
-s00
3
[o]
Fig. 1

L, T—T Ly T,—T

_‘_1.2_“:_’2—2__11 =K ... ... (16’)_

Tl x2 Tz X

In Fig. 1, where the straight line drawn in represents the
eqn. (16°), the left hand side of this equation is plotted egainst
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the right hand side for the azeotropes listed in Table [*, [t
will be seen that the systems No. 1,2,3,6 and 7 agree well
with eqns. (16), while Nos. 4 and 5 do not.

It can be concluded, therefore, that although the majority of
azeotropes satisfy the eqns. (16), the actual theories behind these
expressions, which assume the ideal entropy of mixing, cannot
describe the thermodyoamic and azeotropic behaviour of such
systems, and that Prigogine et’al’ [°] and Coulson et’al’ ['] results
with particular reference to Guggenheim’s [*!] approximate the-
ory of strictly regular solutions are unjustifiable (see Sec. 1).
Nevertheless, the agreement in most cases with (16) bears an
interesting significance as regards to Guggenheim’s [**] gene-
ralized theory in its «<zeroth» approximation. This treatment leads
to eqns. (16) with the consideration that the constant K is not
an energy but a free energy term, and given by

K=zN(@—Te) ++rereeenenrere 17

where z is the co-cordination number of packing in the quasi —
solid lattice, N is the Avogadro number, T is the absolute tem-
perature, w is the energy of formation of a single contact bet-
ween two unlike molecules on destroying the contacts between
the molecules of the same species, and ¢ is the corres-
ponding entropy of formation of such a contact; and implies
the assumption of random mixing. The parameters w and & are
independent of the composition of the mixiure. Now, the above
mentioned observations on azeotropes can be reconciled by this
treatment since it takes care of the non-ideal entropy. Namely,
from eqns.(16) and (17) we obtain

A" =z N (w—Te) x*

i ( ) : ........ teane (18),
Ap,zzzN(w—'Ts) x
_ 2 '
Alezwa: ........... seese e (19),
Aﬁ2:Zwal

and

(*} This type of a plot is more advantageous than that used by Prigo-
gine [6], since the co-ordinates give directly the constant K, and hence it
gives the opportunity of comparing the deviations from ideality of the sys-
tems concerned. The farther the points from the origin the greater is the

deviation.
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AS: =zNex

AH,, AH, and AS,, AS: are the differential heats and non-ideal
entropies of dilution of the corresponding components.

In Guggenheim’s [¥] more exact treatment, which takes into
account also the effect of non-random mixing (“first, approxi-
mation), however, the quadratic form of these equations with
respect to the molar fractions does not exist. The greater the
absolute value of |w — Te| the greater is the deviation from the
quadratic form. Yet the expressions are still symmetrical with
respect to the molar fractions. Therefore the observed experi-
mental agreement with eqns. (18) simply means that the effect
of non-random mixing is negligible and that the non-ideal en-
tropies of mixing are arising mainly from ¢ in such polar sys-
tems. The existence of a ¢ would mean that the changes are
taking place in the rotational and vibrational partition functions
of the molecules due to orientations or in their free volumes,
on mixing. Such factors, especially orientation, is very likely to
be effective in mixtures containing polar molecules as those

listed in Table I.

The deviations from eqns. (18) observed in the case of sys-
tems No. 4 and 5 cannot be explained, however, by the effect
of non-random mixing on the basis of this theory. As the points
representing Nos. 1, 2 and 4, 5 in Fig. 1 are about the same
distances from the origin (see foot note on p: 13), according
to eqn. (17), they correspond approximately to the same magni-
tudes of |w — Te|. Since we found that the effect of non—ran-
dom mixing is negligible in Nos. 1 and 2, then it would also be
so in Nos. 4 and 5 It is not surprising to find that the latter
systems totally reject the theory since it has been shown by
other detailed experimental investigations [**], [*°] that these sys-
tems (i.e. CHCl; —EtOH and CHCl; — MeOH) exhibit rather
asymmetrical excess thermodynamic functions with respect to the
molar fractions to such an extent that the heat and the non—
ideal entropy of mixing even change signs as the composition
varies ['°]. The interpretation of such behaviour would require
the parameters w and ¢ to be dependent of the composition
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which; as quoted elsewhere [?%], appears to be a serious defi-
ciency of the up-to-date theories.

6. Prediction of the Shift of Azeotropic Equilibrium

In this section Guggenheim’s [**)] generalized theory, in its
«zeroth» approximation, which has been outlined in Section 3,
will be applied to the shift of azeotropic equilibrium formulated
in Section 2, b. The treatment will be confined to the relation-
ship between the azeotropic composition and the temperature,
i.e. eqn. (12).

0600

g 100 ¢

0500

& %y PLOTTED ¥S. T (C&.H)

0300} .

PLOTTED VS. —r—="

Xy gt
u)/é PY-1 -

— 1
wi-T R
29 3.0 3.1 3.2 3.3 34 35 3.6 3.7 3.8 3.9 4.0 47 x107°
Fig. 2

Thus applying eqns. (18) and (20) to (12) we have

AS> — AS’+2Ne (25, —1)
2zN (w — Te) o

If e =0, which corresponds to regular solutions, eqn.(21)
becomes identical with that derived by Coulson et’al (loc. cit.).
It appears from(21)that inthat case x; would be a linear function
of T. Expecting to obtain this linearity, Coulson et’al plotted
the azeotropic composition in molar fraction against the azeo-

dx,/dT=
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tropic temperature for the system ethyl acetate-EtOH using Mer-

riman’s [*] data observed at various pressures. This plot is re-

produced in Fig. 2. It is clear from the trend of the points that

there is a significant deviation from linearity. They have also

integrated (21) with e ==0 and arrived at an expression of the
form

, A8’ —as’ TT ”

— 2 (T —TO) evvvrnnnnn
Xg = x2 -+ 2 Wab ( ) ( )

where x: is the composition at the temperature T° at atmos-

pheric pressure, W,; is zNw (or K in (16"))in our notation. Then
obtaining W,; by (16') at atmospheric pressure, they calculated

x; at other temperatures from (22). They have obtained ASZ and

ASf from the vapour pressures of pure components. Their re-

sults are given in Table II together with Merriman’s experimen-

tal data. It will be seen that the agreement is poor. Besides, the
parameter W, (590 Cal.) calculable by (22) from the average

slope of the claimed straight line in their plot (Fig. 2) is incon-
sistent with that (1307 Cal.) obtained from heat of mixing
(Table I).

Table II.

Variation of Azeotropic Composition with Temperature of
the System Ethyl acetate — EtOH

x93 = Molar fraction of EtOH

— ——

T °C Exptl. Cale. by Dev. from Cale. from Dev. from
C. & H. exptl. eqn. (47) Exptl.
18.7 0.266 0.294 028 0.276 .010
405 0.840 0.361 021 0.344 .004
56.3 0.399 0.404 005 0.400 .001
1.8 0.461 (0.461) .000 (0.461) .000
83.1 0.510 0.500 —.010 0.510 .000
91.4 0.549 0.520 —.029 0.550 .001
Mean =+.015 Mean .003

These disagreements are not at all surprising since we find
that this system is by no means regular (see Table I). On the

other hand, it will be seen from Fig. 1 that the system obeys
the relationship (16’). Thence, the eqns. (18) should be appli-

cable with a reasonable accuracy provided that £ is not neg-
lected.
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It can be shown from the assumptions introduced in Section

2, b that the difference AS: -_ L\S‘: is independent of pressure.
Then we have

AS? — AS? = Ly/T,—Ly/T, + /AszdlogT / AC,,dlog T

or neglecting the temperature dependence of AC,, s

AS? —AS =Ly Ty—Ly/T;, —AC, log Ty/ T, 4+(AC,,— AC,, )logT/T2
- (23).
In order to solve the differential equation (21) we shall neg-
lect the last term in (23) to make ASz—ASI independent of T.
In other words we shall assume AC,; = AC,;. Since
d(AS? —AS?) _AC,;—AC,,
dT - T
the higher the temperature and the smaller the difference AC 2

— AC,, the more correct is the following treatment. Thus integ-
rating (21) we have

A

wle —

T B - (24)

Xy — ——

where A is an integration constant which must be determined
empirically from the azeotropic data at a single pressure, and
B is given by

Ly/Ty —L,/T,— Acp\log T,/ T, +1/2 -eee (25).

zNe
It must be noted that eqn. (24) predicts the curvature exhibited

by the points in Coulson et’al’ plot (Fig. 2). Since eqns. (19)
and (20) lead to

AH, = zZNew xxg cevvveeiiaian (26),
As: =aNExHy rovrrrerenninns @7,

at any composition we have
wfe==AH_AS; ---ecrrriaeinns (28).

Using the values of AH, and AS: at the azeotropic composition
at atmospheric pressure given in Table I we found from (28)
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wle =611 °K for the system ethyl acetate-EtOH. Then the ex-
perimental values of x; (i.e. molar fraction of EtOH in the aze-

otrope) were plotted against also in Fig. 2, which ac-

1
wle— T
cording to (24) should fall in a straight line. It will be seen
from this figure that the agreement is perfect at four points at
higher temperatures and on the whole is better than that ob-
tained by Coulson and Herington. As the temperature decreases

8500

L
Cal /Mol

!

s000

.‘;. CALCULATED
A WIRTZ (1890)
7500 O MARSHALL & RAMSEY (1896)
& BROWN (1903 )
O YOUNG (1910) L
, TYRER (1911)
o ALIMOW( 1934)

Fig. 3
Latent Heat of Vaporization of Ethyl Acetate at Various Temperatures

the points tend to divert slightly from the straight line. It can
be argued that this departure at lower temperatures is possibly
due to the neglected term in (23). From the straight line so
defined we find empirically that A =295"K and B = —0.648.

In other words, the expression
x, =295/(611 —T)—0.648 -----v-v---- (29)

describes the azeotropic behaviour of the present system per-
fectly well at temperatures higher than ca. 50°C.
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Now we must see how far this empirical B agrees with its
theoretical value given by (25). zNe¢ can be obtained from (27)
and Table I, and found to be 2.14 Cal./Mol./deg. As can be
seen from (25), B depends rather critically on the accuracy of
L; and L;. Although the data on the latent heat of vaporization
of EtOH given by Fiock et’al ['*] are very reliable, unfortunately
the data in literature on that of ethyl acetate are somewhat
discordant, This is shown in Fig. 3. We, therefore, worked out
L, from the empirical B using Fiock et’al’ data on L, (9250
Cal./Mol.) and AC, (20.5 Cal /Mol./deg.) for EtOH to see whe-
ther it agrees with the direct calorimetric data within the uncer-
tainty just mentioned. Thus we obtained L;==7520 Cal./Mol. It
will be seen from Fig. 3 that this figure does not disagree sig-
nificantly with the data in literature. Now, assuming that this
figure is correct, we could calculate B back, and evaluate the
constant A from the azeotropic data at a single-say atmospheric -
pressure. In this way we should, of course, obtain - now theore-
tically - the very same equation (29) from which we can calculate
x; 's at other azeotropic temperatures. The results of these cal-
culations are given in Table Il. Comparing these and Coulson
et'al’ results with the experimental data it appears that the pre-
sent treatment provides a better prediction.

We can conclude, therefore, that the present system satisfies
the non-ideal free energy expression (18) well with the parame-
ters w and ¢ independent of x, T and P.The numerical values
of these parameters are given by zNw=1307 Cal./Mol. and
zNe = 2.14 Cal./Mol./deg.

5. Summary and Conclusion

The use of the chemical potentials facilitates the establish-
ment of a rigorous thermodynamic treatment of azeotropes. Com-
bining with various statistical mechanical formulae, the ther-
modynamic relationships so obtained were applied to actual aze-
otropes and the following conclusions were reached.

The azeotropic behaviour of mixtures containing polar liquids
reveals that such systems are invariably irregular, yet the ma-
jority of them satisfy a quadratic expression for the non-ideal
free energy of mixing. Therefore, the particular reference made
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by the previous workers to the theories which neglect the en-
tropy deviation from the ideal for the explanation of the latter
observation is spurious. This behaviour can be explained by the
“zeroth,, approximation of Guggenheim’s generalized theory. The
most probable source of the negative and positive non-ideal
entropies observed is orientation or disorientation of the par-
ticles on mixing. The entropy deviation from the ideal due to
non-random mixing is neglible compared to that arising from
this effect. It appears, therefore, that the “zeroth, approximation
of the generalized theory should be applicable to such systems
even more satisfactorily than the «first> approximation of Gug-
genheim’s earlier theory.

The system ethyl acetate - EtOH satisfies the quadratic ex-
pression for the non-ideal free energy. But it is irregular. The
<zeroth» approximation of Guggenheim’s generalized theory is
found applicable to this system in confirmation of the statement
made above. On the basis of this treatment the shift of azeo-
tropic equilibrium can be predicted satisfactorily from the azeo-
tropic data at a single pressure and the heat of mixing deter-
mined at one composition. Therefore the above mentioned the-
ory appears to be promising in the field of prediction of the
shift of azeotropic equilibrium and in extrapolation of the ther-
modynamic functions of non-ideal mixtures observed at a single
point provided that they obey the quadratic expression for the
non-ideal free energy of mixing. The origin of the unsatisfac-
tory result of Coulson and Herington’s approach to the same
problem lies in neglecting the temperature dependence of their
parameter W, . The deficiency of the formulae of regular solu-
tions may not emerge in problems such as those dealt with by
Herzfeld et’al, Kireev and Prigogine et’al as long as they do
not necessitate a derivation of this parameter with respect to
temperature as in the case of the shift of azeotropic equilibrium
tackled by Coulson et’al and Carlson et’al.
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