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 The brain-computer interface (BCI) is one of the most promising technologies that allows us to 

establish a relationship between brain and devices. In this study, three-channel EEG signals 

collected from nine subjects performing two motor imagery tasks are classified using two different 

deep neural network (DNN) based approaches called framework 1 (FW1) and framework 2 (FW2). 

The proposed frameworks were evaluated using BCI Competition IV-IIb dataset. In FW1, the raw 

EEG data is directly presented to the deep neural network without performing any pre-processing. 

In FW2, the EEG data is first filtered with five band pass filters with fifth order (Butterworth), 

then the common spatial patterns (CSP) method, which introduces additional pseudo channels, is 

applied to the filtered signals. Two experiments were conducted for each framework. In the first 

experiment, a unique DNN is trained for each subject, and in the second experiment only one DNN 

is trained with the combination of training sets of all subjects. The performance of the two 

experiments are then compared in terms of average accuracy.  According to the simulation results, 

we did not observe a significant difference between the average classification accuracies obtained 

with the first and the second experiments. Therefore, we concluded that, by the use of DNNs we 

do not need to train several subject-specific networks which requires high computational loads. 

On the other hand, we observed that the average classification performance significantly improves 

by the filtering and extracting features with CSP pre-processes. 
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1. Introduction 

For decades, human brain has been studied for various 

purposes. These purposes span from extracting 

information from human brain by using brain imaging 

techniques [1] to transmitting the information into another 

environment in order to accomplish a given task [2]. Now 

it is known that by placing electrodes on the human scalp 

noninvasively, traces of the electrical activity in the brain 

can be observed and also can be classified by using 

commonly known classifiers if the features are 

successfully extracted by well-known signal processing 

techniques. Motor imagery (MI) signals, together with 

event related potentials (ERP) are the only signals that 

have been proven to work efficiently on BCI (brain 

computer interface) tasks [3]. Researchers have developed 

toolboxes and libraries in Python such as Gumpy, MNE, 

Wyrm in order to make it easy to process the 

corresponding signals [4]–[6]. However, these tools are 

still not enough compact and easy to use. Therefore, 

MATLAB and Python are used together in most cases in 

order to employ BCI models.  

In [7], Zhang et al. compared an algorithm that contains 

Morlet wavelet transformation (MWT) and neural nets 

with CNN (convolutional neural network) by using BCI 

competition II dataset III which contains 280 trials that are 

obtained during the MI task of right and left hand. They 

have concluded that WNN’s computational efficiency is 

limited. Therefore, CNN performs better. In [8], Jun yang 

and his co-workers have combined CNN, Discrete 

Wavelet Transformation, and RNN (recurrent neural 

network) in their study that intends to uncover the patterns 
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of different EEG tasks. In their experiment, EEG 

recordings of six subjects were used for classifying MI 

(left hand) and MI (Right Foot). Recordings of seven 

subjects were used for classifying MI (left hand) and MI 

(Right Hand). They also classified the samples of MI tasks 

in which the imaginations of left hand and tongue were the 

two different tasks. This experiment is carried out with 

twelve subjects. They have concluded that RNN (LSTM) 

combined with DWT and CNN is a relatively more 

accurate classifier than CNN alone and more capable of 

handling subject independency in multi-task BCI 

applications. 

In [9], Kumar et al. by using the dataset IVa of BCI 

competition III (five subjects, 140trials for each of the left 

and right hands) tried to reveal the patterns via auto-

encoders and then evaluated the performance of the 

network. They have minimized the maximum error while 

keeping the network computationally efficient by using 

RBM (restricted boltzmann machine) in combination with 

CSP. 

In [10], Jin Zhang et al. have transformed first ten 

seconds of motor imagery signals into images by utilizing 

STFT (short time Fourier transform) and compared 

performances of the activation functions with a CNN 

model that contains seven layers. According to their study, 

SELU (scaled exponential linear unit) performs better than 

ELU (exponential linear unit) and RELU (rectified linear 

unit). Having noted that SELU works better with STFT, it 

is not proven to perform better than RELU in the cases 

where STFT is not used as a pre-processing method.  

Huijuan Yang et al. have combined CNN and a 

technique called ACSP (augmented CSP) that is created by 

exploiting FBCSP (filter bank common spatial pattern) 

and Wide Band CSP (4-30HZ) in [11]. The purpose of this 

approach was to obtain as many features as possible and 

eliminate the ones of the least importance in the CNN 

structure so that the feature selection process would be 

automated. This approach has been more accurate in 

classifying some subjects. However, in terms of average 

accuracy, it did not reach the desired level of success in 

comparison to FBCSP. 

In [12], Xiang Zhang et al. employed convolutional 

recurrent neural network and an auto-encoder for 

classifying Physionet database that is consisted of trials 

from ten different subjects whose motor imagery tasks are 

imagination of left hand, right hand, both hands and both 

feet. This network had considerable success in classifying 

Physionet database with a 95.53% maximum accuracy. 

However, this scenario needs to be repeated with all 

subjects because subject independency and generalization 

ability is of a crucial importance in BCI.  

In this study two main frameworks, FW1 and FW2, are 

created in order to observe and understand the type of the 

change in the success of the networks and discuss how to 

create more accurate systems in the interpretation of BCI.  

Dataset is taken from a publicly available BCI competition 

(BCI IV dataset IIb). This dataset consists of nine subjects 

that imagined to move their right hands and left hands 

during the trials that have been repeated 280 times in the 

experiment.  

In the first framework the raw EEGs are fed into the 

network that consists of four (and five in one subject) 

convolutional layers and one fully connected network 

(FCN). The raw EEGs of each subject have been split into 

train and test sets, and they are fed into the networks of 

their own. Then, raw EEGs of all subjects are fed into the 

same network. The purpose of this procedure was to 

evaluate the inter-subject pattern dependency of the 

framework. It demonstrates the strength of the network in 

extracting different features from different sources of EEG 

signals.  

In the second framework, the raw EEG is fed into the 

network that consists of four convolutional layers and one 

FCN. In the name of exploiting the information in different 

frequencies the signals are subjected to five different band-

pass filters before they are fed into CSP and their 

corresponding features are extracted. The outputs of CSP 

filters are connected to a network that is identical to the 

network which is used in the first experiment. Just as the 

first framework the data of each subject is split into two 

parts as training and test datasets. Nine identical classifiers 

are evaluated separately, each having its own success rate 

in classifying motor imagery tasks. Finally, instead of 

feeding training sets one by one, all training sets are put 

together and used for training another network that has the 

same number of parameters.  Then, the performance of the 

network is evaluated separately for each subject  

2. Methodology 

2.1. Structure of Deep Neural Network 

Architecture of the brain computer system is shown in 

Figure 1. In this study, we used a DNN architecture that 

comprises of convolutional layers, batch normalization 

layers, activation layers and a FCN. The CNN extracts 

unique features across multiple layers to learn how to 

differentiate between data classes of BCI.  

At first, the input is convolved with a number of filters 

in order to extract some features. Then it is passed through 

an appropriate activation function in order to make the 

convergence easier and faster. Finally, the information is 

fed into fully connected layers whose weights are 

determined by back propagation and used in fitting the 

input to the output.  For the activation function, ReLU is 

used in this study. ReLU is the most widely used activation 

function for deep neural networks that removes negative 

pixels in the activation map and sets them to zero: 

 

𝑓(𝑥) = max(0, 𝑥)         (1) 

There are several advantages of ReLU being more efficient 

and providing higher accuracy compared to other 

activation functions. Then every activated neuron is passed 
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to the following layer. Final stage of the DNN is the fully 

connected neural network which enables data to be 

classified. In this study, each epoch consists of 3 channels 

and 750 samples in each channel. The input size of the 

FCN is determined by the number of nodes in the flatten 

layer. Since the DNN of each subject is different, the 

number of nodes in the flatten layer is different. FCN 

contains one hidden layer with 1024 nodes. Since this 

study is dealing with a 2-class problem, there are 2 nodes 

at the output of the FCN. Neurons in a fully connected 

layer make connections with all neurons in the previous 

layer. 

2.2. Common Spatial Patterns as Pre-processing Stage 

The CSP is known as a powerful pre-processing tool in 

extracting features of EEG signals. It can efficiently 

distinguish different classes by maximizing variance of 

one class while minimizing the variance of the other class. 

The CSP algorithm works by diagonalization of 

covariance matrices that is described in the following 

equation the equation 2: 

 

𝑅𝑖 =
𝑊𝑇𝑋𝑖𝑋𝑖

𝑇𝑊

𝑊𝑇𝑋𝑗𝑋𝑗
𝑇𝑊

                    (2) 

where Xi denotes the pre-processed signal matrix with 

dimensions E×N (Xi∈R(E×N)) in other words an epoch, 

where i is the epoch number per class, E is the number of 

channels and N is the number of samples per channel. XT 

is the transpose of X and trace function computes the sum 

of the diagonal elements of the matrix. In this study, EEG 

data from 3 channels (C3, Cz and C4) are analyzed. In fact, 

CSP was used to increase the number of EEG channels 

artificially. 

2.3. Classification process without pre-processing stage 
(Framework 1) 

Two different frameworks are used and their 

classification performance are investigated. In the first 

framework, the raw data was used as input to the DNN that 

consists of convolutional layers that are responsible for the 

feature extraction and one FCN as the classification stage.  

 

Normally the expectation would be that if the network is 

trained enough, it learns to recognize patterns without 

using any pre-processing method. The FW1 does not 

contain any frequency and spatial filtering process. In this 

case, the input of the CNN is the epoch matrix of 

dimensions EN. Tables 1 and 2 give the classification 

performances and the structure of the DNNs used, 

respectively. 3N epoch matrices are entered into all of the 

DNNs shown in Table 2. (N represents data size). 

 

2.4. Classification process using filter and CSP in pre-
processing stage (Framework 2) 

In framework 2, input data is pre-processed by the 

method of band-pass filtering and CSP in order to increase 

the number of channels by creating additional pseudo 

channels. The output of CSP is applied to the CNN 

(features extracted after the CSP are given as the input to 

the classifier) and it is followed by a classification process 

via FCN. Here, the CSP helps to project the three-channel 

EEG data onto high-dimensional space to provide the 

classifier to discriminate between classes easily. A block 

diagram in Figure 2 represents the approach of framework 

2. Tables 3 and 4 give the classification performances and 

the structure of the DNNs used, respectively. 2MN epoch 

matrices are entered into the DNNs shown in Table 2. (N 

and M represents data size and the number of pseudo 

channels, respectively). It is observed in the layer1 of the 

Table 4 that the M value is different for each subject. 

Both FW1 and FW2 are trained with training sets of 

each of the nine subjects as well as the combination of 

training sets. Calculated performance results show that 

there is no significant difference between the average 

classification accuracies obtained with the first and the 

second experiments, i.e., results of both experiments were 

Figure 1. Architecture of the proposed DNN. E (E=3) represents the number of the channels. 
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similar within each framework. However, when it comes to 

comparing the performance of the first and the second 

framework it has been observed that framework 2 provides 

better performance than framework 1 regardless of the 

preparation method of their training and test datasets. 

 

Figure 2. Classification process with pre-processing 

stage 

3. Experimental results 

3.1. BCI Competition IV dataset IIb 

In this study, we used the EEG data that presented in 

BCI Competition Dataset IIb [13]. The dataset comprises 

of two classes of MI tasks (left hand and right hand) 

recorded from nine subjects on two separate (different) 

days. In total five sessions were provided per subject, 

including three training and two evaluation sessions. We 

worked only with the first two sessions of training part that 

consist of 240 trials without feedback in total (120 trials 

per session, 60 trials per class). Here each trial begins with 

a fixation cross and a short acoustic tone (1 kHz,70 ms) to 

prepare a subject to focus on the following command to be 

displayed on the monitor. At time t=3s a cue in the form of 

arrow appear pointing to the left or right on the screen to 

guide the subject to execute the corresponding MI tasks of 

left hand and right hand respectively till t = 7s. Afterward 

a trial continues with a break that lasts 1.5 s. The paradigm 

for one trial is illustrated in Figure 3. 

The data for each session is collected over bilaterally 

arranged three bipolar channels (C3, Cz and C4) according 

to the 10/20 system. Figure 4 shows positions of C3, C4 

and Cz electrodes (indicated by ellipses) according to the 

international 10-20 system. 

 

Figure 3. Architecture of the brain computer system [13] 

 

Figure 4. Positions of C3, C4 and Cz electrodes. 

 

3.2. Framework 1 

Table 1 shows subject-specific accuracy values for 

framework 1. As seen in the table, minimum test accuracy 

of 48.2% is obtained for Subject 6 while maximum test 

accuracy of 87.6% is obtained for Subject 4. The average 

performance achieved is 61.2%. The learning rate for all 

DNNs was selected as 0.0001. Table 2 shows the size of 

DNNs for each subject. It is clearly seen in the table that, 

the size of DNN for each subject-specific dataset is small. 

Table 1. Success rates of each subject for framework 1 

Subjects Training accuracy, % Test accuracy, % 

s1 100 60.2 

s2 100 59 

s3 100 55.7 

s4 100 87.6 

s5 100 58.1 

s6 100 48.2 

s7 100 61.2 

s8 100 60 

s9 100 59 

 

Table 2. Size of convolutional layers, filters, and feature plane 
for each subject in FW1(sj=jth subject, i=number of inputs, 
f=size of filter, o=number of outputs) 

 Layer1    
i, f, o 

Layer2    
i, f, o 

Layer3      
i, f, o 

Layer4    
i, f, o 

Layer5    
i, f, o 

s1 3,5,40 40,5,40 40,5,40 40,5,40 NA 

s2 3,18,20 20,18,20 20,18,20 20,18,20 NA 

s3 3,15,40 40,15,40 40,15,40 40,15,40 40,15,40 

s4 3,15,20 20,15,20 20,15,20 20,15,20 NA 

s5 3,15,20 20,15,20 20,15,20 20,15,20 NA 

s6 3,15,20 20,15,20 20,15,20 20,15,20 NA 

s7 3,15,20 20,15,20 20,15,20 20,15,20 NA 

s8 3,15,20 20,15,20 20,15,20 20,15,20 NA 

s9 3,18,17 17,18,17 17,18,17 17,18,17 NA 

 

3.3. Framework 2 

The proposed approach of the second framework is 

demonstrated in Figure 2. The learning rate for all DNNs 

was selected as 0.0001. Also, Table 3 shows subject-

specific accuracy values for framework 2. The minimum 

test accuracy for this framework (61.9%) is obtained for 
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Subject-2 while maximum test accuracy (94.2%) is 

obtained for Subject-4. The average performance achieved 

in this framework is 72.4%.  

Table 4 shows the size of DNNs for each subject. It is 

clearly seen that, the size of DNN for each subject-specific 

dataset is small. Paying attention to the input sizes in both 

Table 2 and Table 4, we see that while input sizes in Table 

2 are all equal to 3, they take different values in Table 4. 

The number of channels at the output of the CSP transform 

is controlled by 2M. The number of M is determined 

according to the subject in order to increase the 

classification performance and is chosen differently for 

each subject. 

3.4. Generalization ability of the proposed frameworks 

At first, the dataset is formed for FW1 by combining all 

nine datasets collected from nine subjects. In the same way, 

the second dataset for FW2 is created. The purpose of this 

arrangement is to observe the dependency of the network 

to the subject specific datasets. Table 5 shows the 

comparison of the proposed methods with the subject-

specific datasets. The structure of FW2 contains 10 (M=5) 

and 49 features in the input and the other layers, 

respectively. The filter size for FW2 is 14.  

Table 3. Success rates of each subject for framework 2 

Subjects Training accuracy, % Test accuracy, % 

s1 100 79.1 

s2 100 61.9 

s3 100 63.2 

s4 100 94.2 

s5 100 72.5 

s6 100 82.9 

s7 100 66 

s8 100 72.3 

s9 100 65 

 

Table 4. Size of convolutional layers, filters, and feature plane 
for each subject in fw2 (sj=jth subject, i=number of inputs, f=size 
of filter, o=number of outputs) 

 Layer1    
i, f, o 

Layer2    
i, f, o 

Layer3           
i, f, o 

Layer4    
i, f, o 

s1 20,23,20 20,23,20 20,23,20 20,23,20 

s2 6,13,20 20,13,20 20,13,20 20,13,20 

s3 2,13,20 20,13,20 20,13,20 20,13,20 

s4 2,13,30 30,13,30 30,13,30 30,13,30 

s5 10,13,30 30,13,30 30,13,30 30,13,30 

s6 2,13,20 20,13,20 20,13,20 20,13,20 

s7 2,13,30 30,13,30 30,13,30 30,13,30 

s8 14,3,30 30,2,30 30,2,30 30,2,30 

s9 10,23,20 20,23,20 20,23,20 20,23,20 

 

Table 5. Generalized comparison of fw1 and fw2 

 Mean accuracy of 

the combined 

datasets, % 

Mean accuracy 

of the subject 
specific    

datasets, % 

Training Accuracy 100 100 

Test Accuracy by FW1 64.3 61.2 

Test Accuracy by FW2 76 74 

 

Table 6 shows the classification results of MI EEG 

signals obtained by using different feature extraction 

methods and classifiers. The results shown in this study 

were compared with studies in the literature using the same 

dataset. In this study, the performance results were 

obtained independent of the subject. 

  

Table 6: The classification of MI EEG signals by the neural  

networks with different topologies. 

methods 
accuracy 

% 

transformation 

or 

preprocessing 
classifier 

BCI 

datasets 

In [15] 77.6 STFT DNN IV - IIb 
In [16] 62.5 Bispectrum SVM IV – IIb 
In [17] 67.8 Linear 

Predictive 

Coding 

MLP IV – IIb 

In [18] 77.5 Filter + 
normalization 

DNN IV - IIb 

In [19] 76.4 LSTM DNN IV - IIb 
In our 

study 

78 CSP DNN  IV - IIb 

LSTM: Long-short Term Memory 

 

Figure 5 and Figure 6 demonstrate the spatial filter 

visualization obtained for left and right hands by using 

combined dataset, respectively. In Figures 5 and 6, white 

color shows higher activations. It is observed that the 

activations for the left and right hands occur in the 

appropriate positions of the brain. 

 

Figure 5. Spatial filter visualization for the left hand. 

 

4. Conclusion 

In this study, the impact of the number of channels on 

the classification performance has been investigated. FW2 

is employed in order to increase the number of channels 

virtually. This process has been carried out by using filters 

and the important channels are then selected by utilizing 

CSP method. However, it is known that the CSP suffers 

from subject specificity severely. Therefore, DNN is 

proposed in order to eliminate that disadvantage of CSP.  

As seen in Table 1, FW1 has not been successful enough 
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in classifying EEG-MI signals by exploiting only three 

channels. It is clearly seen in Table 2 that increasing the 

number of channels has increased the test accuracy by ten 

percent.  

 

Figure 6. Spatial filter visualization for the right hand.  

 

As predicted, the disadvantage of CSP is eliminated by 

using DNN as seen in Table 5. In the studies of Dai [14] 

and Tabar [15], 78.2% and 77.6% classification 

performances were obtained for BCI Competition Dataset 

IIb, respectively. In these studies, researchers used datasets 

with feedback. Therefore, their success rate is higher 

thanks to using these datasets. The focus of our study is to 

investigate the effects of channel number on classification 

performance.  

The CNN used for the analysis of all EEG signals of the 

dataset has six convolutional layers. At the output of each 

convolutional layer, there are batch normalization and 

ReLU layers. The size (N) of input signal is 750. For all 

convolutional layers, the sizes of filters are 17, and the 

numbers of all feature planes are 40. In this setup, 78% 

classification performance is achieved for the MI BCI 

Competition Dataset IIb. 
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