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ABSTRACT 

The purpose of this study is analytical studying Initial-Boundary-Value 
Problem for the novel format of Maxwell’s equations in SI units. A modified 
version of the Evolutionary Approach to Electromagnetics (EAE) used 
herein. The problem is considered for the causal electromagnetic 
oscillations excited by a given external rectangular pulse signal,  (r, t) , in
a hollow cavity with lossy metallic walls. The cavity volume V  is finite and 
closed by a singly connected surface S  with none of its inner angles 
exceeds  . Physically, cavity walls are lossy (completely or partially). 
Graphical results are exhibited demonstrating that the electromagnetic 
oscillations inside the cavity with metallic surface satisfy the causality 
principle.  

Keywords: Maxwell's Equations, Time-domain Electrodynamics, Cavity, 
Evolutionary Equations, Matrix Exponentials.  



An Analytical Solution for the Electromagnetic Oscillations Caused by 
a Rectangular Pulse in a Cavity with Lossy Walls 

KAYIPLI YÜZEYLERE SAHİP BİR KAVİTEDEKİ DİKDÖRTGEN 
DARBE KAYNAKLI ELEKTROMANYETİK OSİLASYONLAR İÇİN 

BİR ANALİTİK ÇÖZÜM 

ÖZ 

Bu çalışmanın amacı, SI birim sisteminde yeniden yazılmış Maxwell 
denklemlerine ilişkin başlangıç-sınır-değer problemine analitik bir çözüm 
sunmaktır. Çalışmada Elektromanyetik Teoriye Evrimsel Yaklaşım’ın modifiye 
edilmiş bir versiyonu kullanılmıştır. Problem, kayıplı metalik yüzeylere sahip 
boş bir kaviteye verilen dikdörtgen   (r, t )  darbe sinyalleri,   tarafından
uyarılan  nedensel elektromanyetik osilasyonlar için düşünülmüştür. Kavite 
hacmi, V , sonludur ve S  yüzeyinin iç açılarından hiçbirinin  ’den büyük 
olmadığı pürüzsüz bir S  yüzeyiyle kapatılmıştır. Fiziksel olarak yüzey 
(tamamen ya da kısmen) kayıplıdır. Kayıplı yüzeylere sahip kavite içerisindeki 
elektromanyetik osilasyonların nedensellik prensibini sağladığını gösteren 
grafiksel sonuçlar sergilenmiştir. 

Anahtar Kelimeler: Maxwell Denklemleri, Zaman Uzayı Elektrodinamiği, 
Kavite, Evrimsel Denklemler, Matris Eksponansiyeller.  
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1. INTRODUCTION

The goal of the present study is twofold. The first one is to derive an 
analytical solution for the fields in a hollow cavity with lossy metallic 
surfaces by making use of the matrix exponential method. The foundations 
of the approach used in this study, Evolutionary Approach to 
Electromagnetics (EAE), was proposed at the beginning of 1990s for exact 
explicit solution of the fields in cavities and waveguides (Tretyakov, 1993). 
A new SI format of Maxwell’s equations (MEs) presented and 
acknowledged recently (Tretyakov, 2017; Tretyakov, 2018) where the new 
electric and magnetic fields have their common physical dimension. The 
convenience of the new format, where the fields have their common 
dimension, to upgrade the Evolutionary Approach for solving some 
practical problems was exhibited in the previous studies (Erden, Tretyakov, 
& Çoşan, 2018; Erden & Tretyakov, 2017; Tretyakov, 2018; Tretyakov, 
Butrym, & Erden, 2021).  

The second goal is to present graphically the evolution of the 
electromagnetic fields, which can be stimulated in such cavities by a 
rectangular pulse function. Every rectangular pulse function has a beginning 
and end, as the digital signals and Walsh functions. This fact requires the 
involvement of the causality principle at the formulation of our problem 
(Erden, 2017; Tretyakov, 1993). Since the Walsh functions consist of trains 
of rectangular pulses, this study can be extended to investigate the evolution 
of the electromagnetic fields in a cavity excited by digital signals which 
have been used broadly in telecommunication technology for the last few 
decades (Aksoy & Tretyakov, 2003; Aksoy & Tretyakov, 2004). 

The article is structured as follows. In Sec. II, the formulation is given 
where the new format of MEs and boundary conditions are presented for the 
problem. In Sec. III, the modal basis, and the modal field expansions 
available for the time-domain study are presented. In Sec. IV, an ordinary 
differential equation system for the time-dependent field amplitudes, i.e., the 
evolutionary equations are derived. In Sec. V and VI, the evolutionary 
equations are solved by making use of the method of matrix exponential. An 
analytical method based on Lagrange interpolation is applied therein (Erden 
& Tretyakov, 2008). In Sec. VII and VIII, we examine our conclusions. 

- 416 -



- 417 -

An Analytical Solution for the Electromagnetic Oscillations Caused by a 
Rectangular Pulse in a Cavity with Lossy Walls 

2. FORMULATION OF THE PROBLEM

The central point in rearranging the Maxwell’s equations to a new format in 
SI units (Tretyakov et al., 2021; Tretyakov & Erden, 2021) is based on the 
novel definition of the free-space constants as 

0 0
0 0

1 1
,V AN Nm N

V A
As

 
 

        
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where N  is a force of one newton. Derivations of 0
V  and 0

A  are given in 

Appendix A of the recent paper (Tretyakov & Erden, 2021). One can verify 

that 0
V  has the dimension of volt, V   , with its numerical value of

53.361 10 , and 0
A  has the dimension of ampere, A   , with its numerical

value of 28.921 10 . 0
V  and 0

A  can be used as the scaling coefficients for 

the standard electric, , and magnetic, , fields to divide the physical 

dimensions of /V m    and /A m    as
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The SI dimensions of volt V    and of ampere A    are assigned to the

factors 0
V  and 0

A , in our new definition. Meanwhile, novel field vectors, 

  and  , have the inverse meter 1/ m    physical dimension. So, the new

SI format of the Maxwell’s equations is 
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where   is a current density supplying a given signal to the cavity. Consider
the case of S  composed of the parts as 

1 2 .S S S   

In what follows, notation n  and l  are used for the unit vectors outward 
normal and tangential to the surface S , respectively. The part 1S  is 

supposed as a lossy surface, over which Leontovich boundary condition (see 
(Toptygin, 2015)) holds as 

    1, , ,t t S   n r l r r   

where    is a small parameter, and   is the impedance of the lossy 

metallic surface. The constant 0 0 0 0/ /A V       is numerically very 

small, i.e., 32.654 10 . The   appears in   when Maxwell’s equations are 
in the new format. But   is absent (and    becomes large) if Maxwell’s 
equations are standard. The Leontovich approximate boundary condition 
(5), relates the tangential components of the electric field, ( , )tn r , to
magnetic field, ( , )tl r , over the surface of well-conducting bodies. The
Leontovich impedance boundary condition is accurate for most metals 
while the impedance   is large, but finite. 

The part 2S  is perfect electric conducting where the boundary conditions are 

    2, 0, , 0, .t t S    n r n r r  

The initial conditions for the fields are 
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t t
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3. MODAL BASIS AND FIELD DECOMPOSITONS

The space of solutions is chosen as Hilbert space 2L  where the inner 

product of the vectors are defined as   

*1
, .

V
dV

V
 A B A B  

The modal basis has been derived without postulating fields as time-
harmonic in 2L  and presented herein in the form of the boundary-

eigenvalue problems as 
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where the eigenvalues, nk , ( 1, 2,...n  ) have 1/ m    physical dimension.

The elements of basis satisfy the orthonormal conditions as 
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where n n   is Kronecker delta. The modal field decompositions for   and

  fields are presentable as

           '1 1
, , ,n n n nn n
t e t t h t
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where the modal basis vectors nE  and nH  have the same physical 

dimension of inverse meter as the new fields   and  , and the time-
dependent modal amplitudes are dimension-free.  

The current density,  , in equation (3) is responsible for excitation of
forced oscillations in the cavity.   is decomposable as ( ) ( )j t I r  where
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( )j t  is a given signal. The vector I  is specified by configuration and 
position within V  of an item supplying ( )j t  to the cavity. Anyway, I  is 
presentable as 

   
1 n n nn
g k


  

I r E r  

where ng   are constant dimension-free coefficients. 

4. EVOLUTIONARY EQUATIONS

Projecting Maxwell’s equations (3) onto the modal basis results in
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where 1, 2,...n   . To make formulas compact and observable in what 
follows, introduce a set of notations: 
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5. METHOD OF SUCCESSIVE SUBSTITUTION

To apply the method of successive substitution to problem (13), the modal 
amplitudes should be presented as consisting of two parts. Each part is 
sought for. Thus,  

           , .n n n n n ne e e h h h            

The problem for ne  and nh  is selected from (13) as 
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The remainder of original problem (13) yields 
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Cauchy problem (16) is solved analytically in the next Section. A quick look 
at problem (17) suggests that the parts ne  and nh  are of order of the small 

parameter  . 

6. ANALYTICAL SOLUTION FOR FIELD EXPANSION

Introducing matrix nQ  and two vectors, nY   and nF , as 
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rearranges problem (16) into simple “vector” equation as 
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The method of matrix exponential (Tretyakov et al., 2021) yields solution as 
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where Lagrange interpolation of nQe  , see (Tretyakov et al., 2021), results 
in  
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 
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Notice that the matrix nQe   turns into the identity matrix for time 0  . 
Mathematicians call the matrices with this property as the evolutionary 
matrices. At the integrand in (20), the inverse matrix 1( )nQe    stands. That 

one is defined as nQe   with replacement   by    what yields 
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Calculation of the integrals in (20) results in 
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where ne   is transferred from nQe   (see (21)), and 
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Multiplying the matrix nQe   (from (21) without ne  ) and vector (23) 
results in a vector as 
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Finally, observation of modal field expansions (11) and vector (25) results 
in the analytical solution as 
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where ( )nE r , ( )nH r  are the real-valued elements of the basis. Modal field

nE  can be obtained as a real-valued vector. Denote that as ( )nE r . The

modal field nH  is specified via ( )nE r  by formula n n nik E H  what

yields ( ) / ( )n n n ni k i    H E H   where nH  is real-valued, also. This

( )i  cancels later that i , which is present in nh in (25). ne   and nh   are the 

real-valued amplitudes as 
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The graphical results for the modal amplitudes of the electromagnetic 
oscillations, ( )ne   and ( )nh  , caused by a rectangular pulse, ( )j   , in a

cavity with lossless surfaces, 0,n  and lossy surfaces, 0.2,n  are 

exhibited below in Figure 1 and Figure 2, respectively. The dimensionless 
time, 𝜏; is specified as 𝜏 = 𝑡𝑐𝑘௡ where c is the light speed. 
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Figure 1. Modal amplitudes for the lossless case: 0,n   0t  .

In Figure 1, electric and magnetic fields’ modal amplitudes, ( )ne   and

( )nh  , excited by a rectangular pulse, ( )nj  , can be seen evolving 

sinusoidally. It can also be seen / 2  phase shift between electric field and 
magnetic fields. 

Figure 2. Modal amplitudes for the lossy case: 0.2,n   0t  . 

In Figure 2, decaying in time sinusoidal oscillations can be seen due to lossy 
walls of the cavity. When studying digital signals, duration of this 
rectangular pulses will be very short. 

7. CONCLUSION

The solution given in (26)-(27) satisfies the initial conditions at   0 
automatically. The solution is casual. Physically, this solution exhibits how 
the amplitudes of the modes are evolving from their initial value (at   0 ) to 
the state of observation  .  
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The solution is analytical and “pliable” with respect to variations of the 
given signal, ( )j t , which participates in the formulas for nA  and nB  in (24). 

There are three important cases in choice of the format of the cavity surface 
S : see (4). 1) If 1 0S  , all the cavity surface S  is perfectly electric 

conducting where boundary conditions (6) hold. 2) If 2 0S  , all the cavity 

surface S  is lossy, over which Leontovich boundary condition (5) holds. 
The third case, when 1 0S   and 2 0S  , but 1 2S S S  , is considered 

herein. 

8. DISCUSSION

- 425 -

In the novel simple SI format of Maxwell’s equations, and also in the novel 
format of Leontovich boundary condition, the new electric, (r,t) , and
magnetic, (r, t) , field vectors; have a common physical dimension, as

opposed to the standard electric, (r, t) , and magnetic field, (r, t) , which 
have the distinct ones. Just this property of the new fields permits one to 
denote the mechanical equivalents (mass and mechanical momentum) of the 
energetic field characteristics of the local fields in free space, cavities, and in 
waveguides. This result may be useful for study of the unsolved as yet 
problems (Erden et al., 2018) in radio frequency resonant cavity thruster, 
i.e., EmDrive.   
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