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 Classical outlier tests based on the least-squares (LS) have significant disadvantages in 
some situations. The adjustment computation and classical outlier tests deteriorate when 
observations include outliers. The robust techniques that are not sensitive to outliers have 
been developed to detect the outliers. Several methods use robust techniques such as M-
estimators, L1- norm, the least trimmed squares etc. The least trimmed squares (LTS) 
among them have a high-breakdown point. After the theoretical explanation, the 
adjustment computation has been carried out in this study based on the least squares (LS) 
and the least trimmed squares (LTS). A certain polynomial with arbitrary values has been 
used for applications. In this way, the performances of these techniques have been 
investigated. 
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1. Introduction  
 

In geodesy, for different purposes, many kinds of 
observations are done. Physical and geometric quantities 
such as angles, distances, heights, and gravity are 
measured and processed. In this case, a great number of 
data appears [1]. A quantity is always measured 
differently even though it is measured many times under 
the same conditions [2]. It is clear that observations are 
never equal to real value and they always contain an 
error. Thus, it is preferred that the observation number 
is bigger than the unknown number. In this case, the 
optimum solution must be made for a unique solution 
according to an aim function. This process is named 
adjustment computation [3-4]. 

The least-square (LS) is a conventional method for 
adjusting surveying measurements. It is one of the most 
adopted methods because of tradition and ease of 
computation [5-6]. But, outliers (observations with 
different distribution compared to the distribution of 
majority) negatively affect the LS method results [7]. 

Outliers in the observation group are encountered 
very often in applications [6]. The adjustment results 
with classical methods, which should meet some 
conditions like the normal distribution, are deteriorated. 
So, these outliers must be detected and eliminated from 

the observation group. Outlier tests are based on 
classical methods like Data-Snooping, Pope test and t-
test [8-10]. These outlier tests are not robust against 
outliers. Therefore, new statistical methods have been 
sought instead of LS, which is sensitive to outliers [11]. 

The robust statistics deals with developing 
estimators insensitive to inconsistencies from basic 
assumptions in classical models [12]. Robust methods 
aim to find the results that would be found without 
outliers in the LS method to overcome the effects of 
outliers. Then, outliers can be detected through their 
residuals [13]. Many robust techniques have been 
developed. These techniques can be divided into classes 
by concepts of high-breakdown point, influence function, 
etc.  

There are a lot of studies done on robust statistics. 
Some of them are assocaited with L1-norm and M-
estimators and some are associated with the other robust 
techniques [14-27]. 

The least trimmed squares (LTS) that is going to be 
emphasized in this study is a high-breakdown point 
estimator [6]. This study performs adjustment 
computations and outlier detection according to LS and 
LTS methods in different scenarios. Then, LS and LTS 
have been compared to determine the advantages and 
disadvantages of the methods. 
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2. Method and Material 
 

2.1. Method 
 
2.1.1. Adjustment Computation 
 

The adjustment computation is performed to obtain 
unique values for the unknowns when there are 
redundant observations in a problem [28]. The 
adjustment is only performed when the observation 
number is more than the unknown number [4]. An 
objective function is selected to find the unique optimum 
solution [29]. Adjustment computation performed 
according to the objective function is an optimization 
problem, which minimizes the selected function [30]. A 
mathematical model representing the mathematical 
relationship of observations and unknowns is 
established [31]. The mathematical model accounts for 
an essential part of adjustment computation, and it is 
usually composed of two parts: a functional model and a 
stochastic model. When observations are made, a 
functional model is typically chosen to represent the 
physical situation. The stochastic model determines 
variances and covariances of the observations [3, 4, 28]. 
In the classical Gauss-Markov model, the functional and 
stochastic model can be expressed as below: 
 

𝑣 = 𝐴𝑥 − 𝑙 
(1) 

𝑃 = 𝑄𝑙𝑙
−1 = 𝜎0

2𝐶𝑙𝑙
−1 

 
 

Here 𝑣, 𝐴, 𝑥, 𝑙, 𝑃, 𝜎0
2 and 𝐶𝑙𝑙 are the residual vector, the 

coefficient matrix, unknown vector, the observation 
vector, the weight matrix, a priori variance, and the 
covariance matrix, respectively. 

If the functional and stochastic models are correct, the 
adjustment computation gives optimal results [3]. 
 
2.1.2. The Least Squares Method 
 

The LS is a method used in adjustment computation 
by minimizing the sum of the squared weighted residuals 
to get unique values with redundant measurements 
[4,32]. The objective function of LS can be given as 
follows: 

𝑣𝑇𝑃𝑣 = ∑ 𝑝𝑖𝑣𝑖
2

𝑛

𝑖=1

→ 𝑚𝑖𝑛 (2) 

 
 

where 𝑛 is the number of observations.  The steps of 
adjustment computation can be illustrated as in Figure 1. 

The main problem of LS is that even one outlier might 
severely affect the LS method [33]. LS can propagate 
errors from one observation to another observation. 
Therefore, masking and swamping effects occur if there 
is more than one outlier in the data. A bad observation 
could seem like a good one because of the propagation of 
errors; this is called a masking effect. On the contrary, the 
good observation could seem bad; this is called the 
swamping effect [7]. There are classical outlier tests to 
detect outliers depending on the LS. Baarda test (Data-
Snooping, W-test), Pope test (Tau test) and t-test are 
most common in geodesy [8,9,10,34,35,36]. Because the 

classical outlier tests are based on the LS, the results of 
these tests can be affected by outliers, too. 

 
 

 
Figure 1.  The steps of adjustment computation 
 
2.1.3. Robust Estimation and Outlier Detection 
 

Real data sets may contain outliers [37]. Therefore, 
robust methods that cannot be affected easily by outliers 
should be developed. Robustness usually means 
insensitivity to outliers [38]. 

There are many robust methods. L1-norm is the oldest 
method of these robust methods. Then, M-estimators, R-
Estimators, and L-Estimators appeared [6]. To compare 
the robustness of these methods, the ‘breakdown point’ 
concept has been used. The breakdown point means the 
smallest number of outliers, which may affect an 
estimator negatively [39].  The robust methods 
mentioned above don’t have a high-breakdown point [6]. 
Because of this, generalised M-Estimators was 
developed. Then, Repeated Median, The Least Median of 
Squares (LMS) [40], S-Estimators, MM-Estimators, and 
The Least Trimmed Squares (LTS) were developed 
respectively [19,41,42]. 
 
2.1.4. The Least Trimmed Squares 
 

The LTS was presented by Rousseeuw in 1987. This 
method is quite similar to LS except that the largest 
squared residuals are removed from the data [21].  The 
objective function of LTS can be given the following: 
 

𝑀𝑖𝑛 ∑ 𝑃𝑖𝑣𝑖
2

ℎ

𝑖=1

 (3) 

 
Here, ℎ is called as trimming constant and it 

determines the breakdown point of the LTS [43]. 

When ℎ is approximately ℎ = [
𝑛

2
] + [

𝑝+1

2
] (𝑛, number 

of observations; 𝑝, the number of regression 
parameters), the best robustness is achieved [6]. The LTS 
problem tries to find which result has the minimum sum 

of the squared residuals from 𝑆 = (𝑛
ℎ

) subset of LS 

solutions [39]. There are two ways to solve the LTS 
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problem: Exact LTS solution and Approximate LTS 
solution.  The exact LTS solution includes the searching 
through all subsets of S. But it is hardly possible to solve 
the Exact LTS solution unless the data size is small 
enough. On the other hand, the Approximate LTS solution 
searches through a certain number of subsets of S. 
[44,45]. In this study, the Exact LTS solution was selected 
because the data size is small enough. 

The step of the Exact LTS solution can be illustrated 
as in Figure 2. 
 

 
Figure 2.  The steps of Exact LTS solution 
 

In the first step, h is determined. Then, 𝑆 = (𝑛
ℎ

) 

subsets are obtained. For all subsets, LS method is 
performed. Finally, the subset with a minimum sum of 
squared residuals is selected, and this subset's results are 
used. 

 
2.2. Material 
 

In numerical applications, a regression model such as 
𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 was used. 

Here, 𝑎, 𝑏 and 𝑐 are regression coefficients. 𝑥 is the 
independent variable; 𝑦 is the dependent variable.  

Regression coefficients 𝑎, 𝑏 and 𝑐 were taken as 2,3 
and 5, respectively and 𝑦 values were calculated 
according to 𝑥 values that were chosen arbitrarily for ten 
observations. Two applications were made by adding 
random error and gross error to observations. In 
Application 1, both LS and LTS methods were performed 
using 𝑥 and 𝑦 values with random errors (± 0 − 1 unit 

interval). In LTS, ℎ was taken as eight and (10
8

)  solutions 

were made because two observations in the dataset 
would be simulated as the outlier. In Application 2, gross 
errors (+5 and +10 units) were added to y values 
(observations 3 and 9, respectively) and the outliers 
were simulated explicitly in this way to compare LS and 
LTS. Then, LS and LTS methods were performed again 
using those values. Additionally, classical outlier tests 
were applied to LS results to detect the outliers. Matlab 
was used for these solutions. 
 
 

 

3. Results  
 

When there is no outlier in observations, the results 
of LS and LTS are close to the real values and each other. 
(Table 1). This can be concluded by looking at regression 
parameters (𝑎, 𝑏 and 𝑐). But if examined more carefully, 
the regression parameters of the LTS are more accurate 
except 𝑐 parameter. 

 
Table 1. The regression results of Application 1 

Methods a b c [VV] 

LS 2.03 2.77 5.15 2.13 

LTS 2.00 3.09 4.52 0.89 

 
In Application 2, it is clear that the results of the LS 

are quite contaminated, and the sum of residuals squared 
increased very much (Table 2). The coefficients 𝑏 and 𝑐 
of the LS in Application 2 are quite different from 
expected. The regression parameters of LTS in 
Application 2 has the results much closer to simulated 
parameters (2, 3 and 5, respectively) when compared to 
that of LS in Application 2. Also, the sum of residuals 
squared is relatively much smaller. It can be seen that the 
outliers affected the results of the LS regression in 
Application 2.  

 
Table 2. The regression results of Application 2 

Methods a b c [VV] 

LS 2.23 0.28 12.82 89.49 

LTS 2.06 2.51 5.44 1.53 

 
Classical outlier tests were applied to detect outliers 

in the LS method in Application 2. Test values of 
observations and table values were computed and 
compared.  Classical outlier tests are iterative and detect 
one outlier (observation with the highest test value) each 
time. So, two iterations were made in total.  Observation 
9 was detected as an outlier in Iteration 1 (Table 3). 

 

Table 3. Iteration 1 results of the LS with classical outlier 
tests in Application 2 

Observation Test Value Table Value Result 

1 0.1528  
 
 
 
 
2.3646 

 
 
 
 
 
Observation 

9 is an 
outlier 

2 0.0848 

3 0.4089 

4 0.6009 

5 0.1333 

6 2.2771 

7 0.2423 

8 0.1795 

9 12.5992 

10 0.1476 

 
In Iteration 2, there is no outlier detected. All test 

values are smaller than the table value (Table 4). 
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Table 4. Iteration 2 results of the LS with classical outlier 
tests in Application 2 

Observation Test Value Table Value Result 

1 0.2875  
 
 
 
2.4469 

 
 
 
 
There is no 
outlier. 

2 1.7702 

3 2.3752 

4 0.3710 

5 0.5186 

6 1.7479 

7 1.1552 

8 1.5683 

10 0.1169 

 
LS method and the classical outlier tests were affected 

by masking and swamping effects.  Although the sum of 
residuals squared decreased, the regression parameters 
(especially 𝑏 and 𝑐) are not close to their real values 
(Table 5). 
 
Table 5. The regression results of LS results after the 
classical outlier tests in Application 2 

Methods a b c [VV] 

LS 2.15 1.65 7.0355 3.26 

 
LTS method doesn’t need classical outlier tests to 

detect outliers because the trimmed subset with the 
minimum sum of squared residuals tells us that the 
removed observations could be an outlier. Observations 
3 and 9 were detected as an outlier in LTS method of 
Application 2. The results are presented in Table 6.  

The residuals of the LS regression in Application 1 are 
small as expected. The effects of outliers on the residuals 
for the LS in Application 2 can be seen in Figure 3. It is 
seen that the gross errors added to the Observation 3 
were distributed to the other observations in the LS 
method as a result of distribution of error. 

Observations 3 and 9 were simulated as an outlier 
and classical outlier tests based on the LS method could 
detect only Observation 9 as outlier correctly. The error 
in Observation 3 was distributed to the other 
observations again. Therefore, it could not be detected as 
outlier (Figure 4). 
 
Table 6. The outlier detection results of the LTS in 
Application 2 

 
Observation 

V 
(Residuals of 

Observations) 

 
Result 

1 0.1360  
 

Observations 3 and 9 
have the largest value 
of residuals. So, they 

are removed. 

2 -0.6501 

4 -0.0890 

5 -0.6136 

6 0.1842 

7 0.7493 

8 -0.0458 

10 0.3291 

 

 
Figure 3. The residuals of the LS in Application 2 with all 
observations 
 

 
Figure 4. The residuals of the LS in Application 2 after 
the classical outlier tests 

 
Figure 5. The residuals of LTS in Application 2 
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The outliers 3 and 9 were detected in the LTS and they 
were removed from the datasets. (Figure 5) The 
observations that are removed from the dataset in LTS 
could be interpreted as an outlier. But, the true selection 
of the trimming constant ℎ plays a significant role in this. 
If ℎ is not selected in a way that does not reflect the exact 
number of outliers, good observations may be removed 
from the datasets as in Application 1.  
 
 

4. Discussion and Conclusion 
 

In geodesy, the LS is usually used for adjustment 
computation. LS results are sufficient when there is no 
outlier in the observation group. But outliers may occur 
in observation. Because of this, robust methods have 
been developed. In this study, the LTS, which is a robust 
method and the LS were performed. 

A regression model was used in this study to analyse 
the LS and the LTS method results using different 
scenarios. In Application 1, observations with only 
random errors were used. The LS and the LTS methods 
gave good results. But it can be said that the LTS has a 
little better result when the regression parameters in 
Table 1 are examined. The parameter 𝑎, 𝑏 except c are 
closer to their real values and the sum of residuals 
squared of LTS is relatively smaller. In Application 2 
where the simulated outliers were used, while LS results 
were affected badly from outliers, LTS results gave 
results close to ones in Application 1. 

LTS results might be as good as LS results when 
observations do not contain any outliers. But it must be 
noted that the LTS could lead good observations to be 
eliminated from the dataset simultaneously. Therefore, it 
is essential to know exactly whether the dataset contains 
outliers and how many outliers it contains. On the other 
hand, the LTS can give much better results than the LS 
when observations have outliers because the LS method 
can distribute the outlier effect to the other points. It can 
be said that the LTS method could be more effective in 
general when compared to the LS. Besides, if the rate of 
outliers in a dataset is approximately or exactly known, 
the LTS can detect the outliers correctly without any 
additional outlier test. 
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