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In this paper, spectrum and spectral properties of the operator generated by the finite 

system of Sturm-Liouville discrete equations with hyperbolic eigenparameter have been 

taken under investigation. The transformation choosen for the eigenparameter affects 

drastically the representation of Jost solution and analicity region of the Jost function. 

Besides obtaining resolvent operator of the problem, finiteness of the eigenvalues and 

spectral singularities have been proved by using the analicity of the Jost solution on the 

complex left half-plane. Hence, generalizing the recent results, this paper lays the 

groundwork for future research questions in different branches of science like inverse 

scattering theory, quantum physics, applied mathematics and etc.  

 

 

1. Introduction 

Many branches of natural sciences make use of differential and discrete equations for modelling and solving 

natural phenomenas. For this reason, spectral analysis of differential and discrete equations has attracted intensive 

attention from both mathematicians and applied sciences. Discretization of continuous problems serves the 

purpose of solving complex problems by the aid of computers. Interested reader may refer to the books [1 − 3] 

and the references therein to understand theory and applications of the spectral theory of operators. Also,  [4] 

presents a usefull background for the theory and solutions of discrete equations. 

Naimark was the first to investigate the spectrum of the non-selfadjoint singular differential operator [5,6]. He 

elobarated on the boundary value problem (BVP) 

−𝑦  
′′
+ 𝑞(𝑥)𝑦 − 𝜆2𝑦 = 0, 𝑥 ∈ ℝ+, (1) 

 

𝑦  
′
(0) − ℎ𝑦(0) = 0, (2) 

where ℎ ∈ ℂ and 𝑞 is a complex valued function. Note that the operator generated by the BVP (1)-(2) is called 

singular since the definition set of equation (1) is infinite and non-selfadjoint for ℎ ∈ ℂ and 𝑞 is a complex valued 

function. He proved that the spectrum of the BVP (1)-(2) is comprised of eigenvalues, spectral singularities and 

continuous spectrum. It may be remarked that the set of spectral singularities is usually instrict to the non-

selfadjoint operators. Naimark has also investigated the quantitative properties of the operator. Denote the 

bounded solution of (1) holding the asymptotic 

lim
𝑥→∞

𝑦(𝑥, 𝜆)𝑒−𝑖𝜆𝑥 = 1,    𝜆 ∈ ℂ+: = {𝜆: 𝜆 ∈ ℂ, 𝐼𝑚𝜆 ≥ 0},  

by 𝑒(𝑥, 𝜆). 𝑒(𝑥, 𝜆) is introduced as the Jost solution of (1).  

Under the condition 
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∫

∞

0

𝑥|𝑞(𝑥)|𝑑𝑥 < ∞,  

the Jost solution can be represented by the Volterra type integral equation 

𝑒(𝑥, 𝜆) = 𝑒𝑖𝜆𝑥 +∫

∞

𝑥

𝐾(𝑥, 𝑡)𝑒𝑖𝜆𝑡𝑑𝑡, (3) 

where the function 𝐾(𝑥, 𝑡) is defined by 𝑞 [6]. Also, Wronskian of regular and irregular solutions of (1) is 

defined as Jost function of the problem. To determine the spectrum of a given operator, it is necessary to obtain 

the resolvent  of the corresponding operator. It is also well-known fact that the expression of a resolvent operator  

includes Jost function as a denominator term by definition. Hence, the spectrum of an operator directly depends 

on Jost function. Interested reader may consult to [6, Part II, Pages: 292 − 331] for the detailed proofs and 

definitions. 

Let us take into consideration the boundary value problem with the finite system of Sturm-Liouville type 

differential equations 

𝑦𝑗
 ′′ + 𝜆2𝑦𝑗 =∑

𝑛

𝑘=1

𝑣𝑗𝑘(𝑥)𝑦𝑘 , 0 < 𝑥 < ∞  (𝑗 = 1,2, . . . , 𝑛), 

 

 

and the boundary condition 

𝑦𝑗(0) = 0,  

where 𝑦𝑗 ∈ 𝐿2(ℝ+), (𝑗 = 1,2, . . . , 𝑛) and 𝑉(𝑥) = [𝑣𝑗𝑘(𝑥)]𝑛×𝑛
 is an 𝑛 × 𝑛 Hermitian matrix-valued function 

called the potential matrix. Agranovich and Marchenko have investigated the inverse scattering theory of this 

boundary value problem in detail in their book [7]. Note that there is one-to-one correspondence between 𝑛 vector 

solutions 𝑦 = (𝑦1, 𝑦2, . . . , 𝑦𝑛) of above system and the 𝑛 × 𝑛 matrix solutions 𝑌(𝑥, 𝜆) of the matrix equation  

𝑌 
′′
+ 𝜆2𝑌 = 𝑉(𝑥)𝑌, 0 < 𝑥 < ∞.  

That is to say, both representations are equivalent and every finite sytem of Sturm-Liouville type equations can 

be conceived as matrix valued equation and vice versa.  

Pursuing the notions [5 − 7], the spectral characteristics of the non-selfadjoint singular boundary value problems 

have been the object of many more studies [8 − 21]. In particular, matrix-valued non-selfadjoint problems were 

studied in [8 − 10]. Quantitative spectral properties of the discrete analogue of Sturm-Liouville type operators 

have been seriously attacked in papers [12 − 16,18,19]. Finiteness of the eigenvalues and spectral singularities 

of the non-selfadjoint Dirac type operators have been searched in depth in studies [12,20,21]. 

In this paper, we will investigate the spectral properties of  𝐿 generated in the Hilbert space 𝑙2(ℕ, ℂ
𝑁) by the 

finite system of discrete Sturm-Liouville type equations  

 

𝑎𝑛−1
(𝑣) 𝑦𝑛−1

(𝑣) + 𝑏𝑛
(𝑣)𝑦𝑛

(𝑣) + 𝑎𝑛
(𝑣)𝑦𝑛+1

(𝑣) = 𝜆𝑦𝑛
(𝑣), 𝑛 ∈ ℕ = {1,2, . . . }, 𝑣 = 1,2, . . . , 𝑁, (4) 

 

and the boundary condition 

𝑦0
(𝑣) = 0, 𝑣 = 1,2, . . . , 𝑁, (5) 

where {𝑎𝑛
(𝑣)
}
𝑛=1

∞
 and {𝑏𝑛

(𝑣)
}
𝑛=1

∞
 are complex sequences such that 𝑎0

(𝑣) = 1 for 𝑣 = 1,2, . . . , 𝑁. Take notice of that 

we can write the equation (4) in the matrix form 

 

𝐴𝑛−1𝑌𝑛−1 +𝐵𝑛𝑌𝑛 + 𝐴𝑛𝑌𝑛+1 = 𝜆𝑌𝑛, 𝑛 ∈ ℕ, 

 
 

where 𝐴𝑛 = 𝑑𝑖𝑎𝑔 (𝑎𝑛
(1), 𝑎𝑛

(2), . . . , 𝑎𝑛
(𝑁)), 𝐵𝑛 = 𝑑𝑖𝑎𝑔 (𝑏𝑛

(1), 𝑏𝑛
(2), . . . , 𝑏𝑛

(𝑁)) are 𝑁 ×𝑁 diagonal matrices and 𝑌𝑛 =

(𝑦𝑛
(1), 𝑦𝑛

(2), . . . , 𝑦𝑛
(𝑁)) ∈ 𝑙2(ℕ, ℂ

𝑁). 
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Concerning the non-selfadjoint discrete boundary value problems, let us mention some different approaches. For 

instance, in paper [21], the eigenparameter of the non-selfadjoint boundary value problem was taken as 

𝜆 = (𝑖𝑧) − (𝑖𝑧)−1, |𝑧| ≤ 1.  

As a result of this transformation, Jost solution obtained the polynomial type representation which is analytic in 

unit disc. Also, in [22], the spectrum of discrete analogue of Sturm-Liouville equation has been investigated for  

𝜆 =
1

2
(𝑧−1 + 𝑧), |𝑧| ≥ 1.  

 

A non-standard representation for Jost solution has been obtained under this eigenparameter transformation, too. 

Therefore, it is clear that there is a gap in the literature investigating the problem of under what transformations 

of the eigenparameter one can obtain solvable systems for Sturm-Liouville type discrete equations (which is also 

known as infinite Jacobi matrices). 

Differently from other studies, Sturm-Liouville type difference operators with hyperbolic eigenparameter was 

taken into consideration in recent papers [18,19]. Note that hyperbolic eigenparameter shifts the analycity region 

of the Jost fuction from upper half-plane to left half-plane. As a consequence of this shift, analitic continuity 

regions of the Jost solution of the operator 𝐿 differs. 

Along with a diagonal complex valued potential, the eigenparameter of the non-selfadjoint Sturm-Liouville 

problem with an hyperbolic transformation has been considered. Thus, the calculations for the establishment of 

the Naimark’s and Pavlov’s conditions for the potential require a new point of view with respect to trigonometric 

parameter cases. 

The paper is arranged as follows. Jost solution and Jost function of the operator 𝐿 are have been presented in the 

next section. Section 3 is devoted to investigation of the quantitative properties of the eigenvalues and spectral 

singularities of the operator 𝐿. 

 

2. Jost solution and Jost function of 𝑳 

Suppose that complex sequences (𝒂𝒏
(𝒗)) and (𝒃𝒏

(𝒗)
) satisfy  

∑

𝑛∈ℕ

𝑛 (|1 − 𝑎𝑛
(𝑣)
| + |𝑏𝑛

(𝑣)
|) < ∞, 𝑣 = 1,2, . . . , 𝑁. (6) 

The matrix solution 𝐸𝑛(𝑧) of (4) satisfying the asymptotic lim𝑛→∞𝐸𝑛(𝑧)𝑒
−𝑛𝑧 = 𝐼 for 𝐼 is 𝑁 × 𝑁 unit matrix, 

𝑧 ∈ ℂ𝑙𝑒𝑓𝑡:= {𝑧: 𝑧 ∈ ℂ, 𝑅𝑒𝑧 ≤ 0} and 𝜆 = 2cosh𝑧 is introduced as the Jost solution. It was proved with complete 

analogy with what have been referred [10,15,18] in previous section that, under this assumption, there exists a 

solution (Jost solution) represented by  

 

𝐸𝑛(𝑧) = {𝑒𝑛
(𝑣)(𝑧)}

𝑛∈ℕ
=

{
 
 

 
 

[
 
 
 
 
 𝑒𝑛
(1)(𝑧) 0 . . . 0

0 𝑒𝑛
(2)(𝑧) . . . 0

. . . . . .

. . . . . .

0 0 . . . 𝑒𝑛
(𝑁)(𝑧)]

 
 
 
 
 

𝑁×𝑁}
 
 

 
 

𝑛∈ℕ

,  

where   

𝑒𝑛
(𝑣)(𝑧) = 𝛼𝑛

(𝑣)𝑒𝑛𝑧 (1 + ∑

∞

𝑚=1

𝐾𝑛,𝑚
(𝑣) 𝑒𝑚𝑧) , 𝑛 ∈ ℕ ∪ {0}, 𝑣 = 1,2, . . . , 𝑁, (7) 

for 𝜆 = 2cosh𝑧, where 𝑧 ∈ ℂ𝑙𝑒𝑓𝑡. Moreover, we have the inequality for the kernel 𝐾𝑛,𝑚
(𝑣)

  

|𝐾𝑛,𝑚
(𝑣)
| ≤ 𝐶 ∑

∞

𝑟=𝑛+[|
𝑚
2
|]

(|1 − 𝑎𝑟
(𝑣)
| + |𝑏𝑟

(𝑣)
|) , 𝑛 ∈ ℕ ∪ {0}, 𝑣 = 1,2, . . . , 𝑁, (8) 
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for 𝜆 = 2cosh𝑧, where 𝑧 ∈ ℂ𝑙𝑒𝑓𝑡 and 𝐾𝑛,𝑚
(𝑣)

, 𝛼𝑛 are expressed in terms of (𝑎𝑛
(𝑣)
) and (𝑏𝑛

(𝑣)
). Hence, 𝑒𝑛

(𝑣)
(𝑧) is 

analytic with respect to 𝑧 in ℂ𝑙𝑒𝑓𝑡:= {𝑧: 𝑧 ∈ ℂ, 𝑅𝑒𝑧 < 0} and continuous in 𝑅𝑒𝑧 = 0 and they also satisfy 

𝑒𝑛
(𝑣)
(𝑧) = 𝛼𝑛

(𝑣)
𝑒𝑛𝑧[1 + 𝑜(1)], 𝑛 ∈ ℕ, 𝑣 = 1,2, . . . , 𝑁, 𝑧 = 𝜉 + 𝑖𝜏, 𝜉 → −∞.  

Analogous to 𝐸𝑛(𝑧), let �̂�(𝜆) = {�̂�𝑛(𝜆)} = 𝜑𝑛
(𝑣)(𝑧), 𝑛 ∈ ℕ ∪ {0} be the solution of (4) holding the initial 

conditions 

𝜑0
(𝑣)(𝑧) = 0, 𝜑1

(𝑣)(𝑧) = 1, 𝑣 = 1,2, . . . , 𝑁. 

 
 

If we define 

𝜑(𝑧) = �̂�(2cosh𝑧) = {�̂�𝑛(2cosh𝑧)}, 𝑛 ∈ ℕ ∪ {0}, 

 
 

then 𝜑 is an entire function and 

𝜑(𝑧) = 𝜑(𝑧 + 2𝜋𝑖). 

 
 

Let us define the semi-strips 𝑃0:= {𝑧: 𝑧 ∈ ℂ, 𝑧 = 𝜉 + 𝑖𝜏, −
𝜋

2
≤ 𝜏 ≤

3𝜋

2
, 𝜉 < 0} and 

 

 𝑃:= 𝑃0 ∪ {𝑧: 𝑧 ∈ ℂ, 𝑧 = 𝜉 + 𝑖𝜏, −
𝜋

2
≤ 𝜏 ≤

3𝜋

2
, 𝜉 = 0}. 

 

The Wronskian of the solutions of  𝑦𝑛
(𝑣)(𝑧) and 𝑢𝑛

(𝑣)(𝑧) of the equation (4) is defined as usual 

𝑊 [𝑦𝑛
(𝑣)
, 𝑢𝑛
(𝑣)
] = 𝑎𝑛

(𝑣)
[𝑦𝑛
(𝑣)
𝑢𝑛+1
(𝑣)

− 𝑦𝑛+1
(𝑣)
𝑢𝑛
(𝑣)
] , 𝑣 = 1,2, . . . , 𝑁.  

Hence, we get  

𝑊[𝑒𝑛
(𝑣)(𝑧), 𝜑𝑛

(𝑣)(𝑧)] = 𝑒0
(𝑣)(𝑧) = 𝐸0(𝑧), 𝑣 = 1,2, . . . , 𝑁. 

 
 

For all 𝑧 ∈ 𝑃 and 𝑒0
(𝑣)(𝑧) ≠ 0, the Green’s function of the BVP (4), (5) is obtained by standard computations as 

𝐺𝑛𝑘(𝑧) = {
𝜑𝑛(𝑧)𝐸𝑘(𝑧)𝐻

−1(𝑧), 𝑘 ≤ 𝑛,

𝜑𝑘(𝑧)𝐸𝑛(𝑧)𝐻
−1(𝑧), 𝑘 > 𝑛,

 (9) 

where 

𝐻(𝑧):= det𝐸𝑛(𝑧) =∏

𝑁

𝑣=1

{𝑒𝑛
(𝑣)(𝑧)} , 𝑧 ∈ ℂ𝑙𝑒𝑓𝑡. 

 

 

It is clear that, for 𝑔 = (𝑔𝑘) ∈ 𝑙2(ℕ) and 𝑘 ∈ ℕ ∪ {0}, 

(𝑅𝑔)𝑛: = ∑

∞

𝑘=0

𝐺𝑛𝑘(𝑧)𝑔𝑘(𝑧) , 𝑛 ∈ ℕ ∪ {0}, (10) 

is the resolvent of the BVP (4), (5). 

 

3. Eigenvalues and spectral singularities of the BVP (4)-(5) 

We symbolize the set of all eigenvalues and spectral singularities of the operator 𝐿 by 𝜎𝑑(𝐿) and 𝜎𝑠𝑠(𝐿), 

respectively. From (9) and (10) and the definition of eigenvalues and spectral singularities, we have [12]  

𝜎𝑑(𝐿) = {𝜆: 𝜆 = 2cosh𝑧, 𝑧 ∈ 𝑃0, 𝐻(𝑧) = 0}, (11) 

 

𝜎𝑠𝑠(𝐿) = {𝜆: 𝜆 = 2cosh𝑧, 𝑧 = 𝜉 + 𝑖𝜏, 𝜉 = 0, 𝜏 ∈ [−
𝜋

2
,
3𝜋

2
] , 𝐻(𝑧) = 0} ∖ {0}. 

(12) 

 

Definition 3.1. The multiplicity of a zero of 𝐻 in 𝑃 is called the multiplicity of the corresponding eigenvalue or 

spectral singularity of the BVP (4), (5).  
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Let us introduce the sets 

𝑅1:= {𝑧: 𝑧 ∈ 𝑃0, 𝐻(𝑧) = 0},  

𝑅2: = {𝑧: 𝑧 = 𝜉 + 𝑖𝜏, 𝜉 = 0, 𝜏 ∈ [−
𝜋

2
,
3𝜋

2
] , 𝐻(𝑧) = 0},  

and 𝑅3, 𝑅4 as the sets of limit points of the sets 𝑅1 and 𝑅2, respectively, and 𝑅5 as the set of zeros in 𝑃0 of the 

function 𝐻(𝑧) with infinite multiplicity. Clearly, the following relations hold 

𝑅3 ⊂ 𝑅2, 𝑅4 ⊂ 𝑅2, 𝑅5 ⊂ 𝑅2, 𝑅1 ∩ 𝑅5 = ∅, (13) 

and the linear Lebesgue measures of 𝑅2, 𝑅3, 𝑅4 and 𝑅5 are zero. Due to the continuity of all derivatives of 𝐻(𝑧) 

up to the imaginary axis, it can be written that  

𝑅3 ⊂ 𝑅5, 𝑅4 ⊂ 𝑅5.  

Obviously, the sets of eigenvalues and spectral singularities can be expressed as 

𝜎𝑑(𝐿) = {𝜆: 𝜆 = 2cosh𝑧, 𝑧 ∈ 𝑅1},  

𝜎𝑠𝑠(𝐿) = {𝜆: 𝜆 = 2cosh𝑧, 𝑧 ∈ 𝑅2}. 

 
 

Theorem 3.1. Assume that (6) holds. It follows that: 

i) 𝜎𝑑(𝐿) is bounded, countable and its limit points can lie only in [−2,2]. 

ii) The set of spectral singularities of 𝐿 is subset of [−2,2], 𝜇(𝜎𝑠𝑠(𝐿)) = 0 where 𝜇 denotes the linear 

Lebesgue measure and 𝜎𝑠𝑠(𝐿) = 𝜎𝑠𝑠(𝐿).  

 

Proof. It is known that 𝐻(𝑧) is analytic in the left-plane and continuous up to the imaginary axis. Moreover, the 

following asymptotic holds 

𝐻(𝑧) = 𝛼0
(𝑣)[1 + 𝑜(1)], 𝑣 = 1,2, . . . , 𝑁, 𝑧 ∈ 𝑃0, 𝑅𝑒𝑧 → −∞. (14) 

From this point, it is easy to prove i) and ii) by using (11), (12) and (14) and uniqueness theorems of analytic 

functions [24]. ∎ 

So far, Jost solution, resolvent operator and the sets of eigenvalues and spectral singularities of the operator 𝐿 

have been discussed under the condition (6). Now, we will investigate the impact of strickter conditions on the 

potential which are known as Naimark’s and Pavlov’s conditions. 

We shall assume 

∑

∞

𝑛=1

𝑒𝜀𝑛
𝛽
(|1 − 𝑎𝑛

(𝑣)
| + |𝑏𝑛

(𝑣)
|) < ∞, 𝜀 > 0, 𝑣 = 1,2, . . . , 𝑁,

1

2
≤ 𝛽 ≤ 1. 

(15) 

 

For 𝛽 = 1, (15) reduces to Naimark’s condition: 

∑

∞

𝑛=1

𝑒𝜀𝑛 (|1 − 𝑎𝑛
(𝑣)
| + |𝑏𝑛

(𝑣)
|) < ∞, 𝜀 > 0, 𝑣 = 1,2, . . . , 𝑁. 

(16) 

 

 

Theorem 3.2. Let (16) is satisfied. Then the operator 𝐿 has a finitely many number of eigenvalues and spectral 

singularities and each of them is of finite multiplicity.  

Proof. Taking into account (8) and (16), the following inequality 

|𝐾𝑛,𝑚
(𝑣)
| ≤ 𝐶exp (

−𝜀

2
(𝑛 +𝑚)), (17) 

is satisfied for all 𝐶 > 0 constant, 𝑛 = 0,1,2, . .. and 𝑚 = 1,2, . ... Using (7), (16) and (17) and after some algebra, 

one writes 

|𝐻(𝑧)| ≤ ∑

∞

𝑚=1

𝑒
−𝑚(

𝜀
4
−𝑅𝑒𝑧)

. (18) 

 (18) implies that 𝐻(𝑧) continues analytically from real axis to the left half-plane 𝑅𝑒𝑧 <
𝜀

4
. In addition to this, 

𝐻(𝑧) is a 2𝜋𝑖 periodic function. Hence, the limit points of its zeros in the region 𝑃 can not be in the interval  

{𝑧 ∈ ℂ: 𝑧 = 𝜉 + 𝑖𝜏, 𝜉 = 0, 𝜏 ∈ [−
𝜋

2
,
3𝜋

2
]}.  
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 As a result of these facts, the finiteness of eigenvalues and spectral singularities of 𝐿 is achieved by Theorem 

3.1. ∎ 

Clearly, (16) guarantees the analytic continuity of 𝐻(𝑧) from the real axis to the left half-plane. Pay regard to the 

condition (15) for 
1

2
≤ 𝛽 < 1, 

∑

∞

𝑛=1

𝑒𝜀𝑛
𝛽
(|1 − 𝑎𝑛

(𝑣)
| + |𝑏𝑛

(𝑣)
|) < ∞, 𝜀 > 0, 𝑣 = 1,2, . . . , 𝑁. (19) 

 

Analicity in the left half-plane and infinite differentiability on the imaginary axis of 𝐻(𝑧) are clear. However, 

under the condition (19), 𝐻(𝑧) does not continue analitically from the real axis to the lower half-plane. This leads 

to requirement of a new technique for the investigation of the finiteness of the eigenvalues and spectral 

singularities of 𝐿. To handle this problem, we will make use of the following lemma. 

Lemma 3.3. ([3]) Assume the 2𝜋 periodic function 𝜉 is anaytic in the open half-plane, all of its derivatives are 

continuous in the closed upper half-plane and 

sup
𝑧∈𝑃

|𝜉(𝑘)(𝑧)| ≤ 𝜂𝑘 , 𝑘 ∈ ℕ ∪ {0}. (20) 

If the set 𝐺 with linear Lebesgue measure zero is the set of all zeros of the function 𝜉 with infinite multiplicity in 

𝑃, and 

∫

𝜔

0

ln𝑡(𝑠)𝑑𝜇(𝐺𝑠) > −∞, 

 

(21) 

where 𝜇(𝐺𝑠) is the Lebesgue measure of the 𝑠-neighborhood of 𝐺, 𝑡(𝑠) = inf
𝑘

𝜂𝑘𝑠
𝑘

𝑘!
, 𝑘 ∈ ℕ ∪ {0}, and 𝜔 ∈ (0,2𝜋) 

is an arbitrary constant, then 𝜉 ≡ 0.  

 

Theorem 3.4.  If (19) holds, then 𝑅5 = ∅.  

Proof. The following inequality for the 𝑘. th derivative of 𝐻(𝑧) can be obtained from (19),  (7) and (8) and after 

some algebra 

|𝐻(𝑘)(𝑧)| ≤ 𝜂𝑘 , 𝑘 ∈ ℕ ∪ {0},  

where 

𝜂𝑘 = 2
𝑘𝐶 ∑

∞

𝑚=1

𝑚𝑘exp(−𝜀𝑚𝛽), (22) 

and 𝐶 > 0 is a constant. As a next step, one obtains the inequality for 𝜂𝑘 using the classical inequalities in the 

literature 

𝜂𝑘 ≤ 2
𝑘𝐶∫

∞

0

𝑥𝑘𝑒−𝜀𝑥
𝛽
𝑑𝑥 ≤ 𝐷𝑑𝑘𝑘! 𝑘

𝑘
1−𝛽
𝛽  

 

 

where 𝐷 and 𝑑 are constants depending 𝐶, 𝜀 and 𝛽. 

Now, we adopt the previous lemma to our problem. Taking into account 𝑡(𝑠) = inf
𝑘

𝜂𝑘𝑠
𝑘

𝑘!
, 𝑘 ∈ ℕ ∪ {0}, 𝜇(𝑅5,𝑠) is 

the Lebesgue measure of the s-neighborhood of 𝑅5 and 𝜂𝑘 is introduced by (22), the following inequality is clear  

∫

𝜔

0

ln𝑡(𝑠)𝑑𝜇(𝑅5,𝑠) > −∞. (23) 

We get  

𝑡(𝑠) ≤ 𝐷exp {−
1 − 𝛽

𝛽
𝑒−1𝑑

−
𝛽
1−𝛽𝑠

−
𝛽
1−𝛽}, (24) 

by (22). (23) and (24) yield, 
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∫

𝜔

0

𝑠
−

𝛽
1−𝛽𝑑𝜇(𝑅5,𝑠) < ∞. (25) 

Because of 
𝛽

1−𝛽
≥ 1,  the inequality (24) is true for arbitrary 𝑠 if and only if 𝜇(𝑅5,𝑠) = 0 or 𝑅5 = ∅.  ∎ 

Theorem 3.5. If (19) holds to be true, then the operator 𝐿 has a finite number of eigenvalues and spectral 

singularities, and each of them is of finite multiplicity. 

 

Proof. We are supposed to prove that 𝐻(𝑧) has a finite number of zeros with finite multiplicities in the region 𝑃. 

From Theorem 3.4 and (13), we have 𝑅3 = 𝑅4 = ∅. Therefore, the accummulation points of the bounded sets 𝑅1 

and 𝑅2 do not exist. Due to the these reasons, 𝐻(𝑧) must have only finite number of zeros in the region 𝑃. Because 

of 𝑅5 = ∅, these zeros must be of finite multiplicity. ∎ 

 

4. Conclusion 

To sum up, there are many beneficial aspects of investigating discrete analogues of Sturm-Liouville type 

problems. While it allows to use of computers in calculations, it is also adaptable to the problems arising from 

some events in nature. For this reasons, this paper contributes  to the literature in many different ways. First, we 

consider the non-selfadjoint operator which has different spectral structure compared to the self-adjoint operators. 

Secondly, we investigate the hyperbolic type spectral parameter and as a result of this case analicity region of the 

Jost solution shifts. Finally, quantitative spectral properties of the problem have been obtained for the Naimark’s 

and Pavlov’s conditions.  
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