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Abstract 

This paper presents a machine learning model using a random forest (RF) algorithm with the recursive feature elimination (RFE) for 

the soil liquefaction prediction. The prediction model is tested on 253 CPT-based field data from different earthquakes. RFE, which is 

one of the feature selection methods, was adopted for eliminating irrelevant features in the mentioned dataset, and then the performance 

of the RFE-RF (i.e., the model determined by the RFE method) and the RF models with all variables were compared in terms of their 

performance matrices. The primary focus of this study is to investigate the effectiveness of the feature selection algorithm approach, 

therefore the raw data that is a benchmark dataset was used to compare the performance of the RFE-RF. The result showed that the RFE 

approach improved the overall accuracy of the liquefaction prediction. 

Keywords: Liquefaction Prediction, Feature Selection, Machine Learning, Recursive Feature Elimination, Random Forest. 

Sıvılaşma Tahmininde Özyinelemeli Özellik Seçmeye Dayalı Faktör 

Seçme Yönteminin Değerlendirilmesi 

Öz 

Bu çalışma, zemin sıvılaşması tahmini için özyinelemeli özellik seçimi (RFE) ile rastgele orman (RF) algoritması kullanan bir makine 

öğrenme modeli sunmaktadır. Tahmin modeli, farklı depremlerden elde edilen 253 CPT tabanlı saha verileri üzeri kullanılarak test 

edilmiştir. Söz konusu veri setindeki ihtiyaç fazlası özelliklerin elimine edilmesi için özellik seçim yöntemlerinden biri olan RFE 

benimsenmiştir. Ardından RFE-RF'nin (yani RFE yöntemiyle belirlenen modelin) ve bütün değişkenlerin kullanıldığı RF modelin 

performansları performans matrisleri açısından incelenmiş ve karşılaştırılmıştır. Bu çalışmanın önceliği, öznitelik seçim algoritması 

yaklaşımının etkinliğini araştırmaktır, bu nedenle RFE-RF'nin performansını karşılaştırmak için bir kıyaslama veri seti olan ham veriler 

kullanılmıştır. Sonuç olarak, RFE yaklaşımının kullanılmasının sıvılaşma tahmin modelinin genel doğruluğunu arttırdığı görülmüştür. 

 

Anahtar Kelimeler: Sıvılaşma Tahmini, Özellik Seçimi, Makine Öğrenme, Özyinelemeli Özellik Seçimi, Rastgele Orman. 

 

 

 

 

 

                                                           
* Corresponding Author: selcukdemir@ibu.edu.tr  

http://dergipark.gov.tr/ejosat
mailto:selcukdemir@ibu.edu.tr
mailto:%20emrehansahin@ibu.edu.tr
mailto:%20emrehansahin@ibu.edu.tr


European Journal of Science and Technology 

 

e-ISSN: 2148-2683  291 

1. Introduction 

It has long been recognized that soil liquefaction-induced 

earthquake hazards have enormously contribute to social and 

economic losses. The liquefaction phenomenon is often described 

in the literature as a transformation of cohesionless soils from 

solid to viscous state due to the generation of excess porewater 

pressures and negligible shear resistance under seismic loads 

(National Academies of Sciences, Engineering, and Medicine, 

2006; Kumar et al., 2021). Liquefaction-related ground failures 

and hazards have been observed in many previous notable 

earthquakes (Niigata 1964, Alaska 1964, Kobe 1995, Kocaeli 

1999, Christchurch 2010-2011). For this reason, the challenge for 

predicting soil liquefaction and its effects has been still studying 

by many engineers and researchers. 

The literature consists of several methods to estimate the soil 

liquefaction potential. Typical methods for the evaluation of 

liquefaction potential at a specific site are laboratory tests and 

field studies (in situ tests). Due to the disadvantages of laboratory 

tests, such as representing actual field conditions and obtain 

undisturbed soil samples, the in-situ tests are much preferred for 

soil liquefaction evaluation. The commonly used liquefaction 

evaluation procedure developed by Seed and Idriss (1971) are 

based on different in situ tests including standard penetration test 

(SPT) (Cetin et al., 2004; Idriss and Boulanger, 2008), cone 

penetration test (CPT) (Robertson and Wride, 1998; Boulanger 

and Idriss, 2014) and shear wave velocity (Vs) (Andrus and 

Stokoe, 2000; Kayen et al., 2013). However, these methods have 

some limitations and require extensive resources.  

In recent years, soft computing methods (e.g., artificial 

intelligence, machine learning) have been successfully applied in 

various geotechnical engineering topics. Most recent literature 

surveys point out that soft computing models based on in situ 

testing data have been increased and considered as an alternative 

approach for liquefaction prediction (Hoang and Bui, 2018). 

Artificial neural networks (ANN), support vector machines 

(SVM), and decision tree-based algorithms such as Random 

Forest (RF) are popular tools for data processing with different 

parameters. For example, researchers have employed the ANN 

model to estimate soil liquefaction (e.g., Erzin and Ecemis, 2015; 

Shahri, 2016). In addition, some researchers have used the SVM 

algorithm to determine prediction models for soil liquefaction 

(Samui et al., 2011; Xue and Yang, 2016). Similarly, Kohestani et 

al. (2015) have utilized an RF algorithm to predict the occurrence 

of soil liquefaction. 

It is often desired to have a model that has the best predictive 

ability. However, the performance of prediction models reduces 

when models include noisy and redundant features. Especially, 

some of the learning models, such as support vector machines and 

neural networks, may have been significantly affected by 

irrelevant features (Kuhn and Johnson, 2019). This performance 

can be improved by removing the superfluous features using 

feature selection (FS) methods (Guyon and Elisseeff, 2003). FS is 

an effective technique in order to be able to decide which features 

are mostly irrelevant and should be eliminated from the original 

feature space. Recursive feature elimination (RFE) is one of the 

examples of the most preferred feature selection algorithms to 

analyze datasets and achieve the best model performance 

(Granitto et al., 2006; Sánchez-Maroño et al., 2007; Gregorutti et 

al., 2017). 

This paper presents a machine learning model using an RF 

algorithm for soil liquefaction prediction. The RFE algorithm was 

applied to define only important and relevant features of the 

dataset. The performance of the RFE-RF and RF models were 

separately investigated in terms of their performance matrices. All 

computations in this paper were handled with the open-source 

software called R (Team R, 2020). 

2. Material and Method 

2.1. Data Used 

The prediction model was constructed by using CPT data 

collected from 253 soil liquefaction cases that occurred in 

different countries (Boulanger and Idriss, 2014). Summary of 

statistical measures of the CPT data is summarized in Table 1. 
This dataset consists of the following ten independent variables, 

namely depth of the soil specimen (d); cone tip resistance (qc); 

sleeve friction ratio (Rf); fine content (FC); depth of ground water 

table (dw); total and effective vertical stress (v and v); 

maximum horizontal acceleration at the ground surface (amax); 

cyclic stress ratio (CSR); and earthquake moment magnitude 

(Mw). 

Table 1. Statistical measures of the CPT data 

Variable Min-Max Mean Median 

d 1.4-11.8 4.45 4.1 

qc 0.94-45 5.9 4.79 

Rf 0.03-2.91 0.76 0.61 

FC 0-85 17.82 11 

dw 0.20-7.20 2.04 1.8 

v 24-210 81.19 74 

v 19-147 57.65 53 

amax 0.09-0.84 0.32 0.28 

CSR 0.07-0.70 0.28 0.25 

Mw 5.9-9 6.98 6.93 

2.2. Random Forest and Recursive Feature 

Elimination 

Random Forest (RF) (Breiman, 2001) is a popular ensemble 

learning algorithm consisting of separately trained binary 

decision trees. The RF algorithm has many advantages as 

compared to other machine learning algorithms. For example, it 

can be used for both classification and regression problems. 

Moreover, RF is user-friendly and requires fewer 

hyperparameters, such as the number of decision trees, the 

number of suitable features for splitting, and the minimum size of 

the maximum depth of each tree. 

Recursive Feature Elimination (RFE) is a feature selection 

algorithm proposed by Guyon et al. (2002) that basically works 

by using all features with a ranking according to their feature 

importance. The process of the RFE algorithm continues 

recursively by removing the least important features until the 

desired number of features remains. After that, the best accuracy 

performance is achieved by removing irrelevant features with 

RFE. 
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2.3. RFE with Cross-Validation (CV) 

k-Fold CV as well as grid search technique were employed to 

find the optimal variables and to get a robust result for 

liquefaction prediction. In each model of RFE with CV, the subset 

of the optimal variables was determined by the highest accuracy. 

In this study, k was set as 10 and the simulation was repeated 3 

times. 

Figure 1 presents the result of the RFE method for achieving 

the best predictive features. It can be seen that accuracies increase 

gradually from 56.4% to a maximum value of 79% as the number 

of elements rises from one to six. Thereafter, the accuracy curve 

becomes flatter, and accuracies change negligibly, which means 

the remaining variables do not affect the accuracy of the model. 

Selected six variables (qc, amax, CSR, FC, v, and v) and their 

feature importance rankings are given in Figure 2. For further 

analysis, the RF model with these six variables (RFE-RF) and RF 

with ten variables were separately investigated for evaluating 

their performances. 

 
Figure 1. The accuracy curve of ten variables based on RFE  

 
Figure 2. Variation of feature importance rankings of the 

selected variables  

2.4. Parameter Optimization 

In the RF algorithm, the number of trees (ntree) and the 

number of suitable features for splitting (mtry) are adjustable 

parameters related to the performance of classification accuracy. 

In this paper, accuracy results were used to find the optimum 

values for ntree and mtry regarding k-Fold CV. Figure 3 and 

Figure 4 show optimization results both for six and ten- featured 

model cases, respectively. According to the Figure 3 and Figure 

4, the accuracy is highest when ntree =200 and mtry =2 for the 

six-featured model and ntree =100 and mtry =2 for the model 

having all ten features. 

 

Figure 3. Parameter optimization for six-featured model  

 

Figure 4. Parameter optimization for ten-featured model 

3. Results 

Different ratio options for splitting training and test data can 

be preferred based on machine learning methods. In the present 

study, training /test data ratio was used in the ratio of 70:30 with 

the aid of the stratified random sampling technique. The basic idea 

of this technique is that it partitions the entire dataset into 

relatively homogeneous groups of samples, in which the training 

and testing datasets of each fold contain roughly the same 

proportion of each class label. For calculating the performance of 

models, Accuracy, Kappa, Precision, Recall, and F1 metrics were 

used. Details of the used matrices are given in Table 2. The 

performance metrics are based on the Confusion Matrix (CM). 

The CM essentially places the resulting predictions into four 

groups; TP: True-Positive, FP: False-Positive, TN: True-

Negative, FN: False-Negative. 

The results of the performance matrices corresponding RFE-

RF and RF models are compared in Figure 5. It is clearly seen that 

from Figure 5, the RFE-RF model outperforms compared to the 

RF model in terms of accuracy, kappa, precision, recall, and F1, 

respectively. The accuracy, kappa, precision, recall, and F1, were 
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obtained as 88.64%, 77.27%, 95.45%, 84.00%, and 89.36%, 

respectively for the RFE-RF model. So, when the RFE-RF model 

was compared to the RF model, results revealed that applying 

RFE increased the accuracy by 6%. Thus, it can be concluded 

from all examined results that applying the feature selection 

method with RFE enhanced the quality of the liquefaction 

prediction. 

Table 2. Performance matrices 

Metrics Range Formula 

Accuracy 0-1.0 
 

 

TN TP

TN FN TP FP



  
 

Kappa -1.0-1.0 
1

Accuracy RA

RA




 

Precision 0-1.0 
TP

TP FP
 

Recall 0-1.0 
TP

TP FN
 

F1 0-1.0 
PrecisionxRecall

2
Precision+Recall

 

RA 
     

2

TN FP TN FN TP FN TP FP

Accuracy

    
 

 

 
Figure 5. Analysis results of prediction models from different 

performance matrices  

4. Conclusions 

The main aim of the study was to predict soil liquefaction 

with a feature selection algorithm. Therefore, the recursive feature 

elimination algorithm was employed to select the most relevant 

features and to enhance the predictive performance of the model. 

According to the results of the study, the variables of Rf, d, dw and 

Mw were found less important parameters among the other CPT 

parameters after applying RFE and the RFE-RF model exhibited 

better performance than the RF model. As a result, this study 

shows that removing redundant parameters improved the 

capability of the liquefaction prediction model. 
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