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1. Introduction

A member of the metallic means family, the golden mean has been used in many ancient cultures as the basis
of proportion to compose music, design sculptures and paintings, or build temples and palaces. It is assumed that
some members of metallic means family, particularly the golden mean and silver mean, are intrinsically related to
the theoretical explanation of behavior in quantum physics. Some relatives of the golden mean have been used by
physicists in their recent research trying to analyze the behavior of nonlinear dynamic systems in the transition from
periodicity to semi-periodicity [29, 30].

Information geometry is a method of exploring the world of information by means of modern geometry. Concept
of information have so far been studied using mostly algebraic, logical, analytical and probabilistic methods. Because
geometry examines the mutual relations between elements such as distance and curvature, it should provide powerful
tools to the information science. Information geometry has appeared from studies of invariant geometric structures
involved in statistical inference. It presents a Riemannian metric together with dually coupled affine connections in
a manifold of probability distributions. These are important structures not only in statistical inference but also in the
broader fields of information science such as machine learning, signal processing, optimization, and even neuroscience
[1].

Amari introduced the concept of statistical manifolds via information geometry (see [1]). Statistical manifolds are
endowed with dual connections an analogue to conjugate connections in affine geometry (see [24]). The fact that dual
connections are not metric, it is not easy to give a good definition of sectional curvature using the canonical Riemannian
geometry stuff. So in [25], B. Opozda introduced a method to define sectional curvature of statistical manifolds. In
the study of differential geometric properties of a submanifold, relationships between the intrinsic and the extrinsic
invariants are very important questions to ask, and a giant number of such relations are discovered in the past decades.
For example, let M be a surface in Euclidean 3-space, we know the Euler inequality: K ≤ |H|2, where H is the mean
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curvature (extrinsic property) and K is the Gaussian curvature (intrinsic property). The equality holds at points where
M is congruent to an open piece of a plane or a sphere (umbilical points). B.-Y Chen [10] obtained the same inequality
for submanifolds of real space forms. Then in [11], B.-Y Chen obtained the Chen-Ricci inequality, which is a sharp
relation between the squared mean curvature and the Ricci curvature of a Riemannian submanifold of a real space
form. For more on Chen inequalities, we refer the reader to see [18, 22, 23, 26].

Recently, statistical manifolds are being studied very actively. In [32], Takano defined a new type statistical man-
ifolds which including almost complex and almost contact structure. In 2015, A.D. Vı̂lcu and G.E. Vı̂lcu [34] inves-
tigated on statistical manifolds with quaternionic settings and suggested a few obvious problems. While searching for
answers to one of these obvious problems, M. Aquib [3] found some of the curvature properties of submanifolds and
a couple of inequalities for totally real statistical submanifolds of quaternionic Kaehler-like statistical space forms. A
recent time, B.-Y Chen et al. [12] obtained a Chen first inequality for statistical submanifolds in Hessian manifolds of
constant Hessian curvature. Following the same paper, H. Aytimur et al. [7] derived the same inequalities for statistical
submanifolds of Kaehler-like statistical manifolds. Very recently, in 2020, C. W. Lee and J. W. Lee obtained inequali-
ties on Sasakian statistical manifolds in terms of casorati curvatures. For more on statistical submanifolds, we refer the
reader to see [2–7, 9, 12, 21, 28, 32]. So far no study has been done on statistical concepts for metallic structures.

Motivated by these papers, we introduced metallic-like statistical manifolds which generalized version of golden-
like statistical manifolds. The structure of the paper is as follows. In the second section, we revisit the definitions and
other basic notions. In the third section, we define metallic-like statistical manifolds and construct certain examples of
such manifolds. In the fourth section, we derive our main inequalities. We also discuss the equality case.

2. Preliminaries

A tensor field ϑ of type (1, 1) is called a polynomial structure if it satisfies the following equation on m- dimensional
Riemannian manifold (M, g) with b1, . . . , bn real numbers

Q(X) := Xn + bnXn−1 + ... + b2X + b1I = 0,

where I is the identity transformation (for instance see [13, 15]). We notice that:

• if Q(ϑ) = ϑ2 + I, then ϑ is an almost complex structure.
• if Q(ϑ) = ϑ2 − I, then ϑ is an almost product structure.
• if Q(ϑ) = ϑ2 − pϑ − qI, then ϑ is an metallic structure,

where p and q are two integers [14, 16, 19]. The Riemannian metric g is called ϑ− compatible if

g(ϑX,Y) = g(X, ϑY), (2.1)

for any X,Y ∈ Γ(T M). Let g be ϑ− compatible and ϑ be metallic structure on Riemannian manifold M. Then (M, g) is
called a metallic Riemannian manifold. Using the equation (2.1), we have

g(ϑX, ϑY) = g(ϑ2X,Y) = p g(X, ϑY) + q g(X,Y).

It is to note that by putting p = q = 1 in above equations, a metallic structure reduces to a Golden structure [31].
Members of the metallic family are classified as follows:

• the golden structure ϑ = 1+
√

5
2 for p = q = 1, determined by the ratio of two consecutive classical Fibonacci

numbers;
• the silver structure κ2,1 = 1 +

√
2 if p = 2 and q = 1, determined by the ratio of two consecutive Pell numbers;

• the bronze structure κ3,1 = 3+
√

13
2 with p = 3 and q = 1;

• the subtle structure κ4,1 = 2 +
√

5 if p = 4 and q = 1;
• the copper structure κ1,2 = 2 with p = 1 and q = 2;
• the nickel structure κ1,3 = 1+

√
13

2 if p = 1 and q = 3 and so on [16].

Definition 2.1. (i) Let ϑ be a metallic structure on M and let ∇ be a linear connection on M. Then ∇ is called a
ϑ-connection if ∇ϑ = 0, i.e. ϑ is covariantly constant with respect to ∇.

(ii) The metallic Riemannian manifold (M, g, ϑ) is called a locally metallic Riemannian manifold if the Levi-Civita
connection ∇ of g is a ϑ-connection (see [8]).
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Proposition 2.2. Let Mp and Mq be real space forms with constant sectional curvatures c1 and c2, respectively.
Similar to semi-Riemannian product space form (see [33]), We can easily obtain the Riemannian curvature tensor R of
a metallic product space form (M = Mp(cp) × Mq(cq), g, ϑ) as the following:

R(X,Y)Z =
1
4

(c1 + c2)
[
g(Y,Z)X − g(X,Z)Y +

4
(2κp,q − p)2 {g(ϑY,Z)ϑX − g(ϑX,Z)ϑY}

+
p2

(2κp,q − p)2 {g(Y,Z)X − g(X,Z)Y} +
2p

(2κp,q − p)2 {g(ϑX,Z)Y + g(X,Z)ϑY

− g(ϑY,Z)X − g(Y,Z)ϑX}
]
±

1
2

(c1 − c2)
[ 1
(2κp,q − p)

{g(Y,Z)ϑX − g(X,Z)ϑY}

+
1

(2κp,q − p)
{g(ϑY,Z)X − g(ϑX,Z)Y} +

p
2κp,q − p

{g(X,Z)Y − g(Y,Z)X}
]
.

One can easily obtain the curvature tensor R∗ for dual connection just by replacing ϑ by ϑ∗.

Let Mn be statistical submanifold of (Nm, g, ϑ). The Gauss and Weingarten formulae are

∇XY = ∇XY + h(X,Y), ∇Xξ = −AξX + ∇⊥Xξ,

∇∗XY = ∇∗XY + h∗(X,Y), ∇∗Xξ = −A∗ξX + ∇∗⊥X ξ,

for any X,Y ∈ T M and ξ ∈ T⊥M, respectively. Furthermore, we have the following equations

Xg(Y,Z) = g(∇XY,Z) + g(Y,∇∗XZ),
g(h(X,Y), ξ) = g(A∗ξX,Y), g(h∗(X,Y), ξ) = g(AξX,Y),

Xg(ξ, η) = g(∇⊥Xξ, η) + g(ξ,∇∗⊥X η),

for any η ∈ T⊥M. The mean curvature vector fields for orthonormal tangent frame {e1, e2, . . . , en} and normal frame
{en+1, . . . , em}, respectively, are defined as

H =
1
n

n∑
i=1

h(ei, ei) =
1
n

m∑
γ=n+1

 n∑
i=1

hγii

 ξγ, hγi j = g(h(ei, e j), eγ)

and

H∗ =
1
n

n∑
i=1

h∗(ei, ei) =
1
n

m∑
γ=n+1

 n∑
i=1

h∗γii

 ξγ, h∗γi j = g(h∗(ei, e j), eγ),

for 1 ≤ i, j ≤ n and n + 1 ≤ γ ≤ m. Moreover, we have 2h0 = h + h∗ and 2H0 = H + H∗, where the second fundamental
form h0 and the mean curvature H0 are calculated with respect to Levi-Civita connection ∇0 on M.

The squared mean curvatures are defined as

‖H‖2 =
1
n2

m∑
γ=n+1

 n∑
i=1

hγii

2

, ‖H∗‖2 =
1
n2

m∑
γ=n+1

 n∑
i=1

h∗γii

2

.

If we suppose thatW is a d-dimensional subspace of T M, d ≥ 2, and {e1, e2, . . . , ed} is an orthonormal basis ofW.
Then the scalar curvature of the d-plane section is given as

τ(W) =
∑

1≤<u<v≤d

K(eu ∧ ev).

A point x ∈ M is called as quasi-umbilical point, if at x there exist m−n mutually orthogonal unit normal vectors ei,
i ∈ {n + 1, . . . ,m} in a way the shape operators with respect to all vectors ei have an eigenvalue with multiplicity n − 1
and for each ei the distinguished eigen vector is the same.

Now, we state the following fundamental results on statistical manifolds.

Proposition 2.3. [6] Let M be statistical submanifold of (N, g, ϑ). Let R and R∗ be the Riemannian curvature tensors
on N for ∇ and ∇∗, respectively. Then we have the following.

g(R∗(X,Y)Z,W) = g(R(X,Y)Z,W) + g(h(X,Z), h∗(Y,W)) − g(h∗(X,W), h(Y,Z)),

g(R(X,Y)Z,W) = g(R∗(X,Y)Z,W) + g(h∗(X,Z), h(Y,W)) − g(h(X,W), h∗(Y,Z)),
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g(R⊥(X,Y)ξ, η) = g(R(X,Y)ξ, η) + g([A∗ξ, Aη]X,Y),

g(R∗⊥(X,Y)ξ, η) = g(R∗(X,Y)ξ, η) + g([Aξ, A∗η]X,Y),

where [Aξ, A∗η] = AξA∗η − A∗ηAξ and [A∗ξ, Aη] = A∗ξAη − AηA∗ξ, for X,Y,Z,W ∈ T M and ξ, η ∈ T⊥M.

Now, we state two important lemma’s which we use to prove the main results in the upcoming sections.

Lemma 2.4. [12] Let n ≥ 3 be an integer and b1, b2, . . . , an are n real numbers. Then, we have
n∑

1≤i< j≤n

bib j − b1b2 ≤
n − 2

2(n − 1)

( n∑
i=1

bi

)2
.

Moreover, the equality holds if and only if b1 + b2 = b3 = . . . = bn.

Lemma 2.5. [22] Let n ≥ 4 be an integer and b1, b2, . . . , bn are n real numbers. Then, we have
n∑

1≤i< j≤n

bib j − b1b2 − b3b4 ≤
n − 3

2(n − 2)

( n∑
i=1

bi

)2
.

Moreover, the equality holds if and only if b1 + b2 = b3 + b4 = b5 = · · · = bn.

3. Metallic-like Statistical Manifolds

Takano introduced generalized almost complex and almost contact statistical manifolds, calling them Kahler-like
statistical manifold and Sasaki-like statistical [32]. Inspired by this study, We will describe metallic-like statistical
manifolds, which are a generalized version of metallic manifolds.

Definition 3.1. Let (M, g, ϑ) be a locally metallic semi-Riemannian manifold endowed with a tensor field ϑ∗ of type
(1,1) satisfying

g(ϑX,Y) = g(X, ϑ∗Y), (3.1)
for vector fields X and Y . In view of (3.1), we easily derive

(ϑ∗)2X = pϑ∗X + qX, (3.2)
g(ϑX, ϑ∗Y) = p g(ϑX,Y) + q g(X,Y). (3.3)

Then (M, g, ϑ) is called metallic-like statistical manifold.

According to (3.2) and (3.3), the tensor fields ϑ + ϑ∗ and ϑ − ϑ∗ are symmetric and skew symmetric with respect to
g, respectively. The equations (3.1), (3.2) and (3.3) imply the following proposition.

Proposition 3.2. (M, g, ϑ) is a metallic-like statistical manifold if and only if so is (M, g, ϑ∗).

We remark that if we choose ϑ = ϑ∗ in a metallic-like statistical manifold, then we have a metallic semi-Riemannian
manifold.

We first present some examples for metallic Riemannian manifolds.

Example 3.3. Consider the Euclidean 6−space R6 with standard coordinates (x1, x2, x3, x4, x5, x6). Let ϑ be an (1, 1)
tensor field on R6 defined by

ϑ(x1, x2, x3, x4, x5, x6) = (κx1, (p − κ)x2, κx3, (p − κ)x4, κx5, (p − κ)x6),

for any vector field (x1, x2, x3, x4, x5, x6) ∈ R6, where κ =
p+
√

p2+4q
2 and p − κ =

p−
√

p2+4q
2 are the metallic numbers.

Then we obtain ϑ2 = pϑ + qI. Moreover, we can easily see that standard metric 〈 , 〉 on R6 is ϑ compatible. Hence,
(R6, 〈 , 〉, ϑ) is a metallic Riemannian manifold.

Example 3.4. (Clifford algebras). Let Cγ(n) be the real Clifford algebra of the positive definite form
∑m

k=1

(
µk

)2
of

Rm [17]. According to the Clifford product, the standard base of Rm satisfies the following relations:

E2
k = 1 , k = l

EkEl + ElEk = 0 , k , l.



Some Ineq. for Stat. Sub. in Metallic-like Stat. Man. 352

Thus, using ϑi = 1
2

(
p +

√
p2 + 4qEi

)
and above equation, we derive a new representation of the Clifford algebra:{
ϑk, metallic structure , k = l
ϑkϑl + ϑlϑk = p (ϑk + ϑl) −

p2

2 , k , l,

where E1 and E2, orthonormal basis vectors of R2
2, are as follows [27]:

1 = I2 , E1 '

(
1 0
0 −1

)
, E2 '

(
0 1
1 0

)
and thus we obtain

(i) ϑ1 =
1
2

(
p +

√
p2 + 4qE1

)
=

 p+
√

p2+4q
2 0

0 p−
√

p2+4q
2


=

(
σp,q 0

0 p − σp,q

)
(ii) ϑ2 =

1
2

(
p +

√
p2 + 4qE2

)
=

1
2

(
p

√
p2 + 4q√

p2 + 4q p

)
.

Next, we construct some examples for metallic-like statistical manifolds.

Example 3.5. Consider the semi-Euclidean space R3
1 with standard coordinates (x1, x2, x3) and the semi-Riemannian

metric g with the signature (−,+,+). Let ϑ be an (1, 1) tensor field on R3
1 defined by

ϑ(x1, x2, x3) =
1
2

(px1 + (2κ − p)x2, px2 + (2κ − p)x1, (p − κ)x3),

for any vector field (x1, x2, x3) ∈ R3
1, where κ =

p+
√

p2+4q
2 are the members of the metallic means family. Then we

obtain ϑ2 = pϑ + qI. Also we can easily see that structure is compatible with the metric. This implies that ϑ is a
metallic structure on R3

1.
Now, we define an (1, 1) tensor field ϑ∗ on R3

1 by

ϑ∗(x1, x2, x3) =
1
2

(px1 + (p − 2κ)x2, px2 + (p − 2κ)x1, (p − κ)x3).

Thus, we have ϑ∗2 = pϑ∗ + qI. Moreover, we have the equation (3.1). Hence, (R3
1, g, ϑ) is a metallic-like statistical

manifold.

Now, we give a generalized example of the above example.

Example 3.6. Let R2n+m
n be a (2n + m)- dimensional affine space with the coordinate system

(x1, . . . , xn, y1, . . . , yn, z1, . . . , zm).

If we define a semi-Riemannian metric g and the tensor field ϑ as follows:

g =

 −κδi j 0 0
0 κδi j 0
0 0 (p − κ)δi j

 , ϑ =
1
2

 pδi j (2κ − p)δi j 0
(2κ − p)δi j pδi j 0

0 0 κδi j

 ,
where κ =

p+
√

p2+4q
2 are the members of the metallic means family. Then ϑ is metallic structure on R2n+m

n . Morever, if
the conjugate tensor field ϑ∗ is defined as

ϑ∗ =
1
2

 pδi j (p − 2κ)δi j 0
(p − 2κ)δi j pδi j 0

0 0 κδi j

 .
Then, we can easily see that (R2n+m

n , g, ϑ) and (R2n+m
n , g, ϑ∗) are metallic-like statistical manifolds. Also, this verifies

the Proposition 3.2.



O. Bahadır, Turk. J. Math. Comput. Sci., 13(2)(2021), 348–358 353

4. Main Inequalities

Let {e1, e2, . . . , en} and {en+1, . . . , em} be the orthonormal frames of T M and T⊥M, respectively. Given a point p ∈ M
and a plane section π ⊂ TpM, we fix Ψ(π) = g(ϑX, X)g(ϑY,Y). Also, we set Θ(π) = g2(ϑX,Y), where X,Y are any
orthonormal vectors spanning π (for instance see [20]).

For any tangent vector field X ∈ Γ(T M), we can write ϑX = TX + F X, where TX and F X are the tangential and
normal components of ϑX, respectively. If T = 0, the submanifold is said to be an anti-invariant submanifold and if
F = 0, the submanifold is said to be an invariant submanifold. The squared norm of T at p ∈ M is defined as

‖T ‖2 =

n∑
i, j=1

g2(ϑei, e j).

The scalar curvature corresponding to the sectional K-curvature is

τ =
1
2

∑
1≤i< j≤n

[
g(R(ei, e j)e j, ei) + g(R∗(ei, e j)e j, ei) − 2g(R0(ei, e j)e j, ei)

]
.

Thus we have

R(ei, e j, e j, ei) =
1
4

(c1 + c2)
[
g(e j, e j)g(ei, ei) − g(ei, e j)g(e j, ei)

+
4

(2κp,q − p)2 {g(ϑe j, e j)g(ϑei, ei) − g(ϑei, e j)g(ϑe j, ei)}

+
p2

(2κp,q − p)2 {g(e j, e j)g(ei, ei) − g(ei, e j)g(e j, ei)} +
2p

(2κp,q − p)2 {g(ϑei, e j)g(e j, ei)

+ g(ei, e j)g(ϑe j, ei) − g(ϑe j, e j)g(ei, ei) − g(e j, e j)g(ϑei, ei)}
]

±
1
2

(c1 − c2)
[ 1
(2κp,q − p)

{g(e j, e j)g(ϑei, ei) − g(ei, e j)g(ϑe j, ei)}

+
1

(2κp,q − p)
{g(ϑe j, e j)g(ei, ei) − g(ϑei, e j)g(e j, ei)} +

p
2κp,q − p

{g(ei, e j)g(e j, ei)

− g(e j, e j)g(ei, ei)}
]

+ g(h∗(ei, ei), h(e j, e j)) − g(h(e j, ei), h∗(e j, ei)).

The curvature tensor with respect to dual connection, i.e., R∗(ei, e j, e j, ei) can be obtained from the above equation just
by replacing ϑ by ϑ∗. Using (3.1) and Gauss equation, after doing some straightforward computations, we deduce

τ =
1
4

(c1 + c2)(n2 − n)
p2 + 4q

{
1 + p2 +

4
n2 − n

{tr2(ϑ) − ‖T ‖2 −
4p
n

tr(ϑ)}

± 2
√

p2 + 4q
(
2 tr(ϑ) − np

)}
− τ0 +

1
2

m∑
γ=n+1

∑
1≤i< j≤n

[
h∗γii h∗γj j + hγiih

∗γ
j j − 2h∗γi j hγi j

]
,

which can be written as

τ =
1
4

(c1 + c2)(n2 − n)
p2 + 4q

{
1 + p2 +

4
n2 − n

{tr2(ϑ) − ‖T ‖2 −
4p
n

tr(ϑ)}

± 2
√

p2 + 4q
(
2 tr(ϑ) − np

)}
− τ0 + 2

m∑
γ=n+1

∑
1≤i< j≤n

[h0γ
ii h0γ

j j − (h0γ
i j )2]

−
1
2

m∑
γ=n+1

∑
1≤i< j≤n

[{hγiih
γ
j j + (hγi j)

2} + {h∗γii h∗γj j − (h∗γi j )2}].
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By using Gauss equation for the Levi-Civita connection, we have

τ =
1
4

(c1 + c2)(n2 − n)
p2 + 4q

{
1 + p2 +

4
n2 − n

{tr2(ϑ) − ‖T ‖2 −
4p
n

tr(ϑ)} ± 2
√

p2 + 4q
(
2 tr(ϑ)

− np
)}
− 2τ̂0 −

1
2

m∑
γ=n+1

∑
1≤i< j≤n

[
{hγiih

∗γ
j j − (hγi j)

2} + {h∗γii h∗γj j − (h∗γi j )2}
]
, (4.1)

where τ̂0 is the scalar curvature according to main statistical manifold. Now, the sectional K-curvature K(π) of the
plane section π is

K(π) =
1
2

[
g(R(e1, e2)e2), e1) + g(R∗(e1, e2)e2), e1) − 2g(R0(e1, e2)e2), e1)

]
.

Thus we have

R(e1, e2, e2, e1) =
1
4

(c1 + c2)
[
g(e2, e2)g(e1, e1) − g(e1, e2)g(e2, e1)

+
4

(2κp,q − p)2 {g(ϑe2, e2)g(ϑe1, e1) − g(ϑe1, e2)g(ϑe2, e1)}

+
p2

(2κp,q − p)2 {g(e2, e2)g(e1, e1) − g(e1, e2)g(e2, e1)} +
2p

(2κp,q − p)2 {g(ϑe1, e2)g(e2, e1)

+ g(e1, e2)g(ϑe2, e1) − g(ϑe2, e2)g(e1, e1) − g(e2, e2)g(ϑe1, e1)}
]

±
1
2

(c1 − c2)
[ 1
(2κp,q − p)

{g(e2, e2)g(ϑe1, e1) − g(e1, e2)g(ϑe2, e1)}

+
1

(2κp,q − p)
{g(ϑe2, e2)g(e1, e1) − g(ϑe1, e2)g(e2, e1)} +

p
2κp,q − p

{g(e1, e2)g(e2, e1)

− g(e2, e2)g(e1, e1)}
]

+ g(h∗(e1, e1), h(e2, e2)) − g(h(e2, e1), h∗(e2, e1)).

R∗(e1, e2, e2, e1) can be obtained from the above equation just by replacing ϑ by ϑ∗.
Using (3.1) and Gauss equation, after doing some straightforward computations, we deduce

K(π) =
1
4

(c1 + c2) +
c1 + c2

4(p2 + 4q)
[4Ψ(π) − 4Θ2(π) + p2 − 2p tr(ϑ|π )]

±
1
2

c1 − c2√
p2 + 4q

[tr(ϑ|π ) − p] − K0(π) +
1
2

m∑
γ=n+1

[
hγ11h∗γ22 + h∗γ11hγ22 − 2h∗γ12hγ12

]
.

Using h + h∗ = 2h0, we get

K(π) =
1
4

(c1 + c2) +
c1 + c2

4(p2 + 4q)
[4Ψ(π) − 4Θ2(π) + p2 − 2p tr(ϑ|π )]

±
1
2

c1 − c2√
p2 + 4q

[tr(ϑ|π ) − p] − K0(π) + 2
m∑

γ=n+1

[
h0γ

11h0γ
22 − (h0γ

12)2
]

−
1
2

m∑
γ=n+1

{[
hγ11hγ22 − (hγ12)2

]
+

[
h∗γ11h∗γ22 − (h∗γ12)2

]}
.
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In view of Gauss equation with respect to Levi-Civita connection, we have

K(π) = K0(π) +
1
4

(c1 + c2) +
c1 + c2

4(p2 + 4q)
[4Ψ(π) − 4Θ2(π) + p2 − 2p tr(ϑ|π )]

±
1
2

c1 − c2√
p2 + 4q

[tr(ϑ|π ) − p] − 2K̂0(π) −
1
2

m∑
γ=n+1

[
hγ11hγ22 − (hγ12)2

]
−

1
2

m∑
γ=n+1

[
h∗γ11h∗γ22 − (h∗γ12)2

]
, (4.2)

where K̂0 is the sectional curvature according to main statistical manifold. From (4.1) and (4.2), we have

(τ − K(π)) − (τ0 − k0(π)) =
1
4

(c1 + c2)(n2 − n)
p2 + 4q

{
1 + p2 +

4
n2 − n

{tr2(ϑ) − ‖T ‖2 −
4p
n

tr(ϑ)}

± 2
√

p2 + 4q
(
2 tr(ϑ) − np

)}
−

1
4

(c1 + c2) −
c1 + c2

4(p2 + 4q)
[4Ψ(π) − 4Θ2(π) + p2 − 2p tr(ϑ|π )]

±
1
2

c2 − c1√
p2 + 4q

[tr(ϑ|π ) − p] −
1
2

m∑
γ=n+1

[
hγiih

γ
j j − (hγi j)

2
]
−

1
2

m∑
γ=n+1

[
h∗γii h∗γj j − (h∗γi j )2

]

+
1
2

m∑
γ=n+1

3∑
α=1

{[
hγ11hγ22 − (hγ12)2

]
+

[
h∗γ11h∗γ22 − (h∗γ12)2

]}
+ 2K̂0(π) − 2τ̂0.

Using lemma 2.4, we can get the above equation in simplied form as

(τ − K(π)) − (τ0 − k0(π)) ≥
1
4

(c1 + c2)(n2 − n)
p2 + 4q

{
1 + p2 +

4
n2 − n

{tr2(ϑ) − ‖T ‖2 −
4p
n

tr(ϑ)}

± 2
√

p2 + 4q
(
2 tr(ϑ) − np

)}
−

1
4

(c1 + c2) −
c1 + c2

4(p2 + 4q)
[4Ψ(π) − 4Θ2(π) + p2 − 2p tr(ϑ|π )]

±
1
2

c2 − c1√
p2 + 4q

[tr(ϑ|π ) − p] −
n2(n − 2)
4(n − 1)

[
‖H‖2 + ‖H∗‖2

]
+ 2K̂0(π) − 2τ̂0.

Summarizing, we can state the following:

Theorem 4.1. Let N be a metallic-like statistical manifold of dimension m and M be its statistical submanifold of
dimension n. Then, we have the following

(τ − K(π)) − (τ0 − K0(π)) ≥
1
4

(c1 + c2)(n2 − n)
p2 + 4q

{
1 + p2 +

4
n2 − n

{tr2(ϑ) − ‖T ‖2 −
4p
n

tr(ϑ)}

± 2
√

p2 + 4q
(
2 tr(ϑ) − np

)}
−

1
4

(c1 + c2) −
c1 + c2

4(p2 + 4q)
[4Ψ(π) − 4Θ2(π) + p2 − 2p tr(ϑ|π )]

±
1
2

c2 − c1√
p2 + 4q

[tr(ϑ|π ) − p] −
n2(n − 2)
4(n − 1)

[
‖H‖2 + ‖H∗‖2

]
+ 2K̂0(π) − 2τ̂0.

Moreover, the equalities holds for any γ ∈ {n + 1, . . . ,m} if and only if

hγ11 + hγ22 = hγ33 = · · · = hγnn,

h∗γ11 + h∗γ22 = h∗γ33 = · · · = h∗γnn,

hγi j = h∗γi j = 0, i , j, (i, j) , (1, 2), (2, 1), 1 ≤ i < j ≤ n.
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Corollary 4.2. Let Mn be a totally real statistical submanifold of a metallic-like statistical manifold N of dimension
m. Then, we have the following

(τ − K(π)) − (τ0 − K0(π)) ≥
1
4

(c1 + c2)(n2 − n)
p2 + 4q

{
1 + p2 ∓ 2 np

√
p2 + 4q

}
−

1
4

(c1 + c2) −
c1 + c2

4(p2 + 4q)
p2 ±

1
2

c1 − c2√
p2 + 4q

p −
n2(n − 2)
4(n − 1)

[
‖H‖2 + ‖H∗‖2

]
+ 2K̂0(π) − 2τ̂0.

Moreover, the equalities holds for any γ ∈ {n + 1, . . . ,m} if and only if.

hγ11 + hγ22 = hγ33 = · · · = hγnn,

h∗γ11 + h∗γ22 = h∗γ33 = · · · = h∗γnn,

hγi j = h∗γi j = 0, i , j, (i, j) , (1, 2), (2, 1), 1 ≤ i < j ≤ n.

Corollary 4.3. Let Mn be a totally real statistical submanifold of of a metallic-like statistical manifold N of dimension
m. If there exists a point p ∈ M and π ⊂ TpM a plane such that

τ − K(π) < τ0 − K0(π) +
1
4

(c1 + c2)(n2 − n)
p2 + 4q

{
1 + p2 ∓ 2 np

√
p2 + 4q

}
−

1
4

(c1 + c2)

−
c1 + c2

4(p2 + 4q)
p2 ±

1
2

c1 − c2√
p2 + 4q

p + 2(K̂0(π) − τ̂0).

Then M is non-minimal, i.e., H , 0 or H∗ , 0.

4.1. Chen’s δ(2, 2) Inequality. Let p ∈ M, π1, π2 ⊂ TpM be mutually orthogonal planes spanned by {e1, e2} and
{e3, e4}, respectively. Also, let {e1, e2, · · · , en} and {en+1, . . . , em} be the orthonormal basis of TpM and T⊥p M, respec-
tively.

By doing simple calculations for K(π1) and K(π2) and using lemma 2.5, we can obtain the following inequality,
which represents the Chen δ(2, 2) inequality for statistical submanifold in a metallic-like statistical manifold.

Theorem 4.4. Let Mn be a statistical submanifold in a metallic-like statistical manifold N of dimension n, then we
have

(τ − K(π1) − K(π2) − (τ0 − K0(π1) − K0(π2)) ≥
1
4

(c1 + c2)(n2 − n)
p2 + 4q

{
1 + p2 +

4
n2 − n

{tr2(ϑ)

− ‖T ‖2 −
4p
n

tr(ϑ)} ± 2
√

p2 + 4q
(
2 tr(ϑ) − np

)}
−

1
2

(c1 + c2) −
c1 + c2

4(p2 + 4q)
[4(Ψ(π1) + Ψ(π2))

− 4(Θ2(π1) + Θ2(π2)) + p2 − 2p(tr(ϑ|π1
) + tr(ϑ|π2

))] ±
1
2

c2 − c1√
p2 + 4q

[tr(ϑ|π1
) + tr(ϑ|π2

) − 2p]

−
n2(n − 2)
4(n − 1)

[
‖H‖2 + ‖H∗‖2

]
− 2[τ̂0 − K̂0(π1) − K̂0(π2)].

Moreover, the equalities holds for any γ ∈ {n + 1, . . . ,m} if and only if

hγ11 + hγ22 = hγ33 + hγ44 = hγ55 · · · = hγnn,

h∗γ11 + h∗γ22 = h∗γ33 + h∗γ44 = h∗γ55 · · · = h∗γnn,

hγi j = h∗γi j = 0, i , j, (i, j) , (1, 2), (2, 1), (3, 4), (4, 3), 1 ≤ i < j ≤ n.
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Corollary 4.5. Let Mn be a totally real statistical submanifold in a metallic-like statistical manifold N of dimension n,
then we have

(τ − K(π1) − K(π2) − (τ0 − K0(π1) − K0(π2)) ≥
1
4

(c1 + c2)(n2 − n)
p2 + 4q

{
1 + p2 ∓ 2 np

√
p2 + 4q

}
−

1
2

(c1 + c2) −
c1 + c2

4(p2 + 4q)
[p2] ±

1
2

c1 − c2√
p2 + 4q

[2p] −
n2(n − 2)
4(n − 1)

[
‖H‖2 + ‖H∗‖2

]
− 2[τ̂0 − K̂0(π1) − K̂0(π2)].

Moreover, the equalities holds for any γ ∈ {n + 1, . . . ,m} if and only if

hγ11 + hγ22 = hγ33 + hγ44 = hγ55 · · · = hγnn,

h∗γ11 + h∗γ22 = h∗γ33 + h∗γ44 = h∗γ55 · · · = h∗γnn,

hγi j = h∗γi j = 0, i , j, (i, j) , (1, 2), (2, 1), (3, 4), (4, 3), 1 ≤ i < j ≤ n.

Corollary 4.6. Let Mn be a totally real statistical submanifold of a metallic-like statistical manifold N of dimension
m. If there exists a point p ∈ M and π1, π2 ⊂ TpM mutually orthogonal planes such that

τ − K(π1) − K(π2) < τ0 − K0(π1) − K0(π2) +
1
4

(c1 + c2)(n2 − n)
p2 + 4q

{
1 + p2 ∓ 2 np

√
p2 + 4q

}
−

1
2

(c1 + c2) −
c1 + c2

4(p2 + 4q)
[p2] ±

1
2

c1 − c2√
p2 + 4q

[2p] − 2[τ̂0 − K̂0(π1) − K̂0(π2)].

Then M is non-minimal, i.e., H , 0 or H∗ , 0.

Remark 4.7. Considering the family of metallic structures for all results obtained in the study, similar relationships
can also be obtained for golden, silver, bronze, subtle, copper and nickel structures, as well.
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