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• This paper examines the relationship between selection stability and classification accuracy. 

• Experiments were conducted using five filter and two wrapper methods and twelve stability metrics. 

• The correlation between selection stability and classification accuracy was measured using Pearson’s r. 
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Abstract 

The performance of inductive learners can be negatively affected by high-dimensional datasets. 

To address this issue, feature selection methods are used. Selecting relevant features and reducing 

data dimensions is essential for having accurate machine learning models. Stability is an 

important criterion in feature selection. Stable feature selection algorithms maintain their feature 

preferences even when small variations exist in the training set. Studies have emphasized the 

importance of stable feature selection, particularly in cases where the number of samples is small 

and the dimensionality is high. In this study, we evaluated the relationship between stability 

measures, as well as, feature selection stability and classification accuracy, using the Pearson’s 

Correlation Coefficient (also known as Pearson’s Product-Moment Correlation Coefficient or 

simply Pearson’s r). We conducted an extensive series of experiments using five filter and two 

wrapper feature selection methods, three classifiers for subset and classification performance 

evaluation, and eight real-world datasets taken from two different data repositories. We measured 

the stability of feature selection methods using a total of twelve stability metrics. Based on the 

results of correlation analyses, we have found that there is a lack of substantial evidence 

supporting a linear relationship between feature selection stability and classification accuracy. 

However, a strong positive correlation has been observed among several stability metrics. 
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1. INTRODUCTION 

 

Nowadays, it is quite common to encounter datasets with high dimensions. However, machine learning 

algorithms are not specifically designed to handle such datasets, and experience a decline in performance 

when confronted with them. To address this issue, dimensionality reduction techniques have been proposed. 

Feature selection is one of these techniques. The main objective of feature selection is to select relevant 

features without losing any useful information. Eliminating irrelevant1 and redundant2 features increases 

the accuracy and generalization capacity of machine learning algorithms, reduces computational costs, and 

helps to get simple models that are easy to interpret. All these reasons highlight the importance of feature 

selection and make it an integral part of the machine-learning process. Nonetheless, searching for relevant 

features requires time and adds an extra layer to the modelling task. 

 

Stability is an important issue in feature selection which refers to the robustness of the selection algorithm 

against minor changes, i.e., perturbations, in training data. The feature preferences of a stable feature 

 
1 The term refers to non-informative features. 
2 The term refers to features providing similar or duplicate information as other features in the dataset. 
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selection algorithm should not be affected by changes made in the training set. Algorithms that exhibit 

fluctuations in feature preferences, i.e., unstable algorithms, can misguide users and erode their confidence 

in the algorithm. Therefore, stability is a token of the fitness of the feature selection algorithms. Stability 

metrics are used to quantify the stability of the selection algorithms. Studies on feature selection stability 

have mostly focused on proposing selection algorithms that are resistant to data perturbations [1], 

determining the sources of instability [2], and quantifying the stability [3]. 

 

The major objectives of this study were to test the relationship between stability metrics and feature 

selection stability and classification performance. To this end, we have conducted a literature review to 

identify the publications relevant to this research topic. Wang et al. [4] conducted experiments to evaluate 

the stability and model performance of various feature selection techniques in different scenarios. The study 

involved nine software metric datasets, seven filter-based feature selection techniques, four levels of dataset 

perturbation, and nine different numbers of selected features. Drotár and Smékal [5] assessed five 

commonly used feature selection techniques from two perspectives: stability and its impact on classification 

performance. The authors utilized a stability measure based on Hamming Distance and Matthews 

Correlation Coefficient (MCC) to assess the quality of the classification models. Han and Yu [6] presented 

a theoretical framework that explores the relationship between the stability and accuracy of feature selection 

using a formal bias-variance decomposition of feature selection error. Domingos [7], and Munson and 

Caruana [8] provided a comprehensive and structured analysis of the bias-variance trade-off in their studies. 

Turney [9] discussed the relationships between selection stability, accuracy, and bias. Alelyani et al. [10] 

conducted comprehensive experiments to demonstrate the relationship between data characteristics and the 

stability of the selection algorithms. Gulgezen et al. [11] introduced an entropy-based nonlinear correlation 

(Symmetrical Uncertainty) to measure the similarity of feature subsets and performed accuracy and stability 

measurements of the Minimum Redundancy Maximum Relevance (mRMR) algorithm. Chu et al. [12], 

Karabulut et al. [13], and Janecek et al. [14] demonstrated the effect of feature selection on the accuracy of 

classifiers with rigorous experimental setups.  

 

The studies mentioned in the paragraph above have contributed to our understanding of the relationship 

between feature selection, feature selection stability, and predictive accuracy from different perspectives. 

The main contribution of this article is to investigate the relationship between these concepts statistically. 

By conducting experiments and analyzing the results, the paper demonstrates that there is a lack of 

substantial evidence supporting a linear relationship between feature selection stability and classification 

accuracy. This implies that just because a feature selection method is more stable does not necessarily 

guarantee improved classification performance. Additionally, the paper highlights an important observation 

of a strong positive correlation among several stability metrics. This finding suggests that different stability 

metrics tend to agree with each other, indicating that they capture similar aspects of feature selection 

stability. The results of the study can potentially lead to a reevaluation of current practices and provide 

insights for future research and development in the field of feature selection stability and classification. 

 

The remaining part of this study has been organized as follows. The second section introduces the feature 

selection process. The next section formulates the problem of feature selection stability, explains how to 

measure stability, and briefly summarizes similarity-based and frequency-based stability measures. The 

fourth section describes the experimental framework and setup. The fifth section presents and evaluates the 

findings obtained from the experiments, and the final section concludes the paper with a summary and 

discussion. 

 

2. FEATURE SELECTION 

 
Datasets may contain redundant and irrelevant features. These features do not contribute to the machine 

learning task and negatively affect the analysis process. Feature selection aims to identify and choose 

pertinent features while preserving the essential characteristics of the data. This process is carried out to 

improve or maintain the accuracy of classification or the quality of clusters. However, selecting an optimal 

feature set is an NP-Hard problem since searching the whole feature space is computationally intractable 

[15]. Reducing the number of input variables by removing redundant and irrelevant features increases the 

accuracy and generalization capacity of machine learning algorithms, shortens training and utilization 
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times, facilitates model understanding, and defies the curse of dimensionality. Besides its advantages, 

selecting relevant features requires time and adds a layer of complexity to the modeling task. 

 

Feature selection is classified into three categories: supervised, unsupervised, and semi-supervised. This 

article is specifically focused on supervised feature selection and stability. Therefore, unsupervised and 

semi-supervised feature selection methods are not discussed. However, readers who are interested in 

exploring all feature selection methods are directed to reference [16] for more comprehensive information. 

Supervised feature selection methods utilize labeled data and can be used for binary, multiclass, and multi-

label classification and regression problems. For supervised feature selection, relevant features are the ones 

correlating with the class variable, i.e., the dependent variable. Supervised feature selection methods fall 

into five categories: filter, wrapper, embedded, hybrid, and ensemble. 

 

1. Filter methods: These methods involve ranking all features based on an evaluation function that 

utilizes distance, information (entropy), accuracy (error rate), correlation, or consistency. They do 

not select features, the feature selection is done by the user, and do not use a classifier to assess the 

performance of the selected features. Filter methods are divided into two subcategories. Univariate 

filter methods evaluate features individually, which causes feature dependencies to be ignored. On 

the other hand, multivariate filter methods take the mutual relationship between the features into 

account [17]. 

2. Wrappers: Wrappers have three components: a search strategy, e.g., randomized search, a 

classifier that works as a black box, e.g., Naïve Bayes, and a stopping criterion, e.g., the maximum 

number of iterations. In general, wrapper methods search through the feature space and evaluate all 

possible feature subsets using an inductive learner until a stopping criterion is met [18]. They can 

search the feature space extensively and interact with the classifier to select the relevant features. 

On the other hand, they have high computational costs and require longer running times. 

3. Embedded methods: Embedded methods select relevant features during the training phase of the 

learning algorithm. Thus, like wrappers, they perform classifier-dependent feature selection. 

However, in contrast to wrappers, they have a lower computational cost and running time since 

they do not call the classifier repeatedly. Embedded methods also capture feature dependencies [19, 

20]. 

4. Hybrid methods: Hybrid methods combine different feature selection approaches. The hybrid 

method that is widely used is the combination of filter and wrapper methods. After a specific filter 

method ranks the features, the user generates a subset of features. Then, the selected features are 

given as input to the wrapper algorithm to generate the final feature subset [21]. Hybrid methods 

have better accuracy than filters and have better computational complexity than wrappers. 

5. Ensemble methods: Ensemble methods are flexible and robust feature selection methods, based 

on the idea of repeating feature selection more than once to create a group of feature subsets and 

then aggregating them into a single feature subset. Ensemble feature selection can be applied in 

three different ways. The data diversity method is performed by sampling the original dataset and 

applying a single feature selection algorithm to each sample. The functional diversity method is 

performed by applying a set of different selection algorithms to the original dataset. Lastly, the 

hybrid method applies a set of different selection algorithms to different samples of the original 

dataset [22]. 

 

3. FEATURE SELECTION STABILITY 

 

The quality of feature selection algorithms is assessed by the classification performance of the features they 

prefer and their stability. Any feature selection algorithm is called stable if it is not sensitive to slight 

changes in the training set and produces repetitive results, i.e., outputs. On the other hand, an unstable 

feature selection algorithm produces varying or inconsistent results, e.g., exhibits fluctuations in feature 

rankings, when faced with slight variations in the training data. Training sets can be perturbed by using a 

resampling technique, removing or adding samples to the training set, reordering samples and features, and 

adding noisy and discrete samples to the training set.  
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The stability of feature selection algorithms can be measured in two steps. In the first step, perturbations 

are applied to the training set, and after each perturbation, the output of the selection algorithm, e.g., a 

ranked feature vector, a feature weight vector, or an index of the features, is collected. In the second step, 

outputs are compared using either similarity-based or frequency-based stability measures. Similarity-based 

approaches use pairwise comparison, while frequency-based approaches use the frequency of occurrence 

of an attribute or set of attributes to evaluate stability [3]. Based on the output representation of the feature 

selection algorithm, similarity-based approaches are categorized into three classes [23, 24].  

 

• Stability by Rank: The measures in this category evaluate the correlation, i.e., similarity ratio, 

between ranked feature vectors obtained after each perturbation. Spearman’s Rank Correlation 

Coefficient (commonly referred to as Spearman’s ρ), Kendal’s Rank Correlation Coefficient 

(commonly referred to as Kendall’s τ), Canberra Distance, and Weighted Canberra Distance are 

exemplars of ranked-based stability measures.  

• Stability by Weight: The measures in this category evaluate the correlation between the weight 

vectors obtained after each perturbation. Pearson’s Correlation Coefficient (PCC) is the only 

method to compute the association between feature weight vectors. 

• Stability by Index: The measures in this category evaluate the correlation between vectors of 

feature indices or binary vectors. Most of the stability measures in this category assess the amount 

of overlap between the resulting feature subsets. Some examples of index-based stability measures 

are the Sørensen-Dice Coefficient, Kuncheva Index, Ochiai Index, Jaccard Index, and Hamming 

Distance. 

 

One of the aims of this study is to compare various stability measures. Therefore, to fulfill this goal, a novel 

frequency-based measure, proposed by Nogueira [3], is incorporated into the empirical part. Nogueira’s 

stability measure3 is defined as follows: 

 

𝑁𝑀 = 1 −

1
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𝑑
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)

   (1) 

 

where d is the number of features, 𝑠𝑓
2
  is the sample variance of the selection of the fth feature and �̅� is the 

average number of selected features. It is important for readers to remember that when using frequency-

based approaches, the selected subsets of features should be represented as a binary matrix. 

 

4. EXPERIMENTAL SETUP 

 

We carried out the empirical study in three phases. Initially, we assessed the classification accuracy4 of 

three classifiers (Naïve Bayes, K-Nearest Neighbors, and Discriminant Analysis) trained on the entire 

feature set. In the second phase, we introduced perturbations at the instance level to the training set and 

examined their impact on the stability of seven feature selection methods. Subsequently, we retrained the 

classifiers using the selected feature sets. Finally, we evaluated the correlation between stability metrics 

and feature selection stability and classification performance, using Pearson’s Correlation Coefficient. The 

structure of our empirical framework is depicted in Figure 1. All the code used in the experiments was 

implemented in MATLAB® 2021a, executed on a macOS 64-Bit operating system, and run on a computer 

with an 8-core Intel Core i9 CPU (3.6 GHz) and 64GB DDR4 RAM. The subsequent subsections provide 

a detailed description of the experimental framework. 
 

 
3 MATLAB® and Python™ scripts are available at http://www.cs.man.ac.uk/~gbrown/stability/ 
4 Classification accuracy is determined by dividing the number of correct predictions by the total number of predictions. The 

outcome is then multiplied by 100 to represent the accuracy as a percentage. 



610  Mustafa BUYUKKECECI, Mehmet Cudi OKUR/ GU J Sci, 37(2): 606-620 (2024) 

 
 

 
Figure 1. The general framework of the empirical study5 

 

4.1. Datasets and Perturbation Methods 

 

We conducted experiments on 8 publicly available real-world datasets taken from the UCI [25] and KEEL 

[26] machine learning repositories. Some characteristics of the datasets used in the empirical study and the 

names of the data repositories where datasets were collected are shown in Table 1. Missing values can be 

filled in by standard methods, such as the mean, median, or mode of the column, or even more sophisticated 

methods, such as shape-preserving piecewise cubic spline interpolation or cubic Hermite spline. In this 

study, missing values were filled by the moving (rolling) average.  

 

Table 1. Some characteristics of the datasets used in the empirical study and the name of the data 

repositories where datasets were collected 

Dataset Instance Attribute 
Instance/Attribute 

Ratio 

Number of 

Classes 

Class 

Distribution 
Reference 

Australian 

Credit Approval 
690 14 49.2857 2 

383 

307 

55.51% 

44.49% 
UCI 

Breast Cancer 569 32 17.781 2 
212 

357 

37.26% 

62.74% 
UCI 

Ionosphere 351 33 10.636 2 
225 

126 

64.10% 

35.90% 
KEEL 

Landsat 

Satellite 
6435 36 178.750 7 

1533 

703 

1358 

626 

707 

0 

1508 

23.82% 

10.92% 

21.10% 

9.73% 

10.99% 

0.00% 

23.43% 

UCI 

QSAR 

Biodegradation 
1055 41 25.731 2 

356 

699 

33.74% 

66.26% 
UCI 

SPECT Heart 267 44 6.068 2 
212 

55 

79.40% 

20.60% 
KEEL 

Sonar 208 60 3.466 2 
97 

111 

46.63% 

53.37% 
KEEL 

Vehicle 846 18 47 4 

199 

217 

218 

212 

23.52% 

25.65% 

25.77% 

25.06% 

KEEL 

 

Resampling techniques [27, 28], such as bootstrapping or k-fold cross-validation can be used as a 

perturbation method. During the experiments with filter methods, we applied a small amount of perturbation 

to the training sets using bootstrapping. We generated 10 bootstrap samples of the original data and then 

applied each filter method to these samples. Bootstrapping employs a technique called simple random 

 
5 FSA is the acronym for “feature selection algorithm”. 
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sampling with replacement (SRSWR). Therefore, on average, each bootstrap sample consists of 63.2% of 

the original data, while the remaining 36.8% is left out to form the bootstrap test set. 

 

Cross-validation is another resampling method used to evaluate the performance of supervised learning 

models. In k-fold cross-validation, the initial dataset is separated into k equal-sized6 disjoint, i.e., mutually 

exclusive, subsets and the training and testing of the classifiers are repeated k times. In each iteration, one 

subset is used for testing and the others are used for training. During the experiments with wrapper methods, 

we applied a small amount of perturbation to the training sets using a 10-fold cross-validation procedure. 

Therefore, in each iteration, i.e., the experimental run, nine folds were used for training, and the remaining 

fold was used for testing. 

 

4.2. Feature Selection Algorithms 

 

The relevant features were selected using univariate parametric tests7, such as the Two-Sample T-Test, 

Bhattacharyya Distance and Entropy, univariate nonparametric tests7, such as the Wilcoxon Rank-Sum Test 

and ROC, Sequential Forward Selection (SFS) and Sequential Backward Selection (SBS) wrappers [29-

35]. SFS and SBS algorithms utilize a greedy search strategy, which means they make locally optimal 

decisions at each step without considering the global optimality of the solution. While this approach offers 

speed, simplicity, and ease of implementation, it does not guarantee to find the best possible solution. The 

quality of candidate feature subsets generated by the wrapper algorithms are evaluated using an induction 

algorithm. Therefore, we utilized Naïve Bayes, K-Nearest Neighbors, and Discriminant Analysis classifiers 

as feature subset evaluators and employed Bayes optimization, which is essentially a black-box 

optimization8  method, to optimize the hyperparameters9 of the classifiers. 

 

4.3. Quantifying the Stability and Evaluation of Classification Performance 

 

The stability performance of the filter algorithms was assessed using various measures, including Canberra 

and Weighted Canberra Distance, Spearman’s Rank Correlation Coefficient, Kendall’s Rank Correlation 

Coefficient, and Pearson’s Correlation Coefficient. On the other hand, the stability of the wrapper 

algorithms was evaluated using the Hamming Distance, Jaccard Index, Cosine Index, Sorensen–Dice 

Coefficient, Lustgarten’s Measure, Ward’s Measure, and Nogueira’s Measure. The stability metrics, 

excluding correlation-based measures and those by Lustgarten, Ward, and Nogueira, have values between 

0 and 1, while others fall within the range of -1 to 1. Regrettably, due to limitations in available space, it is 

not possible to provide a comprehensive description of each stability measure in this context. However, 

readers who are interested in exploring detailed explanations of these metrics can refer to [3, 23, 24, 36] 

for more information. 

 

5. RESULTS AND DISCUSSION 

 

Table 2 compares the classification accuracies (in %) of the optimized Naïve Bayes, K-Nearest Neighbors, 

and Discriminant Analysis classifiers trained on the entire dataset (before employing any feature selection 

method to the datasets). The best and the worst accuracies were highlighted in bold and italic font, 

respectively. As we employed 10-fold cross-validation, the accuracy values correspond to the average 

cross-validation error. What can be seen in Table 2 is the dominant classification performance of the K-

Nearest Neighbors classifier over the others on almost all datasets.  

 

 

 

 

 
6 If the dataset cannot be separated evenly, one subset can contain more samples than the other. 
7 Nonparametric (or distribution-free) tests are actually rank tests that use the count or ranking of the subjects on the dependent, 

i.e., response, variable. 
8 Black-box optimization is used in optimization problems where the structure of the objective function is unknown. 
9 Hyperparameter (or top-level parameter) is a user-defined variable, set before a learning algorithm is trained.  
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Table 2. Classification accuracies (in %) of the classifiers trained on the entire dataset 

Dataset 
Classifier10 

NB K-NN DA 

Australian Credit Approval 80.0 86.1 87.1 

Breast Cancer 94.4 97.2 95.6 

Ionosphere 90.9 91.2 87.5 

Landsat Satellite 82.3 90.8 85.8 

QSAR Biodegradation 63.2 86.4 85.6 

SPECT Heart 74.5 80.1 79.4 

Sonar 76.4 87.0 76.4 

Vehicle 62.2 80.0 85.1 

 

Each of the 10 bootstrap samples underwent the application of five different filter methods. The average 

stability performance of each filter method is listed in Table 3. The best and worst stability scores were 

highlighted in bold and italic font, respectively. The closer the stability score is to 1, the more stable the 

algorithm is. The top ⌊25%⌋ of the ranked feature vectors were used to compute the Weighted Canberra 

Distance. The results of the Canberra and Weighted Canberra Distances were divided by the total number 

of features and normalized to the interval [0,1]. Table 3 is quite revealing in several ways. First, a range of 

stability measures demonstrates the resilience of filter methods when faced with slight perturbations in the 

training data. The stability scores indicate that the variability in the rankings of features is minimal. 

Secondly, among the metrics utilized, the stability scores based on Kendal’s Rank Correlation Coefficient 

are the lowest. Lastly, the stability scores based on Weighted Canberra Distance surpass other metrics in 

terms of being the highest. This means there is less variation in the upper positions of the ranked feature 

vectors. 

 

Table 3. Average stability performances of filter algorithms 

Dataset 
Filter 

Method 

Stability Measure11,12 

CD WCD PCC SRCC KRCC 

Australian Credit  

Approval 

T-Test 0.936 0.983 0.983 0.943 0.838 

Entropy 0.905 0.960 0.995 0.903 0.762 

Bhatt. 0.945 0.982 0.979 0.948 0.858 

ROC 0.954 0.975 0.976 0.940 0.841 

Wilcoxon 0.915 0.952 0.948 0.926 0.798 

Breast Cancer 

T-Test 0.961 0.987 0.992 0.987 0.926 

Entropy 0.933 0.979 0.980 0.967 0.869 

Bhatt. 0.919 0.995 0.992 0.978 0.895 

ROC 0.955 0.989 0.994 0.989 0.932 

Wilcoxon 0.935 0.989 0.977 0.966 0.868 

Ionosphere 

T-Test 0.825 0.976 0.857 0.763 0.584 

Entropy 0.895 0.978 1.000 0.876 0.729 

Bhatt. 0.891 0.972 1.000 0.878 0.720 

ROC 0.790 0.970 0.731 0.705 0.524 

Wilcoxon 0.762 0.964 0.721 0.503 0.353 

Landsat Satellite 

T-Test 0.948 0.990 0.988 0.985 0.914 

Entropy 0.957 0.995 0.994 0.985 0.917 

Bhatt. 0.962 0.994 0.994 0.989 0.932 

 
10 Throughout this paper, the terms NB, K-NN, and DA refer to Naive Bayes, K-Nearest Neighbors, and Discriminant Analysis 

respectively. 
11 Throughout this paper, the terms CD, WCD, PCC, SRCC, and KRCC refer to Canberra Distance, Weighted Canberra Distance, 

Pearson’s Correlation Coefficient, Spearman’s Rank Correlation Coefficient, and Kendal’s Rank Correlation Coefficient 

respectively. 
12 The correlation coefficients were calculated by employing the 95% confidence interval and underwent an averaging process in 

three steps. Initially, they were transformed into z-scores using the Fisher transform. Subsequently, the z-scores were averaged. 

Finally, the resulting means were converted back to correlation coefficients. 
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ROC 0.924 0.991 0.971 0.961 0.849 

Wilcoxon 0.934 0.978 0.994 0.982 0.905 

QSAR  

Biodegradation 

T-Test 0.888 0.992 0.956 0.943 0.810 

Entropy 0.884 0.998 0.952 0.911 0.777 

Bhatt. 0.879 0.998 0.921 0.893 0.758 

ROC 0.923 0.988 0.974 0.946 0.815 

Wilcoxon 0.918 0.992 0.970 0.947 0.829 

SPECT Heart 

T-Test 0.849 0.996 0.888 0.877 0.698 

Entropy 0.817 0.994 0.802 0.824 0.632 

Bhatt. 0.818 0.986 0.828 0.827 0.634 

ROC 0.826 0.992 0.841 0.831 0.637 

Wilcoxon 0.764 0.953 0.660 0.640 0.460 

Sonar 

T-Test 0.798 0.995 0.784 0.757 0.561 

Entropy 0.797 0.994 0.721 0.780 0.586 

Bhatt. 0.770 0.993 0.675 0.725 0.528 

ROC 0.797 0.993 0.773 0.755 0.558 

Wilcoxon 0.810 0.990 0.790 0.680 0.501 

Vehicle 

T-Test 0.916 0.988 0.971 0.968 0.874 

Entropy 0.919 0.982 0.956 0.953 0.850 

Bhatt. 0.885 0.968 0.914 0.926 0.799 

ROC 0.861 0.922 0.957 0.914 0.776 

Wilcoxon 0.917 0.986 0.981 0.937 0.824 

 
Filter methods calculate a relevance score for each feature and rank the features according to these scores. 

Feature subset generation is generally based on either a user-specified score threshold (features exceeding 

the threshold are selected) or selecting the top n features of the ranked list. In this study, for each dataset, 

we first averaged all relevance scores and sorted them in decreasing order. Next, we examined abrupt 

changes (sudden decreases) in the scores to establish a threshold. We also aimed to generate feature sets 

with the lowest possible cardinality. Table 4 compares the average classification accuracies (in %) of the 

classifiers on the selected features. The best and the worst accuracies were highlighted in bold and italic 

font, respectively. From Table 4, it can be concluded that K-NN, and Discriminant Analysis classifiers are 

better in building models with high accuracy. Furthermore, when the Ionosphere and SPECT Heart datasets 

were subjected to the Wilcoxon method for feature ranking, it was found that the classification performance 

of the first six features in Ionosphere and the first ten features in SPECT Heart outperformed the 

classification performance of the entire original feature set. Similarly, the top five features identified 

through the ROC and T-Test rankings for the Australian dataset exhibited equivalent classification 

performance to the entire feature set. Moreover, feature subsets derived from the Breast Cancer, Landsat 

Satellite, QSAR Biodegradation, and Sonar datasets yielded classification performances that were very 

close to those achieved by the entire feature set. The worst classification performances were observed in 

the Vehicle dataset. 
 

Table 4. Average classification accuracies of the classifiers on the selected features 

Dataset 
Number of  

Selected Features 

Subset 

Evaluator 

Accuracy of the Feature Subsets Ranked by… 

T-Test Entropy Bhatt. ROC Wilcoxon 

Australian Credit 

Approval 
5 

NB 86.4 77.8 77.8 81.7 82.0 

K-NN 85.2 84.9 84.9 87.1 85.1 

DA 86.5 85.7 85.7 86.4 85.7 

Breast Cancer 7 

NB 94.0 92.8 94.4 94.0 92.1 

K-NN 94.9 93.7 95.1 94.9 93.1 

DA 94.0 94.4 95.3 95.3 93.1 

Ionosphere 6 

NB 84.9 90.3 90.3 84.9 85.8 

K-NN 88.9 89.7 89.7 90.6 92.3 

DA 86.3 87.2 87.2 87.2 86.9 

Landsat Satellite 10 NB 80.7 81.8 81.5 82.2 73.5 
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K-NN 86.6 89.8 89.0 89.2 83.3 

DA 84.3 86.4 85.4 86.4 79.9 

QSAR  

Biodegradation 
7 

NB 74.1 55.1 75.7 77.8 74.1 

K-NN 81.3 66.3 79.7 84.4 81.3 

DA 75.6 66.3 76.4 79.2 75.6 

SPECT Heart 10 

NB 73.0 74.9 75.7 73.0 74.2 

K-NN 79.8 80.9 80.5 79.8 81.6 

DA 80.1 80.1 79.8 80.1 80.9 

Sonar 10 

NB 76.0 76.4 72.1 76.9 78.4 

K-NN 78.4 77.4 78.4 77.4 82.2 

DA 72.1 71.2 71.6 74.5 79.3 

Vehicle 6 

NB 53.3 59.1 61.2 60.3 63.7 

K-NN 57.9 70.0 68.6 72.9 70.8 

DA 57.4 59.0 59.9 67.4 63.2 

 

The average classification and stability performances of SFS and SBS wrappers are listed in Table 5. The 

best and the worst classification accuracies and stability scores were highlighted in bold and italic font, 

respectively. According to the observations presented in Table 5, the feature subsets generated by the SFS 

and SBS wrapper methods generally exhibit higher classification accuracies compared to the accuracy 

achieved using the entire feature set. For instance, in the case of the Australian dataset, the feature subsets 

obtained through the SBS method, with the Discriminant Analysis classifier as the subset evaluator, 

demonstrated an average accuracy rate of 87.7%, which was 87.1% before feature selection. Similarly, for 

the Sonar dataset, the feature sets generated by the SBS method using the K-NN classifier as the subset 

evaluator achieved an average accuracy of 94.6%. This corresponds to a 7.6% increase in accuracy 

following feature selection. 

 

Table 5. Average classification accuracies and stability performances of SFS and SBS methods 

Dataset 
Search 

Direction 

Subset 

Evaluator 

Avg. 

Accuracy 

Stability Measure13 

HD JI CI SDC LM WM NM 

Australian 

Credit  

Approval 

Forward 

NB 86.3 0.803 0.478 0.629 0.600 0.481 0.717 0.509 

K-NN 85.9 0.946 0.807 0.892 0.880 0.759 1 0.848 

DA 85.7 1 1 1 1 0.857 1 1 

Backward 

NB 87.6 0.811 0.751 0.862 0.854 0.520 0.885 0.536 

K-NN 87.4 0.779 0.752 0.857 0.854 0.419 0.597 0.242 

DA 87.7 0.759 0.737 0.848 0.846 0.294 0.419 0.073 

Breast  

Cancer 

Forward 

NB 97.0 0.952 0.697 0.803 0.798 0.746 0.864 0.784 

K-NN 97.4 0.780 0.281 0.418 0.415 0.253 0.322 0.303 

DA 97.5 1 1 1 1 0.833 1 1 

Backward 

NB 96.4 0.701 0.573 0.741 0.721 0.348 0.734 0.391 

K-NN 97.9 0.682 0.643 0.785 0.778 0.181 0.299 0.124 

DA 97.0 0.689 0.652 0.789 0.785 0.194 0.287 0.133 

Ionosphere 

Forward 

NB 94.6 0.890 0.570 0.716 0.713 0.561 0.710 0.655 

K-NN 94.4 0.923 0.568 0.697 0.692 0.619 0.711 0.649 

DA 89.2 0.969 0.769 0.867 0.863 0.822 0.930 0.845 

Backward 

NB 93.7 0.687 0.599 0.754 0.742 0.324 0.603 0.309 

K-NN 93.2 0.630 0.545 0.707 0.702 0.157 0.287 0.186 

DA 90.2 0.754 0.654 0.790 0.788 0.321 0.586 0.487 

Landsat 

Satellite 

Forward 

NB 83.6 0.867 0.577 0.696 0.692 0.499 0.664 0.628 

K-NN 90.6 0.629 0.422 0.590 0.588 0.150 0.292 0.255 

DA 87.3 0.781 0.466 0.625 0.624 0.353 0.510 0.478 

Backward NB 83.4 0.777 0.748 0.857 0.854 0.368 0.522 0.316 

 
13 Throughout this paper, the terms HD, JI, CI, SDC, LM, WM, and NM refer to Hamming Distance, Jaccard and Cosine Index, 

Sorensen–Dice Coefficient, Lustgarten’s, Ward’s and Nogueira’s metrics respectively. 
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K-NN 91.4 0.812 0.805 0.892 0.891 0.188 0.230 0.031 

DA 87.0 0.667 0.608 0.758 0.754 0.176 0.294 0.211 

QSAR  

Biodegradation 

Forward 

NB 85.7 0.736 0.340 0.498 0.493 0.268 0.380 0.329 

K-NN 87.5 0.810 0.473 0.633 0.628 0.416 0.577 0.507 

DA 84.3 0.650 0.315 0.467 0.464 0.155 0.239 0.214 

Backward 

NB 84.6 0.701 0.648 0.788 0.783 0.260 0.420 0.258 

K-NN 87.9 0.762 0.720 0.836 0.835 0.333 0.479 0.372 

DA 86.7 0.739 0.711 0.832 0.829 0.261 0.378 0.213 

SPECT  

Heart 

Forward 

NB 82.0 0.913 0.179 0.279 0.264 0.302 0.327 0.235 

K-NN 82.4 0.846 0.089 0.154 0.145 0.097 0.109 0.090 

DA 79.4 1 1 1 1 0.977 1 1 

Backward 

NB 85.5 0.736 0.613 0.758 0.754 0.300 0.588 0.466 

K-NN 82.3 0.805 0.800 0.888 0.887 0.127 0.152 - 0.086 

DA 83.4 0.693 0.650 0.790 0.786 0.212 0.334 0.200 

Sonar 

Forward 

NB 81.4 0.940 0.428 0.560 0.555 0.540 0.584 0.539 

K-NN 85.6 0.826 0.210 0.349 0.326 0.315 0.372 0.241 

DA 82.9 0.837 0.178 0.310 0.291 0.287 0.334 0.209 

Backward 

NB 82.3 0.661 0.591 0.748 0.740 0.217 0.391 0.229 

K-NN 94.6 0.689 0.650 0.789 0.783 0.209 0.324 0.160 

DA 89.2 0.692 0.665 0.798 0.797 0.143 0.197 0.109 

Vehicle 

Forward 

NB 63.8 0.711 0.481 0.637 0.626 0.283 0.526 0.408 

K-NN 77.5 0.828 0.688 0.802 0.792 0.452 0.824 0.650 

DA 86.2 0.841 0.824 0.901 0.899 0.553 0.702 0.319 

Backward 

NB 64.7 0.662 0.608 0.757 0.751 0.199 0.344 0.143 

K-NN 82.0 0.796 0.778 0.877 0.872 0.395 0.558 0.129 

DA 86.6 0.869 0.857 0.924 0.922 0.580 0.730 0.309 

 

We used Pearson’s Correlation Coefficient (see Formula 2) with a confidence interval of 95% to statistically 

measure the relationship between feature selection stability and classification accuracy. Pearson’s 

Correlation Coefficient, generally abbreviated as 𝑟, measures the linear association between two continuous 

random variables, often referred to as zero-order correlation14 and is defined as: 

 

𝑟 =
∑ (𝑥𝑖 − �̅�)𝑛

𝑖=1 (𝑦𝑖 − �̅�)

√∑ (𝑥𝑖 − �̅�)2𝑛
𝑖=1 ∑ (𝑦𝑖 − �̅�)2𝑛

𝑖=1

      (2) 

 

where, 𝑛 is the sample size, 𝑥𝑖 and 𝑦𝑖 are the values of the 𝑥 and 𝑦 variables indexed with 𝑖, and �̅� and �̅� 

are the means of the values of the variables 𝑥 and 𝑦 respectively.  

 

In this study, the correlation results were visualized using correlation heat maps, in which correlation 

coefficients are represented as colors. The heat maps below use a color palette with shades of blue. The 

correlation coefficients are indicated by the lightness and darkness of the shade, so the darker the color, the 

stronger the relationship between the two variables. The correlation heat maps are constructed using the 

stability scores and accuracies presented in Tables 3, 4, and 5. Before evaluating the results, it is important 

to keep in mind that correlation does not imply causation. 

 

The correlation heat maps of filter methods are shown in Figure 2. Each correlation heat map shows the 

relationship between stability metrics and classification accuracy. The first column of each correlation heat 

map exhibits the correlation between stabilities and classification accuracy, while the remaining columns 

represent the correlation between the stability metrics. Upon examining the results, it was observed that 

only a few methods, such as ROC and Wilcoxon, displayed a moderately positive, i.e., weak, relationship 

 
14 Zero-degree correlation is the correlation between two variables without considering the effect of other variables. 
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between feature selection stability and classification performance. Additionally, we also observed that these 

associations vary depending on the classifier employed. 

 

The correlation heat maps of wrapper methods are shown in Figure 3. For SFS and SBS methods, the 

correlations between the stability scores and accuracies are predominantly weak negative. This suggests 

that variables tend to move in opposite directions from one another, and the relationship between them is 

not strong. However, in certain cases, e.g., the SFS method using NB and DA as subset evaluators, a 

moderate positive correlation is observed between stability and classification accuracies. This indicates that 

variables tend to move in tandem but the relationship between them is not strong. The correlation 

coefficients that are close to zero indicate a negligible correlation. Hereby, considering the results of 

correlation analyses, there is no strong evidence of a linear relationship between feature selection stability 

and classification accuracy. Nevertheless, a strong positive correlation has been found between several 

stability metrics, such as Canberra Distance, Spearman’s Rank Correlation Coefficient, Kendall’s Rank 

Correlation Coefficient, and Pearson’s Correlation Coefficient. 

 

 
Figure 2. Correlation heat maps of the filter methods 
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Figure 3. Correlation heat maps of the SFS (top) and SBS (bottom) methods 

 

6. CONCLUSION 

 

Supervised feature selection algorithms are evaluated according to their stability and the effect of feature 

preferences on prediction accuracy. In recent years, there has been a growing interest in these issues. For 

example, various empirical studies, such as those conducted by Wang et al. [4], Gulgezen et al. [11], 

González et al. [37], Wang et al. [38], and Deraeve and Alexander [39], have proposed novel selection 

methods that prioritize both stability and accuracy. This research study aimed to investigate the relationship 

between stability metrics, feature selection stability, and classification performance statistically. Krizek et 

al. [40] emphasized that the classification performance of the selected features and feature selection stability 

are two different concepts. The results obtained in this study mostly support the authors’ assertions. 

However, our findings do not definitively establish the presence or absence of a relationship between these 

variables. In some instances, there is a moderately positive relationship between the stability and 

classification performance of the selected feature subsets. Furthermore, the majority of correlation 

coefficients fail to provide substantial evidence for the hypothesis that an algorithm with high selection 

stability produces subsets of features with high accuracy. On the other hand, the analysis revealed a strong 

positive correlation among several stability metrics. As is known, correlation does not imply causation. It 

means that just because two variables are correlated, it does not necessarily mean that one variable directly 

causes the other to occur. The correlation only measures the degree of association or relationship between 

variables, but it does not provide evidence of a cause-and-effect relationship. In other words, even if two 

variables show a strong correlation, it is possible that their relationship is coincidental or influenced by 

other factors. Additional research and evidence are required to establish a causal relationship between 

variables. Therefore, we will extend the empirical work to establish the cause-effect relationship and to 

gain further insights into the subject. 
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