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 We present a theoretical and computational work aiming at the estimation of an excitatory and 

inhibitory recurrent neural network from realistic stimulus-response data. The neural network 

incorporates firing rates of the excitatory and inhibitory units as state variables. The stimulus 

and response recordings are taken from a previous study which performs a measurement on 

the H1 neurons of the order Diptera flies. The parameter estimation is performed by maximum 

likelihood method. As the stimulus-response data is a single recording of 20 minutes, it is 

segmented, and individual segments are superimposed on each other to increase the statistical 

content of information. The true values of the model parameters are unknown as we are not 

using synthetic data. Because of this fact, two sample Kolmogorov-Smirnov test is applied to 

compare the interspike intervals of the recorded and model responses. Estimation and analysis 

results are presented in tabular and graphical forms. In addition, a comparison with previous 

research employing a modified Fitzhugh-Nagumo model is made.  

 
Figure A. The response of the H1 neurons of true flies of order Diptera to white noise 

visual stimulus 
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Theory and Methodology: The methodology is based on maximum likelihood method where the 

likelihood function is derived from the probability mass function of an Inhomogeneous Poisson 

Process. The optimization algorithm is of constrained type based on interior point methods. The 

measurement data sets are the neural spiking instants of the H1 neurons of the order Diptera flies.    

Findings and Results: As one does not know the true parameters of the model in consideration, the 

accuracy of the findings are assessed using two sample Kolmogorov-Smirnov tests.    

Conclusion :  The results suggests that the p-Value obtained from Kolmogorov-Smirnov tests has a 

dependence of the number of segments and the individual segment lengths. The estimated parameters 

appear to be closer to each other when the segment size is kept in the segment lengths stay in the range 

(10,25) seconds.  
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I. INTRODUCTION 

A. Literature survey 

The science related to neuron modeling dates well back to 

1950s. The related developments led to an emerging field 

called as  “theoretical and computational neuroscience”. The 

research community classified these models into three types 

namely the compartmental, cascade, and black box models. 

The compartmental models may involve single or multiple 

subsystems and thus are relatively complicated. They are 

used when one needs to simulate one or more biophysical 

features of realistic neurons. Compartmental neural 

modeling is appeared after the development of the well 

known Hodgkin-Huxley model [23] in 1952. This was a 

highly nonlinear fourth order differential equation aiming at 

the description of quantitative features such as membrane 

potentials and ion channel conductances Following that, 

simpler models such as Fitzhugh-Nagumo [18], Morris-

Lecar [35] and Hindmarsh-Rose [22] models appeared. Also 

models with more emphasis on specific subsystems of a 

https://dergipark.org.tr/en/pub/jster
https://orcid.org/0000-xxx-xxxx-xxxx
mailto:resat.doruk@atilim.edu.tr
https://orcid.org/0000-xxx-xxxx-xxxx
https://dergipark.org.tr/en/pub/jster
https://dergipark.org.tr/en/pub/jster
mailto:resat.doruk@atilim.edu.tr


JOURNAL OF SCIENTIFIC, TECHNOLOGY AND ENGINEERING RESEARCH 
Bilim, Teknoloji ve Mühendislik Araştırmaları Dergisi, (2021) - 2(2): 54-66 
ISSN : 2717-8404 https://dergipark.org.tr/en/pub/jster  

 
neuron such as dendrites, soma or axon are also met (such as 

[3]). 

The cascade models on the other hand are less complex and 

place lesser emphasis on the computational details. These 

models are chosen when biophysical characteristics are not 

important. They generally consist of a linear filter and a 

nonlinearity that include some dynamical features [13]. 

Examples of studies involving such models are [30,24,38,1]. 

These are specifically related to visual subsystem. 

 
The third type of modeling that can be met in computational 

neuroscience is based on a black box approach. In this case, 

the models focus on the ability of the neurons to process 

signals and they have a reasonable set of statistical features. 

An example is the representing the neuron’s response by a 

probability distribution when the neuron is triggered by 

stimulus. Associated examples are [4,2,17,20]. 

 
Efficiency and applicability of a suggested model depends 

explicitly on the researcher’s aim and the related mechanism 

of data collection. In the case of in vivo experiments, it is 

difficult to measure membrane potentials directly by placing 

an electrode on the membrane of the neuron under 

examination. That may cause a damage of the neuron or 

change in its activities. Those will obviously lead to 

incorrect measurements [11]. Alternatively, it is possible to 

collect data from an examined cell without touching it by 

placing an electrode in an area surrounding the cell 

membrane. Although this approach does not give us the 

correct amplitudes of the membrane potential, it is likely to 

detect the bursts of successive action. In other words, that 

yields information as a time series of successive peaks rather 

than a value of potential levels. This set of data is called as 

a neural spike train (or trains) which is similar to bursts and 

idle times that would be formed based on the neuron’s 

activity. Bursts could be defined as closely spaced spikes, 

whereas the idle periods can be represented by separate 

longer-term transactions. Although they may seem 

meaningless at a first look, they include valuable 

information about the activity of the investigated neuron. 

The work in [39] suggests that a sudden jump in data during 

an instant discovers what actually happened inside a neural 

cell. In addition, the random distribution of those spikes 

within a specific time interval largely obeys an 

Inhomogeneous Poisson Process (IPP). Therefore, it is 

possible to apply likelihood function derived from 

probability mass function of a Poisson distribution [36]. The 

studies by [5, 37] proposed a system identification approach 

that estimates internal parameters using maximum 

likelihood for integrating and firing neuron models. Firing 

probabilities are used to derive likelihood function based on 

a local Bernoulli approximation. Similarly, a study in [7] 

used maximum likelihood estimation to characterize 

functionality between neurons rather than study neurons 

individually. The study [40] presented a data analysis 

problem that deals with the stimulus-response experiments 

in neurophysiology. When the stimulus is known and the 

experiment is under the control, it is possible to record the 

spiking activities of the neurons. The study in concern 

proposed a state-space model to analyze response when the 

stimulus is implicit. Conditional intensity function is 

estimated based on general point processes that characterize 

spiking activities of neurons. This study also applied 

maximum likelihood algorithm to optimize parameters. The 

research in [21] claimed that the electrical signals in a 

biological neurons are random due to the chemical reactions 

in the ion channels and synaptic processes. The noise 

generated from the ion channels were described by 

mathematical models in some recent studies [33, 26, 41]. 

Other studies [28, 27, 42] stated that the movement of the 

ions in the channels produces electromagnetic fields that 

have influences on the membrane potential. However, the 

authors in [42] claimed that the operation of the heart can be 

determined through a magnetic fields produced by its 

electrical system. 
 

Recently, the researchers have given more attention to the 

modeling of biological neurons by using artificial neural 

networks. For example, static feedforward neural networks 

are used by the researchers in some studies [10, 9, 8] to 

model auditory cortex. However, this type of neural 

networks does not sufficiently characterize the time 

dependent features of biological neurons such as action 

potentials and refractory periods. Therefore, dynamical 

neural networks seem to be better in the characterization of 

signal processing mechanisms of the biological neurons. 
 

The literature regarding computational neuroscience has 

witnessed more attention to identify parameters of the 

neuron(s). Simple techniques such as minimum mean square 

estimation and spike synchronization could be utilized to 

calculate potential of membrane or firing rate when they are 

measurable. These methods become inapplicable when the 

collected data is discontinuous and there is no information 

about amplitude of amplitudes or rate of firing. Some studies 

such as [29] applied synchronization technique to spiking 

neurons. However, this technique requires a synchronization 

of two successive set of spikes that needs a reducing in inter-

arrival time of spikes. The main problem in this method is 

the additional computational overhead introduced by the 

evaluation of the distance between two successive spikes.  

That will add extra complexity to the system. 
 

B. About this work 

As a difference from the studies performed by [15, 11, 13, 

14] we will attempt to fit a firing rate based recurrent neural 

network model to a realistic stimulus-response data. One 

similar research is done by [12] where the response of H1 

neurons of true flies of order Diptera [19] against a white 

noise visual stimulus is used. The data is available as a result 

of a research by [25]. In the aforementioned work ([12]), the 

model fitted to the H1 neuron stimulus-response pair is a 

modified Fitzhugh-Nagumo model [18] where the output 
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membrane potential is mapped to a firing rate variable by a 

specially formed sigmoid function. In this work, we will use 

an excitatory-inhibitory neural network model proposed by 

[34]. The model is formed by two differential equations 

representing the dynamics of the firing rates of excitatory 

and inhibitory units. The excitatory neuron’s firing rate will 

be taken into consideration. The stimulus and neural spiking 

data will be the same as that of [12]. This will allow us to 

perform a comparison in the estimation performance of the 

two approaches. As we are not employing synthetically 

generated data from models with known parameters, no true 

parameter information will be available. After the estimation 

process is finalized, the model can be simulated with the 

estimated parameters, a firing rate profile and associated 

spike timings will be generated. The spike generation will 

make use of Inhomogeneous Point Process simulation with 

event rate being the firing rate of the excitatory neuron. The 

interspike intervals of the simulated spikes and the ones 

available from the data will be compared using Two Sample 

Kolmogorov-Smirnov statistical test [32, 31]. The 𝑝-values 

obtained from the tests will be presented in graphical forms. 

These results will be compared to the ones in [12]. 

II. MATERIALS AND METHODS  

A. The neuron model 

In this research, we will have a second order recurrent neural 

network model in the following form:  

 

𝑟̇𝑒 = 𝛽𝑒 [−𝑟𝑒 +
𝐹𝑒

1+𝑒−𝑎𝑒(𝑤𝑒𝑒𝑟𝑒−𝑤𝑒𝑖𝑟𝑖+𝐼)]

𝑟̇𝑖 = 𝛽𝑖 [−𝑟𝑖 +
𝐹𝑖

1+𝑒−𝑎𝑖(𝑤𝑖𝑒𝑟𝑒−𝑤𝑖𝑖𝑟𝑖+𝐼)]
 (1) 

 
In the above the subscripts (𝑒) and (𝑖) represent the 

association of the related variables with the  excitatory and  

inhibitory units respectively. The model have some 

differences from the one presented in [15]. Main difference 

appears in the choice of the state variables. [15] models the 

dynamics of the membrane potentials (𝑣𝑒 and 𝑣𝑖) whereas 

(1) presents the dynamics of the firing rates (𝑟𝑒  and 𝑟𝑖) 

directly. The discussion on both types of models can be 

found in the reference [34]. The definitions of the parameters 

in (1) is available in Table 1. 
  

Table  1: The definitions and nominal values of the 

parameters of the neural network model in (1) 
  

Parameter Definition 

𝛽𝑒 The reciprocal time constant of the 

excitatory neuron 

𝛽𝑖 
The reciprocal time constant of the 

inhibitory neuron 

𝑤𝑒𝑒 
Weight representing the strength of 

excitatory autaptic input 

𝑤𝑒𝑖 
Weight representing the strength of 

inhibitory synaptic input to 

excitatory unit 

𝑤𝑖𝑒 
Weight representing the strength of 

excitatory synaptic input to 

inhibitory unit 

𝑤𝑖𝑖 
Weight representing the strength of 

inhibitory autaptic input 

𝐹𝑒 
Maximum firing rate of excitatory 

unit 

𝐹𝑖 
Maximum firing rate of inhibitory 

unit 

𝑎𝑒 Excitatory slope 

𝑎𝑖 Inhibitory slope 

   

B. Stimulus and response data 

In this research, we will apply the same stimulus 

and response pair as in [12]. That is a white noise based 

visual stimulus and the associated response obtained from 

H1 neurons. This data set is a 20 minute recording of the 

experimental measurements on the H1 neurons of true flies 

[19, 25]. For convenience, a plot of the stimulus and 

associated response can be seen in Figures 1 and 2 

respectively. 
 

  
Figure 1: The white noise visual stimulus applied to the 

H1 neurons of true flies of order Diptera by [25]. Only the 

first two seconds are shown here to for the sake of proper 

displaying of its variation. Here the bin size is 𝛿𝑡 = 2 ms. 
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Figure 2: The response of the H1 neurons of true flies of 

order Diptera to white noise visual stimulus. The data is 

provided by [25]. Only the first two seconds are shown 

here to for the sake of proper displaying of its variation. 

Here the response is shown as spikes and each occurence of 

a spike is shown in a binary fashion. i.e. A 1 for an existing 

spike and a 0 for no spike. 
  

C.  Inhomogeneous Poisson Processes 

  While introducing this study, it is stated that the 

neural spiking process largely obeys the Inhomogeneous 

Poisson Processes. In its simplest sense, it is a discrete 

random process characterized by an event rate 𝜆 and has a 

probability mass function defined by:  

 

𝑃𝑟𝑜𝑏 [𝑁(𝑡 + Δ𝑡) − 𝑁(𝑡) = 𝑘] =
𝑒−𝜆𝜆𝑘

𝑘!
 (2) 

 
where 𝑘 is the number of events that occur in the interval 
[𝑡, 𝑡 + Δ𝑡). In homogeneous versions of the Poisson 

processes the 𝜆 is constant in that interval. In neural 

operation on the other hand, the process is much more 

complex and assuming a constant event rate will mostly be 

not sufficient and thus a time varying rate is needed. That 

actually is equivalent to the firing rate 𝑟(𝑡) of the neuron 

under examination. One can refer to 𝑟𝑒  or 𝑟𝑖 in (1). This will 

be an Inhomogeneous Poisson Point Process with the event 

rate 𝜆 replaced by a mean firing rate defined by:  

 

𝜆 = ∫
𝑡+Δ𝑡

𝑡
𝑟(𝜏)𝑑𝜏 (3) 

 
 where 𝑟(𝑡) will be 𝑟𝑒(𝑡) if the neural spiking of the 

excitatory neuron is considered. For the inhibitory neuron 

𝑟(𝑡) should be replaced by 𝑟𝑖(𝑡). Now the term 𝑘 represents 

the number of spikes in the interval [𝑡, 𝑡 + Δ𝑡). That is 

statistically related to the firing rate 𝑟(𝑡) and 𝜆 will represent 

the mean spike count corresponding to the time dependent 

firing rate 𝑟(𝑡). In (2), 𝑁(𝜏) stands for the cumulative total 

number of spikes up to time 𝜏, thus making 𝑁(𝑡 + Δ𝑡) −
𝑁(𝑡) equal to the number of spikes for the time interval 
[𝑡, 𝑡 + Δ𝑡). 

Now, suppose that one has a spike train 

(𝑡1, 𝑡2, … , 𝑡𝐾) in the time interval (0, 𝑇). Here, 0 ≤ 𝑡1 ≤
𝑡2 ≤ ⋯ ≤ 𝑡𝐾 ≤ 𝑇 , and so 𝑡 and Δ𝑡 become 0 and 𝑇. The 

spike train can be considered as a time series (including the 

time stamps for 𝐾 spikes). So a likelihood function 

associated with any spike train (𝑡1, 𝑡2, … , 𝑡𝐾) can be derived 

from an Inhomogeneous Poisson Process [16, 6] in the 

following way: 
 

𝑝(𝑡1, 𝑡2, … , 𝑡𝐾) = 

exp (− ∫
𝑇

0
𝑟(𝑡, 𝑥, 𝜃)𝑑𝑡) ∏𝐾

𝑘=1 𝑟(𝑡𝑘, 𝑥, 𝜃) (4) 

 
The function yields the likelihood of a given spike train 

(𝑡1, 𝑡2, … , 𝑡𝐾) that occurs with the rate function 𝑟(𝑡, 𝑥, 𝜃) 

which obviously is relying mainly upon model parameters 

and the stimulus. 
An important point that is to be discussed here is 

the generation of test spikes for the statistical analysis. As 

we don’t have any firing rates available from experimental 

measurements we will need to apply a statistical analysis on 

the spike timings. The estimated model’s firing rate output 

should be converted to spike timings. In order to obtain 

those, one needs to perform an Inhomogeneous Poisson 

Process simulation using the firing rate output(s) of the 

model in (1) with the estimated parameters. The stimulus 

should be the same as the one used in the generation of the 

experimental data (provided by [25]). The simulation can be 

performed using the following scheme [16]: 

 

 (1).  Given the firing rate of a neuron as 𝑟(𝑡) , 

 (2).  Find the probability of firing at time 𝑡𝑖 by evaluating 

𝑝𝑖 = 𝑟(𝑡𝑖)𝛿𝑡 where 𝛿𝑡 is the integration interval. It should 

be a small real number such as one milliseconds, 

 (3).  Draw a random number 𝑥𝑟𝑎𝑛𝑑 = 𝑈[0,1] which is 

uniformly distributed in the interval [0,1]. Here, 𝑈 stands 

for a uniform distribution, 

 (4).  If 𝑝𝑖 > 𝑥𝑟𝑎𝑛𝑑  fire a spike at 𝑡 = 𝑡𝑖, else do nothing,  

 (5).  Collect spikes as 𝑆 = [𝑡1, … , 𝑡𝑁𝑠
] where 𝑁𝑠 will be the 

total number of spikes collected from one simulation. 

Note that the above scheme requires sufficiently small bin 

sizes like 1 or 2 milliseconds. 
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D. Maximum Likelihood Approaches 

The parameters in consideration is vectorized as follows:  
𝜃 = [𝛽𝑒 , 𝛽𝑖 , 𝑤𝑒𝑒 , 𝑤𝑒𝑖 , 𝑤𝑖𝑒 , 𝑤𝑖𝑖 , 𝑎𝑒 , 𝑎𝑖 , 𝐹𝑒 , 𝐹𝑖] (5) 

The maximum probability here relies on the function 

proposed in (4) and includes each spike timing as well. 

Estimation theory asserts that determining maximum 

likelihood is asymptotically effective and goes as far as the 

Cramér-Rao bound when the data size increases. Thus, in 

order to expand the likelihood function in (4) to further cover 

settings with numerous spike trains initiated by numerous 

stimuli, a series of 𝑀 stimuli should be assumed. Take the 

𝑚-th stimulus (𝑚 = 1, … , 𝑀) to initiate a spike train 

containing 𝐾𝑚 spikes in the time window [0, 𝑇], and the 

spike timings are given by 𝑆𝑚 = (𝑡1
(𝑚)

, 𝑡2
(𝑚)

, … , 𝑡𝐾𝑚

(𝑚)
). By 

(4). According to (4), the probability function for the spike 

train 𝑆𝑚 can be determined as: 
 

𝑝(𝑆𝑚|𝜃) = exp (− ∫
𝑇

0
𝑟(𝑚)(𝑡)𝑑𝑡) ∏𝐾𝑚

𝑘=1 𝑟(𝑚)(𝑡𝑘
(𝑚)

) (6) 

 
 in which 𝑟(𝑚) represents the firing rate against the 𝑚-th 

stimulus. Here it should be noted that the rate function 𝑟(𝑚) 

entirely relies on the parameters related to neuron 

parameters 𝜃 and the applied stimulus. Supposing the 

stimulus and its elicited responses in each 𝑚tℎ trial are 

independent one can derive a joint likelihood function as:  

 
𝐿(𝑆1, 𝑆2, … , 𝑆𝑀|𝜃) = ∏𝑀

𝑚=1 𝑝(𝑆𝑚|𝜃) (7) 
 
To improve its convexity, we can make use of natural 

logarithm and derive a log likelihood function as shown 

below:  

 

𝑙(𝑆1, 𝑆2, … , 𝑆𝑀|𝜃) = − ∑𝑀
𝑚=1 ∫

𝑇

0
𝑟(𝑚)(𝑡)𝑑𝑡

+ ∑𝑀
𝑚=1 ∑𝐾𝑚

𝑘=1 ln𝑟(𝑚)(𝑡𝑘
(𝑚)

)
 (8) 

 
 Finally, the maximum likelihood estimates of the parameter 

vector 𝜃 is obtained by: 
 
𝜃̂𝑀𝐿 = argmax

𝜃
[𝑙(𝑆1, 𝑆2, … , 𝑆𝑀|𝜃)] (9) 

 

E. Analysis approaches 

As the true values of the parameters in Table 1 are not 

available to us, the only viable approach seems to perform a 

statistical analysis on the measured and simulated spike 

trains. One such approach is the Kolmogorov-Smirnov test 

[32, 31] which assesses whether two samples are drawn from 

the same distribution or not. MATLAB’s [h,p,ks2stat] = 

kstest2(x1,x2) routine can perform this test for two arrays 𝑥1 

and 𝑥2 respectively. The routine tests the null hypothesis that 

the data in vectors 𝑥1 and 𝑥2 are from the same continuous 

distribution using the two-sample Kolmogorov-Smirnov 

test. The alternative hypothesis is that 𝑥1 and 𝑥2 are from 

different distributions. MATLAB routine can return both the 

ℎ value and 𝑝 value at 5% significance level. Here ℎ value 

appears to be 1 when the test rejects the null hypothesis. The 

𝑝 value behaves reversely as it is the probability of observing 

a test statistic as extreme as, or more extreme than, the 

observed value under the null hypothesis. As a result it will 

be closer to 1 when the null hypothesis is not rejected. 
In this research, the test is performed on the 

interspike intervals (ISI) of the measured and simulated 

neural spike trains. 
  

 (1).  After the parameter identification by maximum 

likelihood method completed, the model in (1) is simulated 

with the estimated parameters against the stimuli used in 

the estimation process (i.e. the one in Figure 1).  

 (2).   The firing rate is recorded and an Inhomogeneous 

Poisson Process simulation is performed using the method 

introduced in Section 2.C.  

 (3).  The interspike intervals (ISI) of both simulated spikes 

obtained in Step 2 and the measured ones available from 

the data provided by [25] are evaluated.  

 (4).  The interspike intervals are provided to two sample 

Kolmogorov-Smirnov test and the 𝑝-values are recorded.  

 (5).  During the tests, the stimulus-response pair is 

segmented and the measured and simulated responses are 

superimposed. Different number of segments are examined. 

This is performed as a single train of spikes may not be 

statistically sufficient to reflect the statistical content of the 

response.  

 (6).  In [h,p,ks2stat] = kstest2(x1,x2), 𝑥1 corresponds to 

ISI of measured spikes and 𝑥2 corresponds to the ISI of the 

simulated spikes obtained in Step 2. The 𝑝 values are taken 

into consideration in this research.  

III. RESULTS 

In this study, we attempt to estimate the parameters of an 

firing rate based neural network model representing 

excitatory and inhibitory behaviors. The mathematical 

model of this network is presented in (1) and the parameters 

to be estimated are available in Table 1. The stimulus-

response pair is a realistic data obtained as a result of an 

experiment performed by [25]. Here the stimulus is a visual 

input of white noise type recorded for 20 minutes (First two 

seconds is available in Figure 1). The response is the firing 

instants received from the H1 neurons of the true flies of 

order Diptera (First two seconds is available in Figure 2). 

As we are not using synthetically generated data, we have 

no information on true parameters. The performance of the 

estimation is assessed using two sample Kolmogorov-

Smirnov test on the interspike intervals of the recorded 

spiking data and responses of the model with estimated 

parameters. 
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The parameters are estimated by maximizing the joint 

likelihood function in (8). Optimization will be performed 

by MATLAB’s fmincon routine. This allows the user to 

define constraints and we apply a lower bound of zero to 

ensure all the parameters remain in positive region. This will 

both ensure the stability of the algorithm and also the 

excitatory-inhibitory nature of the model in (1) is not 

disturbed. We only have a single recording of a relatively 

longer duration. Thus, one will need to partition the stimulus 

and response into segments of predetermined length. The 

segmentation will be beneficial as responses falling into 

individual segments can be superimposed to increase  

statistical content of information. One can observe in Table 

2 the results obtained from maximum likelihood estimation 

of parameters. 

 

 

Table 2: The estimated parameters 𝜃𝑀𝐿 and their dependence to the length of the segments (𝑇𝑠𝑒𝑔). The number of segments 

are indicated by 𝑁𝑠𝑒𝑔. 

  
𝑻𝒔𝒆𝒈 𝑵𝒔𝒆𝒈 𝜷̂𝒆 𝜷̂𝒊 𝒘𝒆𝒆 𝒘𝒆𝒊 𝒘𝒊𝒆 𝒘𝒊𝒊 𝒂𝒆 𝒂𝒊 𝑭𝒆 𝑭𝒊 

600.0 2 188.50 279.52 315.24 64.68 271.54 236.12 153.84 60.42 44.67 289.09 

400.0 3 23.54 260.10 178.55 16.63 457.98 90.23 243.11 294.44 44.67 103.13 

300.0 4 181.63 352.44 415.08 19.04 121.46 75.13 411.93 186.02 44.67 294.13 

200.0 6 15.11 154.32 226.83 13.54 210.41 56.20 86.12 197.90 44.68 136.20 

150.0 8 111.80 117.90 243.51 350.43 474.50 170.36 446.64 160.09 44.67 19.42 

120.0 10 16.70 498.80 79.12 431.33 90.73 123.66 120.03 129.57 89.40 265.75 

100.0 12 164.52 117.64 243.50 350.60 486.09 170.23 447.39 159.94 44.67 16.24 

80.0 15 93.89 298.27 418.81 19.21 274.78 233.81 128.49 29.33 44.67 300.95 

60.0 20 132.89 345.36 433.38 52.32 409.45 338.66 464.99 421.40 44.68 378.80 

50.0 24 105.35 243.59 183.07 13.42 379.81 265.20 353.56 29.84 44.68 169.42 

40.0 30 68.27 116.33 422.60 41.86 403.69 469.93 76.69 284.45 44.68 258.11 

30.0 40 102.12 293.87 322.42 24.72 274.87 233.75 125.00 24.04 44.68 301.16 

25.0 48 111.04 17.59 405.97 482.82 150.12 352.77 340.92 312.97 44.68 52.77 

20.0 60 95.52 21.35 480.33 188.89 476.42 415.38 410.33 231.41 44.69 466.87 

15.0 80 83.48 19.78 485.35 188.49 483.46 415.68 410.61 231.39 44.69 467.84 

12.0 100 117.87 21.53 480.75 188.56 476.67 415.39 410.34 231.41 44.69 466.91 

10.0 120 104.81 25.79 486.65 186.30 485.18 415.65 410.59 231.39 44.71 467.76 

8.0 150 94.14 116.14 461.20 77.55 226.71 467.42 158.95 119.61 44.72 212.01 

6.0 200 135.70 29.57 336.38 169.75 125.37 223.65 256.82 16.09 44.71 331.76 

5.0 240 90.23 70.67 450.14 62.48 269.97 192.39 360.96 277.86 44.75 37.13 

4.0 300 126.92 244.80 122.57 13.70 380.86 265.27 354.33 17.67 44.75 197.02 

3.0 400 122.45 357.09 418.17 3.05 411.64 339.47 475.62 424.06 44.77 380.12 

2.0 600 124.77 164.32 150.83 17.40 353.63 263.02 40.09 81.77 44.84 168.31 

1.0 1200 110.37 7.46 340.41 165.29 349.10 388.43 499.99 155.79 45.04 278.53 

0.5 2400 121.30 343.46 484.86 68.36 18.48 13.92 228.91 318.02 45.52 239.72 

 

 

For the Kolmogorov-Smirnov analysis one can refer to the 

Figures 3 - 17. The figure explanations comment on the 

variation of 𝑝 value with the super imposed number of 

samples (or samples 𝑁𝑠𝑒𝑔). The test results show that 

regardless of the length of the segments (𝑇𝑠𝑒𝑔), the 𝑝 value 

exceeds 𝑝 = 0.95 level when number of samples are at least 

equal to 𝑁𝑠𝑒𝑔 = 40. When the length of the segments are 

restricted to a minimum of 𝑇𝑠𝑒𝑔 = 5 seconds, most of the 

cases yield 𝑝 > 0.95 when we have a sample size of 𝑁𝑠𝑒𝑔 =

30 or more. 

IV. CONCLUSION  

A. Summary 

 In this work, we presented a framework for estimation of 

the parameters of a firing rate based excitatory-inhibitory 

dynamical neural network from a realistic set of stimulus-

response data. The model is of second order type and has a 

total of 10 parameters that are to be estimated (1). The 

stimulus is a 20 minute recording of white noise visual 

excitation. The response is a binary array of neural spikes 

that are received from H1 neurons of true flies of order 

Diptera [19, 25]. As a result, only the temporal locations of 

the spikes are available to us. Thanks to the evidence that the 

neural spiking phenomenon largely obeys the Poisson 

processes, we can employ a point process likelihood 

function such as (7) to perform an estimation of our model 

parameters. Contrary to the studies like [15, 13, 11, 14] we 

do not know the true value of our parameters (as we do not 

employ synthetic data here) and thus needed to apply two 

sample Kolmogorov-Smirnov statistical test to compare the 

interspike intervals of the recorded response and the one 

obtained after the simulation of the model in (1) with the 

estimated parameters.  

B. Discussion of the results 

 In the analysis by Kolmogorov-Smirnov method, 

the resultant 𝑝 value which shows the probability that the 

interspike interval distribution comes from two similar 

distributions. In the case that 5% significance level is 

sufficient, 𝑝 = 0.95 level should be achieved to conclude 

that our spiking procedures are coming from two point 
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processes with the same event (thus firing) rate. If the 

significance level is pushed to 10%, then 𝑝 = 0.90 should 

be reached. However, higher percentages for the 

significance level should be avoided. 
 

Based on the results in Figures 3-17, one can note that the 𝑝 

value obtained from the two sample Kolmogorov-Smirnov 

analysis stays in ranges higher than 𝑝 = 0.95 if the sample 

size (number of segments) remains at least 𝑁𝑠𝑒𝑔 = 40 for all 

cases. When the segment size is larger than 𝑇𝑠𝑒𝑔 = 5 

seconds, the required number of samples is even smaller i.e. 

𝑁𝑠𝑒𝑔 = 30. In Table 2, parameters appear to be closer to 

each other when the segment size is kept in the range 10 ≤
𝑇𝑠𝑒𝑔 ≤ 25 seconds. Interesting coincidence is that, the 

minimum required sample size is also lower than 𝑁𝑠𝑒𝑔 = 40. 
 

When the results of [12] is examined, it appears that the 

required sample size to have 𝑝 values higher than 𝑝 = 0.95 

requires larger number of samples. In Table 3, one is able to 

see some results from [12] which bears the segment sizes 

𝑇𝑠𝑒𝑔 in seconds and required number of samples 𝑁𝑠𝑒𝑔 to have 

𝑝 values higher than 𝑝 = 0.95. It is pretty obvious that, the 

model in [12] requires more samples to yield 𝑝 values higher 

than 𝑝 = 0.95. The minimum required sample size is 𝑁𝑠𝑒𝑔 =

50 and obtained when the segment size is 𝑇𝑠𝑒𝑔 = 0.5 

seconds. For larger segment sizes, the required number of 

samples is even larger. So one can say that, the model in (1) 

has a better modeling capacity for H1 neurons of Diptera 

flies. 
  

Table  3: The required sample size 𝑁𝑠𝑒𝑔 v.s. the segment 

size 𝑇𝑠𝑒𝑔 which yields 𝑝 values higher than 𝑝 = 0.95 for 

the model in [12]. 
  

𝑻𝒔𝒆𝒈 (s) 𝑵𝒔𝒆𝒈 

0.5 50 

1 170 

2 130 

3 140 

4 130 

6 150 
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FIGURES 

 
Figure  3: The variation of the 𝑝 value for two sample 

Kolmogorov-Smirnov test when the segment size is 𝑇𝑠𝑒𝑔 =

0.5 seconds. The 𝑝 value exceeds 𝑝 = 0.95 level (5% 

significance level) when number of samples or segments 

reach 𝑁𝑠𝑒𝑔 = 40 or larger. 

  
 

  
Figure  4: The variation of the 𝑝 value for two sample 

Kolmogorov-Smirnov test when the segment size is 𝑇𝑠𝑒𝑔 =

1 seconds. The 𝑝 value exceeds 𝑝 = 0.95 level (5% 

significance level) when number of samples or segments 

reach 𝑁𝑠𝑒𝑔 = 40 or larger. 
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Figure  5: The variation of the 𝑝 value for two sample 

Kolmogorov-Smirnov test when the segment size is 𝑇𝑠𝑒𝑔 =

2 seconds. The 𝑝 value exceeds 𝑝 = 0.95 level (5% 

significance level) when number of samples or segments 

reach 𝑁𝑠𝑒𝑔 = 40 or larger. 

  
 

  
Figure  6: The variation of the 𝑝 value for two sample 

Kolmogorov-Smirnov test when the segment size is 𝑇𝑠𝑒𝑔 =

3 seconds. The 𝑝 value exceeds 𝑝 = 0.95 level (5% 

significance level) when number of samples or segments 

reach 𝑁𝑠𝑒𝑔 = 40 or larger. Considering 10% significance 𝑝 

value reaches 𝑝 = 0.90 when number of segments reach 

𝑁𝑠𝑒𝑔 = 30. 

  
 

  
Figure  7: The variation of the 𝑝 value for two sample 

Kolmogorov-Smirnov test when the segment size is 𝑇𝑠𝑒𝑔 =

4 seconds. The 𝑝 value exceeds 𝑝 = 0.95 level (5% 

significance level) when number of samples or segments 

reach 𝑁𝑠𝑒𝑔 = 40 or larger. 

  
 

  
Figure  8: The variation of the 𝑝 value for two sample 

Kolmogorov-Smirnov test when the segment size is 𝑇𝑠𝑒𝑔 =

5 seconds. The 𝑝 value exceeds 𝑝 = 0.95 level (5% 

significance level) when number of samples or segments 

reach 𝑁𝑠𝑒𝑔 = 30 or larger. 
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Figure  9: The variation of the 𝑝 value for two sample 

Kolmogorov-Smirnov test when the segment size is 𝑇𝑠𝑒𝑔 =

6 seconds. The 𝑝 value exceeds 𝑝 = 0.95 level (5% 

significance level) when number of samples or segments 

reach 𝑁𝑠𝑒𝑔 = 30 or larger. 

  
 

  
Figure  10: The variation of the 𝑝 value for two sample 

Kolmogorov-Smirnov test when the segment size is 𝑇𝑠𝑒𝑔 =

8 seconds. The 𝑝 value exceeds 𝑝 = 0.95 level (5% 

significance level) when number of samples or segments 

reach 𝑁𝑠𝑒𝑔 = 40 or larger. Considering 10% significance 𝑝 

value reaches 𝑝 = 0.90 when number of segments reach 

𝑁𝑠𝑒𝑔 = 30. 

  
 

  
Figure  11: The variation of the 𝑝 value for two sample 

Kolmogorov-Smirnov test when the segment size is 𝑇𝑠𝑒𝑔 =

10 seconds. The 𝑝 value exceeds 𝑝 = 0.95 level (5% 

significance level) when number of samples or segments 

reach 𝑁𝑠𝑒𝑔 = 20 or larger. 

  

   
Figure  12: The variation of the 𝑝 value for two sample 

Kolmogorov-Smirnov test when the segment size is 𝑇𝑠𝑒𝑔 =

12 seconds. The 𝑝 value exceeds 𝑝 = 0.95 level (5% 

significance level) when number of samples or segments 

reach 𝑁𝑠𝑒𝑔 = 30 or larger. 
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Figure  13: The variation of the 𝑝 value for two sample 

Kolmogorov-Smirnov test when the segment size is 𝑇𝑠𝑒𝑔 =

15 seconds. The 𝑝 value exceeds 𝑝 = 0.95 level (5% 

significance level) when number of samples or segments 

reach 𝑁𝑠𝑒𝑔 = 30 or larger. 

  

  
Figure  14: The variation of the 𝑝 value for two sample 

Kolmogorov-Smirnov test when the segment size is 𝑇𝑠𝑒𝑔 =

20 seconds. The 𝑝 value exceeds 𝑝 = 0.95 level (5% 

significance level) when number of samples or segments 

reach 𝑁𝑠𝑒𝑔 = 30 or larger. 

  

 

  
Figure  15: The variation of the 𝑝 value for two sample 

Kolmogorov-Smirnov test when the segment size is 𝑇𝑠𝑒𝑔 =

25 seconds. The 𝑝 value exceeds 𝑝 = 0.95 level (5% 

significance level) when number of samples or segments 

reach 𝑁𝑠𝑒𝑔 = 30 or larger. Considering 10% significance 𝑝 

value reaches 𝑝 = 0.90 when number of segments reach 

𝑁𝑠𝑒𝑔 = 20. 

  
 

  
Figure  16: The variation of the 𝑝 value for two sample 

Kolmogorov-Smirnov test when the segment size is 𝑇𝑠𝑒𝑔 =

30 seconds. The 𝑝 value exceeds 𝑝 = 0.95 level (5% 
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significance level) when number of samples or segments 

reach 𝑁𝑠𝑒𝑔 = 30 or larger. 
 

  
Figure  17: The variation of the 𝑝 value for two sample 

Kolmogorov-Smirnov test when the segment size is 𝑇𝑠𝑒𝑔 =

40 seconds. The 𝑝 value exceeds 𝑝 = 0.95 level (5% 

significance level) when number of samples or segments 

reach 𝑁𝑠𝑒𝑔 = 30 or larger. 
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