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ABSTRACT. In this present study, we intend to determine the Padovan, Perrin and Pell-Padovan dual quaternions
with non-negative and negative subscripts. In line with this purpose, we construct some new properties such as;
special determinant equalities, new recurrence relations, matrix formulas, Binet-like formulas, generating functions,
exponential generating functions, summation formulas, and binomial properties for these special dual quaternions.
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1. INTRODUCTION

Over the years, researchers have taken a strong interest in special numbers. Many studies have been done and are
ongoing on the special numbers (or sequences), which are different orders such as second-order (Fibonacci, Jacobsthal,
Pell, Horadam and etc.), third-order (Tribonacci, Tribonacci-Lucas, Padovan, Perrin, Pell-Padovan and etc.), and the
other higher-order recurrence sequences (Tetranacci, Pentanacci, and etc.).

The Padovan sequence (A000931 in [33] and see [4, 25, 26,29-31, 39, 40]), the Perrin sequence (A001608 and
A078712 in [33] and see [22,27,29-31]) and the Pell-Padovan sequence (A066983 in [33], see [1,2,7-9,30-32,37])
are the sequences of integers. They are the third-order linear recurrence sequences and defined recursively, as follows,
respectively:

Pu3=P,+ Py, Py=P=Py=1, VneN, (L.1)
R,.;3=R,+R,;1, Ro=3,Ri=0,R,=2, VneN, (1.2)
Twi3=2Ty1+T,, To=T =T, =1, VneN. (1.3)

The initial values of the Padovan numbers can be given as Py = 0,P; = 0,P, = 1, ¥n € N in some studies. If
Padovan, Perrin and Pell-Padovan numbers are extended to negative subscripts, the following recurrence relations are
given Yn € Z*:

P_, = P_-3) — P_u-1,
R_y = R_4-3) = R_(n-1)s
T =T (3 = 2T (4-1).
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It should be noted that, the recurrence relations (1.1), (1.2), (1.3) are valid ¥n € Z. This situation can be checked from
Table 1, which includes several values of the Padovan, Perrin and Pell-Padovan numbers.

TaBLE 1. Some values of the Padovan, Perrin and Pell-Padovan numbers

(n [w]—=6] =5 [-4[=3[=2]-1]0[1[2[3[4[5]6]]
P, -1 1 01| O0 1 O |1|1{1(212]3|4
R,|..|-2|] 4 |-3|2 1 |-1|310(2]3]|2|5]|5
Ty | .. |25 =159 |-5|3 |-1|1]|1]|1]|3]3]7]9

Matrix sequences of Padovan and Perrin numbers are examined in the studies [45-48]. Also, matrix representations
of the Padovan numbers (see [20, 28, 34-36,44]) and Perrin numbers (see [19,20, 24,34]) are studied.

On the other hand, the famous mathematician W. R. Hamilton investigated quaternions in 1843, [15]. Quaternion al-
gebra is associative and non-commutative 4-dimensional Clifford algebra. The set of all real quaternions is represented
by H = {q = qo + iq1 + jg2 + kq3; 90,91, G2, 3 € R}, where i, j, k are quaternionic units which satisfy the following
rules:

P=p=k=ijk=-1, ij=—ji=k, jk=-kj=i, ki=—ik=].
Dual quaternions are examined by Majernik [23] and determined by the set:

Hp ={q = qo + iq + jg2 + kq3; qo, q1, 92, g3 € R},
where i, j, k are quaternionic units which satisfy the following rules ( [12,23]):
P=P=k>=ijk=0, ij=ji=jk=kj=ki=ik=0. (1.4)

By means of dual quaternions, one can express the Galilean transformation in one quaternionic equation, [23]. Quater-
nions with special number components are examined in many research: Fibonacci quaternions [16], Pell quaternions
and Pell-Lucas quaternions [6], Jacobsthal quaternions [41], the Horadam quaternions [14], generalized Tribonacci
quaternions [5], Padovan, Perrin and Pell-Padovan quaternions [5, 10, 11, 13,42], generalized dual Fibonacci quater-
nions [49], the dual third order Jacobsthal quaternions and dual third order Jacobsthal-Lucas quaternions [3].

In this paper, we investigate the Padovan, Perrin and Pell-Padovan dual quaternions with non-negative and negative
subscripts. This study is organized into 4 sections; in the first two sections, we remark on some of the definitions
and properties concerning the Padovan, Perrin and Pell-Padovan numbers and also the dual quaternions. In Section 3,
we introduce the Padovan and Perrin dual quaternions, and then we construct new special properties for them. More-
over, we give special determinant equalities, recurrence relations, matrix formulations, Binet-like formulas, generating
functions, exponential generating functions, summation formulas, and also binomial properties. As for Section 4, we
examine the Pell-Padovan dual quaternions and the similar concepts relating to them. In Appendix A, we give some
necessary information and notations regarding the Padovan, Perrin and Pell-Padovan numbers.

2. PRELIMINARIES

The characteristic equation of the Padovan and Perrin numbers is x*

N LU IR [N Ry X
n=\276V3 27 6\V3
L, 23 o1 1 23 N3t 1 23 ot 123
6 18V3 6 48V3 "2 |(\V276V3 2" 6\V3 |
1 1 [23 i/l 1 23 ,x/§i/1+1 23 s[1 1 [23
16 48\ 3 6 48V3 "2 (\V276V33 27 6\V3 |

— x — 1 = 0 with roots rq, r», r3, where




Z. Isbilir, N. Giirses, Turk. J. Math. Comput. Sci., 15(1)(2023), 125-144 127

and ry +rp +r3 =0, rirprs = 1, rirp + rirz + rnr3 = —1. The ratio of two consecutive Padovan or Perrin numbers
converges to the value r; ~ 1.3247... which is named plastic ratio' [26]: lim %:‘ = lim RI’Q‘—:‘ ~ 1.3247... According to
these, ¥Yn € Z, Binet-like formulas for Padovan and Perrin numbers are asn ngjlows: "
P, = ar| + bry + cr}, 2.1
R,=r{+715+7135,
(=D =1) (=D -1) (rn=-D(r2-1)
where a = (r1 = r)(r —r3) - (ry = ri)(ry = r3) €T (r3 —ri)(rs —ry) [45.47. 48]

The characteristic equation of the Pell-Padovan numbers is x> — 2x — 1 = 0. The roots of this equation are
=0+ V5/2, 7 =00-5/2, 75=—1,where 7| + T + 75 = 0, 717 + 7173 + ToFs = =2, TiT>r3 = 1. Thereafter,
Vn € Z, the Binet-like formula of the Pell-Padovan numbers is given by:

T, = wir| + wary = 7%, (2.2)
where wi = (V5= 1)/ V5, wa = (V5 + 1)/ V5, [37].
Additionally, the dual quaternion g € Hyp is written as g = S, + 74, where S, = g is called the scalar part and
74 = iq1 + jq» + kg3 is called the vector part. Also for ¢, p € Hp, the algebraic operations are given as:
q =P <490 =Ppoq1=P1,92= P2, 43 = P3,

gxp=qotpo+ilqitp)+jlg+pr)+ki(gs=p3),
Ag = Aqy + idqy + jAgo + kAgs, 1 € R,

* gp = qopo + i(qop1 + q1po) + j(qop2 + q2p0) + k(qops + g3po) »
whereby the rules (1.4) in the multiplication of any two dual quaternions. Thus, this implies that §,., = S, +§,

* ¥ %

- - 4 . - . . — - .
and V., = V, £ V,. The conjugate of g is ¢ = qo — iq — jq» — kg3. Then, g = S, — V,. Also, the norm ¢ is:
Ny =49 =499 = q;.

3. PapovaN AND PERRIN DUAL QUATERNIONS

In this section, we investigate the Padovan and Perrin dual quaternions with non-negative and negative subscripts.
Also, we obtain various features and relations associated with them.

Definition 3.1. Vr € N, the nth Padovan and the nth Perrin dual quaternions are defined as follows:
Py = Py + iPysy + jPuss + kP, 3.1
En =R, + iRy + jRy2 + kR,.3, (3.2)

respectively. Besides, ¥n € Z*, the —nth Padovan and the —nth Perrin dual quaternions with negative subscripts are
given by:

Py = Py +iP sy + jP_pia + kP_ys3,
Ry =Ry +iR 1 + jR iz + kR 13,

respectively. Here, P, and R, are the nth Padovan and nth Perrin numbers, P_, and R_, are the —nth Padovan and
—nth Perrin numbers with negative subscripts, and i, j, k are quaternionic units that satisfy the rules (1.4). The set of all
Padovan and Perrin dual quaternions are represented with Py and Ry, respectively.

Vn € Z, several values of the Padovan and Perrin dual quaternions can be seen in Table 2.

IThe plastic ratio was originally worked on by Gérard Cordonnier in 1924.
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TaBLE 2. Some values of P,, and P:, forneZ

n P, R,

-3 i+k 2+i—j+k3
-2 1+j+k 1-i+j3
-1 i+j+k —1+i3+k2
0 1+i+j+k2 3+ j2+k3
1 1+i+2+k2 2+ j3+k2
2 1 +i2+ j2+ k3 2+i3+ j2+k5
3

2+i2+ j3+k4 3+i2+ j5+k5

Throughout this study,

o the examined properties of the Padovan dual quaternions are also valid for Perrin dual quaternions in some
parts, so we omit them. However, we give Binet-like formulas, generating functions, exponential generating
functions separately.

e some proofs are omitted in the theorems which include more than one property since they can be obtained like
the others.

Let consider Pn =P, +iPys1 + jPu2 + kPyys, P = Pm +iPyi1 + jPus2 + kPmH € P@, Vn € Z. Then, P, is called
scalar and iP,,;; + jP,+2 + kPy43 is called vector parts of P The conjugate of P is given by:

Pn =P, —iP,y _an+2_kPn+3~ (33)

Addition (also subtraction) of P, and P,, is P, Py, = Pyt Py + i(Post £ Poit) + j(Ppsn £ Prsn) + k(Prss £ Ppa3).
Multlphcann by a scalar is as follows: /1P = AP, + AP, + jAP, 42 + kAP,.3, A € R. Also, multiplication of P and
P,, is given by using equation (1.4):

Fnﬁm =Pan + i(Pan-H + Pn+1Pm) + j(Pan+2 + Pn+2Pm) + k(Pan+3 + Pn+3Pm) . (34)

Theorem 3.2. The recurrence relations for Padovan and Perrin dual quaternions with non-negative and negative
subscripts are given as follows:

Py =P, + Py, Vnel, (3.5)
Ry =Ry +Ryw1, VneN, (3.6)
P, = F—(n—3) - F—(n—l)s VneZ", (3.7)

R,=R (3 —R (1), YneZ'
Proof. Using equations (1.1) and (3.1), we have:
Py Pyt =Py + Pyt + i (Pust + Pus2) + j (Pusa + Puss) + k(Pyis + Pyia)
=Pu3 + Py + jPuis + kP
=Pps3.
The others can be obtained similarly. O

It should be noted that, equations (3.1), (3.2), (3.5) and (3.6) are valid Vn € Z.
Inspired by the study [21], we find a way to compute nth and —(n + 1)th term of Padovan dual quaternions in the
following Theorem 3.3. The proof is clear using equations (3.5) (for part (i)) and (3.7) (for part (ii)) via the study [21].
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Theorem 3.3. Vn € N, the following determinant equalities can be given.

P, -1 0 O O ... 0 O
P, 0O -1 O 0O ... 0 0
p, 0 O -1 0 ... 0 O
— 0 1 1 0O -1 ... 0 O
(1) P, = ,
0 0 0 0 0 0 -1
0 AO 0 0 L0y
P, -1 0 O O 0 O
P, 0 -1 0 O 0 O
Ps O 0O -1 0 0 0
L 0 1 0 -1 -1 0 0
(i) P_(ur1y =
0 O 0 o0 0 . -1 -1
0 O 0 o0 o0 . 0 -1

(n+1)x(n+1)
Example 3.4. Using the above theorem, the 5th term of the Padovan dual quaternion can be obtained as:

P, -1 0 0 0 O

Pp 0 -1 0 0 O
Pr 00 =10 0 34y j54 k7 = P,
0 1 1 0 -1 0
0 0 1 1 0 -1
00 0 1 1 0

6x6
Theorem 3.5. Vn € Z, the following properties are satisfied:

(1) En - iEn+l - jEn+2 - kEn+3 = Pg\’
(11) Pn_+ iPn+l +an+2 + kPn+3 = 2Pn - Pn’
(iii) P,P, = P2,
(iv) P, + P, =2P,,
(v) P, P, =2P, - 2P,
(vi) P? = P2+ i2P,P,, + j2P,P,,» + k2P,P,.3 = 2P,P, — P2,
=2 =
(vii) P, = P2 —i2P,P,s1 — j2P,Ppsy — k2P, P,y3 = 3P2 - 2P, P,.
Proof. (1) Using equations (1.4) and (3.1), we have:

Py = iPpst = jPus> = kPpys =Py + iPyst + jPuss + kPyss — i (Ppat + iPris + jPuss + kPpia)

- j(PrH—Z + iPn+3 + an+4 + kPn+5) - k(Pn+3 + iPn+4 + an+5 + kPn+6)

=P,.
(i1) Using equations (1.4) and (3.1), we get:

Fn + iFrHl + anJrZ + anJrS =P, +iPp1 + jPpy2 + kPyi3 +1(Ppyt + iPpio + JPni3 + kPp14)

+ j(Pn+2 + iPn+3 + an+4 + kPn+5) + k(Pn+3 + iP11+4 + an+5 + kPn+6)

=2P, — P,.
(iii) Considering equations (1.4), (3.1) and (3.3), we obtain:

PyPy = (Py + iPyi1 + jPui2 + kPyu3) (Py — iPust — jPus2 — kPyi3) = P
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Theorem 3.6. Vn € Z, the following properties are satisfied:
(1) ﬁlﬁn - EnEm = 2(Pn’PFm + Pmﬁn - 2Pan)’

(11) FnEm +EnFm = 2Pan»

(111) FnEm - Enﬁn = 2(Pan - PnFm)9

(iv) Fnﬁm + ’P\n’P\m =2P,Py.
Proof. (i) Considering equations (1.4), (3.1), (3.3) and (3.4), we have:

PnP P P = (P + lPl‘l+1 + ]Pn+2 + kPn+3) (P + leJrl + .]Pm+2 + kPm+3)

- (Pn - lPrH—] - ]Pn+2 - kPn+3) (Pm - le+l - JPm+2 - kPm+3)
=2 [Pn (iPm+1 + ij+2 + kPm+3) + Pm (iPn+1 + an+2 + kPrH—S)]
=2(PyPy + PuPy = 2P,Py,).

(i) Using equations (1.4), (3.1), (3.3) and (3.4), we obtain:
Fnﬁm + Fnﬁm :(Pn + iPn+1 + an+2 + kPn+3)(Pm + iPm+1 + ij+2 + kPm+3)

+ (Pn - iPrH—l - an+2 - kPn+3) (Pm - iPm+1 - ij+2 - kPm+3)
=2P,P,,.

O
Thanks to the study [4], we obtain some recurrence relations for Padovan dual quaternions:
Theorem 3.7. Vn € Z, the recurrence relation
Fn = puﬁl—u + O—aFn—Zu + Fn—3a
is obtained with (p,, o) such that p,,0, € Z, 1 <a <8, a € N (see in Table 3).
TaBLE 3. Some recurrence relations for Padovan dual quaternions
’ a ‘ (paa O—a) ‘ Pn = paPn—a + O-aPn—Za + Pn—3a

1 ©O,1 P,=P,>,+P -3

2 (25_1) Pn—ZPnZ Pn4+Pn6

3 (3,_2) Pn—3Pn3_2Pn6+Pn9

4 (2’3) Pn—ZPn4+3Pn8+Pnl2

50 5,-4) Pn = 5Pn 5= 4Pn 10 +Pn 15

6| 5.2 | P, —5Pn 6+2Pn—12+Pn 18

7 (7»1) Pn—7Pn7+Pn14+Pn21

8 (]0,—5) Pn_lOPng—SP,, 16+Pn 24
Proof. For a = 4, using equation (3.1) and the fourth row of Table 6, we obtain:

2Py +3Pyg + Ppis 2Py s + 3Pyg + Ptz + i 2Py + 3Py + Poiy)
+ j(zpn—Z + 3Pn—6 + Pn—lO) + k(zpn—l + 3Pn—5 + Pn—9)
=P, +iPyq + an+2 +kPpi3
:§1-

Considering the other values a, the proof is conducted by the same way. Hence, this concludes the proof. O
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Theorem 3.8. Vn € Z, the relations between Padovan and Perrin dual quaternions hold:
(i) Ry =3Pys +2P,s,
(11) R —P S+2Pn 2,
(iii) Pyt = 55 (Rus + 8Ry2 + 10R, ).
Proof. The proofs are clear, so we omit them. O

Theorem 3.9. Vm,n € N, the following relations can be given:

® Pm3P11 3+Pm IP 2+Pm 2P 1:2Pm+nl Prin-1,

(11) Pm 3Rn 3+ Pm an 2+ Pm 2Rn 1= 2Rm+n— Rm+n I»
(111) Rm 3R -3+ Rm lR -2+ Rm 2R -1 = 8Pm+n 5+ 8Pm+n g+ 2Pm+n 11 = 4Pm+n 5~ 4Pm+n—8 - Pm+n—10’
(IV) Rm 3Rn 3 +Rm an 2 +Rm 2Rn 1= 4Rm+n 3+ 2Rm+n 6 — 2Rm+n 3= Rm+n 6-

Proof. (i) Using equations (1.4), (A.4) and (3.1), we have:
P3Py + Pt Py + PPyt =Py3Pyy + Poyci P + PyaPyy

+i(Py—oPns3+ Pus3P,+ Py_1Pyy +PyPnop+ PpuoPy+ Py_1Pyy)
+ J(Pn-1Pp3 + P3Py + Py Py + Py 1 Ppa + Py Pyt + PyPyoy)
+ k(P Pp3 + P3Py + Py Ppyt + PryaPua + PyaPrya + Pruy1 Prot)

=Am+n—l +iPpin + jPminst + kPpinio

:2§n+n—l = Pin-i.

The other parts can be seen using equation (A.4). O

Theorem 3.10. Vm,n € N, the following relations are satisfied:
() Em—SE—n—S + Em—lfi—n—Z +£m—2£—n—1 = 2’Pim—n—l = Ppn-1,
(11) Em—3§—n—3 + Bm—lﬁ—n—Z + Em—ZB—n—l = 2’Iim—n—l - R’iﬂ—n—l,
(111) /Rim73R;n—3 + Rﬂ—lR—g:Z + Rm:\ZR—ni = 4Rm—ﬂ:3 + 2Rm—n—6 - 2Rm—n—3 - Rm—n—G,
V) Poy3P 3+ Py Poyo+ Py Py =2P oy — Py,
(V) P—m 3R—n 3 +P—m IR—n 2+P—m ZR—n 1= 2R—m -n—-1 = R—m -n—1»
(VI) R—m 3R—n 3+R—m lR—n 2+R—m 2R—n 1= 8P—m n— 5+8P—m —n— 8+2P—m n— 11_4P—m n=5—" 4P—m—n—8_P—m—n—10s
(Vll) R—m 3R—n 3 +R—m lR—n 2 +R—m ZR—n 1= 4R—m n-3 + 2R—m n—-6 — 2R—m n-3 — R—m n—6-

Proof. The proofs are straightforward to obtain by using Definition 3.1 and equations (1.4), (A.4). O

Theorem 3.11. Vm,n € Z* such that m < n, the following relations are given:

(1) Pm anm+Pm+anm+l+Pan+2—2P Pm
(11) m— an -m + Pm+1Rn m+1 t P Rn m+2 — 2R R

Proof. Definition 3.1 and equations (1.4), (A.6) can be used for the proof. m|

Theorem 3.12. Ym,n € Z* such that m < n, we have the following relations:

* sz 1P2(n m) + PZmPZ(n m+2 + P2m+1P2(n m+1 } = 2Py, - P,
- n ns

6))
* PZmPZ(n —m-1 + P2m+1P2(n —my+1 t P2m+2P2(n m)

(i) * sz 1P2(n myl + PZmPZ(n —my+3 + P2m+lP2(n —m)+2 } = 2Pyt — Py
* P2mP2(n m) + P2m+1P2(n m)+2 + P2m+2P2(n m)+1

Proof. The proofs are obvious from Definition 3.1 and equations (1.4), (A.7). Alternatively, Theorem 3.11 can be
used. O
Theorem 3.13. Vm,n € Z* such that m < n, the following relations can be given:

(i) Pam- 1R2(n -m) + P2mR2(n -m)+2 + P2m+1R2(n —m)+1 = = 2Ry, — Ry,

* P2m 1R2(n m)+1 + P2mR2(n m)+3 + P2m+1R2(n m)+2 _ 2"
(ii) =2Rops1 — Ropy1,
* PZmRZ(n —m) + P2m+1R2(n —m)+2 + P2m+2R2(n my+1



Padovan, Perrin and Pell-Padovan Dual Quaternions 132
(111) EZmEZ(n—mHI + EZnHlEZ(n—mH?: + EZnHZEZ(n—m)JrZ = 2k/:2n+2 - R2n+2’
(V) PomPrg-my+1 + Pans1 Pon-my+3 + Poms2Pou-mys2 = 2Pans2 = P,
(V) Em—lﬁn—nﬁl + £m£n—m+3 +£m+l£n—m+2 = 2£n+1 - Pn+17
(VI) Em:an—m+l iPm’Rin—m+3 + £m+11311—m+2 = 2&”1 — Ry,
(Vll) Emﬁn—erl + £m+1£n—m+3 + Em+2£n—m+2 = 2£n+2 - Pn+2v
(an) PmRn—m+l + Pm+1Rn—m+3 + Pm+2Rn—m+2 = 2Rn+2 - Rn+2~
Proof. Using Definition 3.1 and equations (1.4), (A.8), the proofs are clear. Also, Theorem 3.11 can be used. O
Theorem 3.14. Vn € Z*, the followings are obtained:
00 1Y(P Poii
@11 00 Py |=| P, |,
1 10 P2 Pn+2
01 0Y(P Py P P P, P
@i 1 o0 1 Py Py Py |=| Pur Puat Py |,
100 Py Py P, P, Puq Py
00 1Y
Qi) (Py Py Py )| 1 O 1| =(Pui Pua Pn),
01 0
-1 0 1Y P Py
@iv) 1 0 0 P, |=| P__1 |,
0O 1 0 Py P_,
-1 0 1Y\'( Py Py P, P, P, P,
v 1 00 Py Py Py |=| P Py P |
0 10 P2 Pl PO P—n+2 P—n+1 P—n
-1 1 0Y
(Vi) ( P,z P,l P() ) 0 0 1 = ( P,n,z P,n,z P,n )
1 1 0
Proof. The proofs are clear through mathematical induction. O

For the construction of the following formulas and binomial properties for Padovan and Perrin dual quaternions, we

utilize the studies [45-48].

Theorem 3.15. Vn € Z, the Binet-like formulas for Padovan and Perrin dual quaternions can be given as:

P, = aar’| + bbr; + ccrs,

Ry = ar{ + bry +cr5,
. . . . . . 3
whereg:l+tr1+]r%+krf,l_J:1+lr2+]r§+kr;,g:1+lr3+]r§+kr3.

Proof. Considering equations (2.1) and (3.1), we have:

P, =ar} +br5 +cri + i(ar’l'+1 +brytt + crg”l) + j(ar’lwr2 +bryt? + cr’3'+2) + k(ar‘i’+3 +bryt?

= (1+ir + jr} + kr})ary + (14 iry + jry + kr3) brs + (1 + irs + jr} + kr}) er’

= aar} + bbr; + ccry.

Equation (3.9) can be obtained similarly.

3.8)
(3.9)
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Theorem 3.16. The generating functions for Padovan and Perrin dual quaternions with non-negative and negative
subscripts are as follows:

gfnx” P filx_zfz; ) < (3.10)
ni)ﬁnx” & +1?11x_;£ki2x—3§0)x2’ 3.11)
2 5 o PP ;131): (’3132 )R

;E_nx" _Ror (R +i):§2 k)2 (3.12)

Proof. Suppose that, }; an” = Fo + le + F2x2 + ..+ an" + ... is generating function of Fn. Then, we can write:
n=0

(1= =) S B =Py + B+ (B = o) & # (By = Py Bo) o+ (Frs = P = B) 704
n=0

By the recurrence relation (3.5), we have equation (3.10). The proof of equation (3.11) is similar.

With similar thought, assume that Z P_,,x Po +P_ X+ P X4+ P_,,x + ... is the generating function of
n=0

P_,. By the recurrence relation (3.7), we obtain the following equality:

Z ﬁ,,,x" ZF() + F,lx + F,zxz + Z F,(n,3)x" - Z F,(n,l)x"
n=0 n=3 n=3

—P0+P |x+P_2x + X ZP—nxn_xZP_”)ﬂ

n=0

00

—P0+P 1x+P zx + X ZP’”X — Z _a X" —PO—P X

n=0 n=
,,x —xZP_,,x .

Mz

_P0+<P 1+PQ).X+(P2+P1 x + X

Then, we have:

F() + (F_l + F())x + (F_z + F_l)xz

(e8]
P7 xl‘t —
Z " l+x—x3

Equation (3.12) can be seen in the same way. O
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Theorem 3.17. The exponential generating functions for Padovan and Perrin dual quaternions with non-negative and

negative subscripts are given by:

n

(]
=Y , ,
Z Pn—' = gae’ + bbe'™ + cce™,
e Tl
(] yn

4 n!

S ! b b b
Z P_n—’ = aae + bbe” + cce’s,
o n!

o~ Y il > P
Z R_n—' =aet +ben +ce’s.

n!

Il
[=)

n

Proof. By using the equation (3.8), we get as follows:

ZP” . _Z aar| + bbr}) +gcr§’)i;—r:

=aa 3 — +bb r"— +cc Y
w3 S e S 2
WS S S

= L_zae"y + bbe™ + cce’™.
The other equalities can be shown in the same way.

Theorem 3.18. Vn € N, Yk, m,t € Z* and, t > m, the following summation formula is obtained:

- ka+m+t—1 + ﬁ\mkfmﬂ—l - kath—l(Rm - 1) - Fmﬂ—l - Ft—m—l + Ft—l(Rm - 1)
Z Pmn+t—1 = R _R .
n=0 m -m
Proof. By utilizing equation (3.8), we have:
k=l k-1
ZPmnH—l — Z (‘_larllnnﬂ—l +Qbr12nn+t—1 +£C,,§nn+t—1)
n=0 n=0
e | Frk_ 1 Pk 1
1|1 1) 2 1|3
= aar” (r’l”— 1]+l_9br§ (rg_l)+gcr; (rg”—l]'
Then, we obtain:
k-1 5 aaA; + bbA; + ccAj
ngo mn+t—1 = Rm — R—m ’
where
A — (,j:nk+t—m—1 + rmk+t+m—1 + rmk+t—1(1 ) _ rt+m 1 r{—m—l + r{_l(R _ 1))
for i = 1,2, 3. Finally, using equation (3.8), we have equation (3.13).
Theorem 3.19. Vk € Z*, the following summation formula hold:
- e P—mk+m t—1 +P—mk m—t—1 _P—mk t—l(R—m_ 1)_ m—t—1 _P—t—m 1 +P—t l(R—m - )
ZP—mn -1 = :

R -m — Rm

Proof. The proof can be shown similarly to proof of the Theorem 3.18.

(3.13)
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Theorem 3.20. Vk,n € N, the following binomial properties hold:

ok kN~ =~
(ONEDY P, = Py,
n=0\ 1
R B B L B R W=
(i) go( . )P,, = go( . )(Pn +Pua).
Proof. (i) From the equation (3.8), we have:
k k
k \= k n
Z( " )Pn = Z( i )(gar’l' + bbr! +gcr1>
n=0 n=0
k k k
k., k k
=_az_;( " )r1 +sz_(;( " )r§+ch_;( " )r’3’
= aa(l + r)F + bb(1 + r)* + cc(1 + r3)*
= c_zarfk + l_)brgk + gcrgk
= Pxy.
m]
Corollary 3.21. Vk,n € N, the following binomial properties are satisfied:
NS = Lk \= oy o = Lk \=
(i) Pagsny = Py + 2 ( )Pn+1, (i) R3k+1) = Ry + 2 ( )Rn+1~
n=0\ " n=0\ "
Theorem 3.22. Vn € N and, Yk € Z*, the following property can be given:
P32 = 3P3ay — 2P3i + Py
Proof. Using Theorem 3.20, equation (3.5) and the binomial properties, the proof is clear. O

Considering the summation formulas given in the study [38], the following summation formulas for Padovan dual
quaternions can be given:

Theorem 3.23. Vk,n € N, the following summation formulas are obtained:

ko _ ko _ _
(1) X Py = Prys — Py, (vi) X P3ne1 = P3pe3 — Po,
n=0 n=0
ko - ko - _
(11) ZO Py = Poyy3 — Py, (Vli) Z() P3,0 = P3jyq — Py,
n= n=|
ko _ - ko -
(iii) Zo Prp_1 = Pyin — Po, (viii) Zo Psy = Psge1 — Py,
n= n=
ko _ - ko - -
(iv) ZOP2n+1 = Pojys — Pa, (ix) ZOP5n+1 = Pspyo — P_3,
n= n=
ko - ko - -
(V) 2 P3p = P32 — Py, (xX) X Psyso = Pz — P,
n=0 n=0
Proof. The proof is clear. O

Theorem 3.24. Vk,n € Z*, the following summation formulas are satisfied:

ko _ _ ko _ _
() Z] P_y = —P_ji4+ Py, (iii) 21 P o1 = —P_y + Py,
n= n=
ko - - ko _ _
(ii) 21 P_yy = —=P_ppp1 + Py, (iv) 21 P_yui1 = —=P_gppo + P,
n= n=
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ko _ - ko - -
(V) 21 P—3n = _P—3k—1 + P—la (Vlll) Zl P_5n = _P—Sk—4 + P_4,
n= n=
ko - - ko - -
(vi) 21 P_3y11 = —P_3 + Py, (ix) 21 P_su41 = —P_sp3 + P_3,
n= n=
ko - - ko - -
(vii) 21 P 3,10 = —P_3441 + Py, (x) 21 P_sp0 = =P_si 2+ P
n= n=
Proof. (1) Via the recurrence relation (3.7), we get:
P, =P,- P,
P,=P -P_,

P_—1) = P-4y = P2
P = P_-3) = P_i-1).

Then, we have:

k
Z Py==P =Py +Pr+ P =-P s+ Py

n=1
The other parts can be seen similarly. O
4. PELL-PADOVAN DUAL QUATERNIONS

In this section, we investigate Pell-Padovan dual quaternions with non-negative and negative subscripts using similar
methods adopted in the previous section.

Definition 4.1. Vn € N, the nth Pell-Padovan dual quaternion is defined as:
Ty =Ty +iTyer + jToua + kT3 .1
Besides, Yn € Z, the —nth Pell-Padovan dual quaternion with negative subscripts is defined as:
Ty =Ty +iT-pe1 + jT-ni2 + kT i3,

where T, is the nth Pell-Padovan number, 7_, is the —nth Pell-Padovan number and i, j, k are quaternionic units that
satisfy the rules in equation (1.4). The set of all the Pell-Padovan dual quaternions? is represented by 7.

It is quite obvious to realize that algebraic operations for Pell-Padovan dual quaternions are familiar with the previ-
ous section.
Vn € Z, we give some examples of values of the Pell-Padovan dual quaternions in Table 4.

TaBLE 4. Some values of Tn and T_n

n T, T_,

0 1+i+j+k3 1+i+j+k3
1 1+i+j3+k3 -l1+i+j+k
2 1+i3+ jj3+k7 3-i+j+k
3

3+i3+ j7+Kk9 S+i3-j+k

21t should be noted that, equation (4.1) is valid Vn € Z.
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Theorem 4.2. The following recurrence relation for Pell-Padovan dual quaternions holds:
Tpis = 2Tps1 + Ty Vn€N. 4.2)
Also, the recurrence relation for the Pell-Padovan dual quaternions with negative subscripts is satisfied:
T_,, = 7:_(,,_3) - 27:_(,,_1), VneZ". (43)
Proof. Taking into account equations (1.3) and (4.1), we obtain:
2T 1 + Ty =2T1 + Ty + QT2 + Tut) + JTi3 + Toia) + kT s + Tpi3)
=lp43 + iTn+4 + an+5 + an+6
=An+3~
Recurrence relation (4.3) can be shown in the same manner. |
The recurrence relation (4.2) is valid Yn € Z, as well.
Theorem 4.3. Vn € N, the following determinant equalities can be given.
To, -1 0 0 0 ... 0 0
7 0 -1 0 O 0 0
7 0 O -1 O 0 0
— o 1 2 0 -1 0 0
(1) T, = s
O 0 0 0 O 0 -1
0 AO 0 0 2 0 (n+1)x(n+1)
T, -1 0 0 O 0 O
T, 0 -1 0 O 0 0
T3 0 0 -1 0 0 o0
o~ 0 1 0 -2 -1 0 o0
(i) T_ue1y =
0 o 0 o0 0 . =2 -1
0 00 0 0 w02 (n+1)x(n+1)
Proof. The proof is obvious with equations (4.2) (for part (1)), (4.3) (for part (ii)) and the study [21]. O

Example 4.4. Let us consider the —8th term of the Pell-Padovan dual quaternion by using the method presented in

Theorem 4.3.

T, -1 0 0 O 0 0 O

T, 0 -1 0 0 O 0 0

T 0 0 -1 0 0 0 0

0 1 0 -2 -1 0 0 0 . . =
=74 +i(-41) + j25 + k(-15) = T .

0 0 1 0 -2 -1 0 0 (AD+ 25+ K=15) = Tos

0 0 0 1 0 -2 -1 0

0 0 0 0 1 0 -2 -1

0O 0 0 0O 0 1 0 =2

8x8
Theorem 4.5. Vn € Z, the following is satisfied:

T2 = Tost + Ty = (C1'(L =i+ j = ).
Proof. Using equations (A.9) and (4.1), the proof is completed.
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Theorem 4.6. Vn € Z, the following properties hold:
{’fn = Topi2 + 24+ Tt + j (T +2) + KTy

To=T g +i(~Toper + 2+ Ty + k(=T_yy +2);

Proof. By using the equation (4.1) and (A.10), the proof can be completed.

Theorem 4.7. Vn € Z, the below properties hold:
(1) Zn - iz\nﬂ - jz\n+2 - kin+3 = TZL’
(11) Tn_+ iThe1 + an+2 + kT3 = 2T, — T,
(i) T, T, = T2,
(iv) Tp+ T, =2T,,
) T, =T, = 2T, - 2T,
(vi) TZ = T2+ 2T, Tpy1 + 2T, Tpyo + k2T, Tyy3 = 2T, T, — T2,
=2 —
(vii) T, =T?-i2T,Tys1 — j2T,Tuss — k2T, Ty = 3T% - 2T, T,..

if nis odd,

if n is even.

Proof. (iv) Taking into account equation (4.1) and the conjugate of T,, we have:

T+ Ty =(Ty + iTys1 + jTusa + kTps3) + (T = iTps1 = jTusa = kTps3)

=2T,.

(v) From equation (4.1) and conjugate of Tn, we obtain:

Ty =Ty =(Ty + iTps1 + jTusa + kTps3) = (T = iTps1 = jTusa — kTps3)

=2T, — 2T,.

(vi) From equations (1.4) and (4.1), we have:

T2 =(Ty, + Tusri + Tz j + Tnssk) (T + Togri + Taj + Trish)

=T2 4 2T, Tpi1 + 2T, Tz + k2T, T3
=2T,T, — T?.

(vii) Considering equation (1.4) and conjugate of Tn, we get:
—

71\n :(Tn - iTn+1 - an+2 - an+3)(Tn - iTn+l - an+2 - an+3)

:Tn2 - izTnTn+1 - jZTnT;H-Z - kZTnTn+3
=372 - 2T, T,.

Theorem 4.8. Vn € Z, the following properties hold:
@) TuT = TuTn = 2(TuTp + TuTy — 2T,T,).
(ii) ToTyp + Tyl = 2T, T,
(i) T, T =TT = 2(TT = TuTon),
Gv) TyToy + TyToy = 2T, Tpn.

Proof. (iii) Using equations (1.4), (4.1), and conjugate of Tn we have:

TuTo = ToTo =Ty + iTyst + jTusa + kT0s3) Ty = iTyst = jTomsz = kTons3)
- (Tn - iTn+1 - an+2 - an+3)(Tm + iTm+1 + ij+2 + kTm+3)

:2(Tmi:n - Tnfm)
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(iv) Considering equations (1.4), (4.1), and conjugate of T,,, we obtain:

TuTon + TuTp =(Ty + iTper + jTasz + KT} (Ton = iTat = jTisz = kT ni3)
+ (Tn - iTn+l - an+2 - an+3)(Tm + iTm+1 + ij+2 + kTm+3)

=2T,Ty,.
O
Inspired by the study [4], we obtain some recurrence relations as follows:
Theorem 4.9. Yn € Z, the recurrence relation
i:n = pail—a + a—ail—2a + ﬁ—fﬁa
is obtained with (p,, o) such that p,,0, € Z; 1 <a < 10; a € N (see in Table 5).
TaBLE 5. Some recurrence relations for Pell-Padovan dual quaternions
’ a ‘ (Par T4) ‘ Ty = paTn-a + 0aTn-2a + Tn-3a ‘
1 1(0,2) T,=2T,»+T,3
2 (4» _4) Tn = 4Tn 2= 4Tn 4+ Tn 6
3 (3,5) Tn—3Tn 3+5Tn 6+Tn9
4 (8’ _8) Tn = 8Tn 4 — 8Tn 8 + Tn 12
5 1(10,12) T, = 10T,, s+ 12T,, |Q+Tn s
6 | (19,-19) T,= 19Tn 6 — 19Tn 12+ Tn 18
7 1(28,30) T, = 28T,1 7+ 30Tn 14 + T,, 21
8 (48, —48) Tn = 48Tn 8 — 48Tn 16 + Tn 24
9 | (75,77) T, = 75T o + 77T, 18+ T, 27
10 | (124,-124) | T, = 124T,_10 — 124T,_20 + T30
Proof. For a = 3, by using equation (4.1) and the third row of Table 7, we obtain:
3Ty3 + 5Ty6 + Tpog =3Ty_3 + STy + Tueg + 3Tz + 5Tys + Tug) + j3T,y + STyos + Tyr)
+ k(3Tn + STn_3 + Tn—6)
:Tn + iTn+1 + an+2 + an+3
=T,.
The other recurrence relations can be obtained similarly. O

Theorem 4.10. Vn € Z*, the followings are satisfied:

01 0Y(To T,
(i>[001] Ty |=| T |,
1 2 0 TZ Tfn+2
[0 0 1 ] f_l [T;,H
Gl 1 0 o To |=| 7., |.
01 -2 T, T s

i) (71 7> To )[

0
1
0
00 1Y)
(iV)(To T—l T—z )[1 0 0 ] Z(T—n T—n—l T_n_z ),
0 1
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01 0Y (T, T, T, To T, T,
v]2 01 T, T To |=| Tz Thr T, |,
100 Ty, T, T T, Tua Ty
-2 0 1 ! TO T 1 T—Z T—n T—n— 1 T—n—2
(vipp| 1 0 O W To Ty |=| Ty T-n T
0 10 T, T Ty T2 T To,
Theorem 4.11. Vn € Z, the Binet-like formula for Pell-Padovan dual quaternions is given as:
T, = dw\7! + ew) s — [T, (4.4)

where d = 1+ir +j7% +k7?, e=1+in +j7§ +k7§, f=1+inr; +j7§ +k7§’ and’ry, 13, 13 are the roots of the characteristic
equation x> — 2x — 1 = 0 of Pell-Padovan numbers.
Proof. From equations (2.2) and (4.1), we obtain:
T, =wiT] +wary =75 + i (wﬁ’,’” + wﬁ’z’“ ﬁ””) + ](wﬁq“r2 + wﬁg”z ”’”2) + k(wﬁ?+3 + wﬁ;l” 7’3”3)
=(1 +ir + j7+ kr*l)wfr’]q + (1 + iy + jT5 + kr‘z)er2 - (1 +1ir3 + 73 -i—kr3)r3
=dwiT} + ewar; = fT5.
O

Theorem 4.12. The generating functions for Pell-Padovan dual quaternions with non-negative and negative subscripts
are given as follows, respectively:

o i TQ+T]X+(T2—2TQ))C2

; Tn = 1-2x2-x3 ’ 5)
o T0+(2T(,+T_l>x+(zf_1 +T_2)x2
; T = 1+2x—x3 ' (4.6)

Proof. Let presume that ), T,x" = To AT x4+ Tox? 4o+ Tpx" + -+ - is generating function of the Pell-Padovan dual
n=0
quaternions. By performing the necessary calculations, we obtain:

(1 - 2X2 - X3) Z Tnx" ZT() + TNC + (Tz - 2?0) x2 + (E — 2?‘\] — T()) )C3 + -+ (’\,14_3 ZT,H_] — n) )HH?
n=0
Eventually, utilizing equation (4.2), we obtain equation (4.5). With similar thought, equation (4.6) is obtained. O

Theorem 4.13. The exponential generating function of Pell-Padovan dual quaternions with non-negative and negative
subscripts are as follows:

(&9
V' 7 oy Ty
Z = dwie™ + ewpe’™ — fe'?,

Proof. Using equation (4.4), we have:

0o

y_‘ idw|r1+ewz7” ﬂ)

0 n=0

n

=lee Y 4 ew,e” —fe”y.

The other equality can be shown by using the similar way. O
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The proofs of the following theorems can be conducted by mathematical induction. By utilizing [38], we give the
following summation formulas in the following theorems.

Theorem 4.14. Vn,m € N, the following summation properties hold:
oom 1, - — —_ o~~~
() 20 T, = E(Tm+2 +Tme1 + T +To—T1 — Tz),
n=

m _ — —_— — — — —
(ii) Zo Ty = Tops1 +m(Tr =Ty —To) + Ty — Ty,
o

m 1, - _ _ — —
(iii) Zo Trpy1 = E(T2m+3 + Toper = Tope1 +2m(=To + T +Tog) = Tr + T} - To)~
P

Theorem 4.15. Vn,m € Z*, the following summation properties hold:
. m __ 1 — — — — — —
W) 2T = 5(-3T s =32 = Tos + T2+ 11 = o),
n=
m - — — — — — — —
(i1) 21 Toon =T -ms1 + Toom + m(To =Ty = To) + T\ — T,
n=

mo_ | — —~ — = = = = =
i) 3 Toan = 3(Tamer =3T 2 = Tt + 20-T2 + Ty + To) + T2 = Ty + To).

5. CONCLUSIONS

In this article, we bring together the properties of dual quaternions and Padovan, Perrin and Pell-Padovan num-
bers. We identify the Padovan, Perrin and Pell-Padovan dual quaternions with non-negative and negative subscripts by
examining well-known relations and identities.
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AprPENDIX A. Basic CoNcePTS FOR PADOVAN, PERRIN AND PELL-PADOVAN NUMBERS

Vn € Z, with initial values Py = Py = P, = 1, we have P, = p,Py—q + 04Py—24 + Py—34, Where p,, 0, € Z, (04, 04)
for0 <a < 8,a €N, [4], (see in Table 6).

TaBLE 6. Recurrence relations for Padovan numbers, [4]

|

‘ (pm O—u) ‘ Pn = paPn—a + O-aPn—Za + Pn—3u ‘

(7,1)
(10, -5)

w = TPy + Pp_14 + Py_y)
w = 10P,_g — 5P, _16 + Pp_24

a

1,1 P,=P, 5+ Py;

2 (2, —1) P,=2P, »— P, 4+ P, ¢
31@3,-2) P,=3P,3—-2P, ¢+ P, 9
41(2,3) P,=2P, 4+3P, g+ P,_1»
5/6,-4) | Pp=5P,s—4P,_10+ P15
6 (5,2) Pn=5Pn—6+2Pn—12+Pn—18
7 P,

8 P,
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Table 6 is also valid for Vn € Z and Perrin numbers. Yn € Z, we have (see [45,47,48]):
R, =3P,_5+2P,_4,

R, =2P, >+ P,_s, (A 1)

1
P,y = Z(RH—S +8R,—> + 10R,_1).

Also, the nth power of third-order Padovan matrices Q and Q are as (see [45-48)):

010 Pn—S Pn—3 Pn—4
o={0 0 1], Qn =| Ppa Py Py3 |, VneN, (A2)
1 10 Pn—3 Pn—l Pn—2

- -1 0 1 - P—n—S P—n—3 P—n—4
0= 1 0 0], Qn =| Pooy P,y P3|, VnelN (A.3)
0 1 0 P—n—3 P—n—l P—n—2

Vm, n € N, the relations regarding the Padovan and Perrin numbers are obtained, [45,47,48]:

Py3Py3+ Py-1Ppa+ Pu2Py1 = Ppin-1,
Pu-3Ry-3+ Py1Ry—2 + Pp2Ry-1 = Ry,
Riu-3Ry3+ Ry 1Ry2 + Ry oRy 1 = 4Ppyn-s5 + 4Pyyn-g + Pruvu-11,
Ryp 3Ry 3+ Ry 1Ry 2+ Ry oRy 1 = 2Ripin3 + Ryins,
Pu3P_n3+ Py Pyt PyoP i =Puy,
Py 3R 3+ Py 1R 2+ Pp2aR 1 = Ry—n-1, (A4)
Ru 3R 3+ Ry 1R 2+ Ry 2R 1 =2Ry 3+ Rysss
Py 3Py 3+P yPyo+PpyoP =Py,
Py 3R 3+ Py Ryo+PyaR 1 =Ry,
Roni3R,3+R iRy 2+R uoR 1 =4P s +4P i ng+ Poypn11,
Ry 3R 3+R Ry 2+R 2R 1 =2R yn3+R jyps.

Using the initial values Py = 0, P; = 0, P, = 1, the Padovan matrix is identical to the matrix which is presented in
(A.2). Q" is defined as (see [35]):

Piy Pui Py
Q"= P, Puo Py |, Ynx=3. (A.S5)
Pn+1 Pn+3 Pn+2
From equation (A.5), Ym,n € Z* such that m < n, the following are obtained (see [34,35]):
{Pn =P 1P + Pus1 Poems1 + PPr_msn, (A6)
Ry = Py iRy + Py Ryt + PRy, .

With Py = 0, P; = 0, P, = 1, the new third-order square matrices are examined in [28] and (A.6) is obtained by using
these new matrices. Yn, m € Z* such that m < n, we have ( [36]):
Py, = Pop 1 Poguemy + PonPogu—my+2 + Poms1 Po(n—my+1,
Py, = PoyPoguemy-1 + Pops1 Panomy+1 + Poms2Pogn-my, A7)
Prv1 = Pon—1Pogr—my+1 + PonPogi-my+3 + Poms1 Po(n—my+2, '
P2n+l = P2mP2(n—m) + P2m+1P2(n—m)+2 + P2m+2P2(n—m)+ly
by using
P2n—1 P2n P2n+l
, (01" =| Pus1 Pusz Pauss
Py, Popy1 Pongo

Q=

— O O
O = =
—_— = O
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V¥n,m € Z* such that m < n the following relations are given, [20]:
Ry = Pop1Ro(nmy + PouRo—my+2 + Poms1R2(i—my+1,

Rons1 = Pon—1Ro(i—my+1 + PonRo(n—my+3 + Pomse1R2(n—my+2,
Rope1 = PonRo(n—m) + Pons1Rogi—my+2 + Poms2Ro(n—my+1,
Prpio = PoyPoiomyr1 + Pomc1 Pogi-my+3 + Pomsa Pognmy+2,

Roniz = PoRo(nemy+1 + Poms1Ro(nomy+3 + Poms2Ro(n—my+2, (A.8)
Pyt = Pyt Promit + PiPuomas + Pt Proma2,

Ryi1 = Pp1Ryoms1 + PuRy-mi3 + PRy,

Puo=PyPy it + Pus1 Poopss + PrusoPu_pa,

Ry = PRyt + Pt Ry + P2 Ruomao.

The Pell-Padovan matrix is examined in [7,37], utilizing Kalman’s matrix formula in [18], such that (see [29,43]):

0 2 1
1 00
010

The other type of Pell-Padovan matrix can be seen in [7]. Summation formulas of these special numbers are also
examined in the study [38]. Then, Yz € Z, we have (see in Table 1), [33]:

Ty =Ty + T, — (1), (A.9)

and

T,=-T_,.»+2; ifnisodd,
{ (A.10)

T,=T_,.2; if nis even.

Additionally, if T, is the nth Pell-Padovan number, and then T,, = p,T—y + 04Ty-24 + Ty-3, is obtained with (o,, 07,)
such that p,, 0, € Z;1 < a < 10;a € N;n € Z, (see in Table 7), [17].

TasLE 7. Some recurrence relations for Pell-Padovan numbers, [17]

’ a ‘ (pa, Ta) ‘ Ty = paTn-a+ 0aTn2a+ Th-3a ‘
1 0,2) T,=2T, 2+ T3
2 | 4,-4 T,=4T, >, —4T,_4 + T,_¢
3 1(@3.,5 T,=3T,3+5T, ¢+ T,
4 1(8,-8) T,=8T,4—-8T, 3+T, 12
5 (10, 12) Tn = IOTn_5 + 12Tn—IO + Tn—lS
6 (19, —19) T, = 19Tn—6 - 19Tn_12 + Tn—lS
7 | (28,30) T,=28T,7+30T,_14+T,-2
8 | (48,-48) T,=48T,_s —48T,_16 + Ty—24
9 | (75,77) T,=75T, o+ 71T,_18+ Ty_27
10 | (124, -124) | T, = 124T,_10 — 124T, 2 + T30
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