PREPARATION AND SPECTROSCOPIC INVESTIGATION OF MOLECULAR COMPLEXES OF SUBSTITUTED ACETANILIDES WITH SOME TRINITROBENZENES

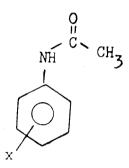
A.L.EI-ANSARY, I.M. ABBAS AND Y.M. ISSA

Chemistry Department, Faculty of Science, Cairo University, A.R. Egypt)
(Received in June 1986, Accepted in September 1986)

SUMMARY

The solid molecular complexes formed between substituted acetanilides and trinit-robenzenes are prepared and investigated by element analysis, IR and ¹H NMR spectroscopy. The results of element analysis confirm the formation of 1:1 complexes in a pure state. The spectral changes reveal that picric acid forms complexes with π - π *, n- π * electronic interactions and proton transfer while picrylchloride and trinitrobenzene result their complexes through π - π * and n- π * transitions. The results are confirmed by ¹H NMR.

INTRODUCTION


The existence of molecular complexes between substituted nitrobenzenes and aromatic hydrocarbons has long been recognized. Mulliken suggested that the formation of molecular complexes from two aromatic molecules can arise from the transfer of an electron from a π - molecular orbital of the donor to a vacant π^* - molecular orbital of the acceptor molecule(Mulliken, 1950; 1952; 1952). The possibility of n- π^* interaction was also illustrated.

Molecular complexes of N-substituted and ine derivatives as donors and nitrobenzenes as acceptors were the subject of several investigations (El-Kholy, 1980; Hindaway, 1980; Dale, 1954; Bailey, 1963; Ross, 1957). Some of these were concerned mainly with the determination of their physical constants $(K, \triangle H, \triangle S)$ using UV absorption spectrophotometry. (Bailey, 1963; Ross, 1957).

In the present investigation, the solid complexes formed between some acetanilide derivatives and picric acid, picrylchloride and trinitrobenzene are prepared and characterized by element analysis, IR and ¹H NMR spectroscopy.

EXPRIMENTAL

The compounds used in the present investigation were pure grade chemicals from BDH. The substituted acetanilides were prepared by the previously described method (Vogel, 1962). The resulting compounds were recrystallized to constant melting point. The following substituted acetanilides were used as donors:

where x = H (a), o-Cl (b), m-Cl (c), p-Cl (d), p-Br (e), o-CH₃(f), m-CH₃(g),p-CH₃(h), o-OCH₃(i), m-OCH₃(j), p-OCH₃(k), o-NO₂(1), m-NO₂(m), p-NO₂(n), o-COOH(o), m-COOH(p) p-COOH (q), p-N (CH₃)₂(r), 2,4-di-Cl (s), p-COCH₃ (t)

The acceptors used in this investigation are picric acid (I), picrylchloride (II) and trinitrobenzene (III).

The solid complexes were prepared by mixing hot saturated solutions of the donor and the acceptor (0.01 mole each) in absolute ethanol. The solid complexes separate out readily with acceptor (I) while with (II) and (III) the complexes were obtained on standing. The solids obtained were purified by either boiling with or recrystalization from ethanol.

The IR spectra were recorded in KBr matrix on a Unicam SP 1000 spectrometer. The ¹H NMR spectra were obtained in DMSO using Varian EM-390 90 MHz NMR spectrophotometer using TMS as internal standard. The prepared molecular complexes were subjected to element analyses at the microanalytical center, Cairo University. The results are very satisfactory for 1:1 complex (donor: acceptor) Tables (1 and 2). Melting points are uncorrected.

Table I Melting point, colour and element analysis of molecular complexes of acetanilides with picric acid

Donor	Oonor Colour	D°.C	0	% D	-	% н	Z	% N	Ö	CI %
		•	Calc.	punoj	Calc.	punoj	Calc.	punoj	Calc.	punoj
ď	vellow	99	46.15	45.90	3.29	2.91	15.38	15.51	-	
Q.	vellow	09	42.15	42.10	2.76	3.22	14.05	13.85	8.90	9.10
p	yellow	95	42.15	42.00	2.76	3.40	14.05	14.10	8.90	8.50
Ç.	yellow green	89	47.62	47.12	3.70	3.63	14.81	14.59		1
64	yellow green	09	47.62	47.30	3.70	3.45	14.81	14.93		
<u>-</u>	yellow	85	47.62	47.24	3.70	3.92	14.81	14.69]	
٠,-	orange	83	45.68	46.12	3.55	4.00	14.21	14.40]	
74	green yellow	74	45.68	46.20	3.55	3.90	14.21	14.35]	
	orange	48	41.07	40.80	2.93	3.10	17.11	16.93		
ш	yellow	86	41.07	40.70	2.93	2.65	17.11	17.00		l
п	yellow	108	41.07	40.70	2.93	2.70	17.11	17.19		
0	yellow	I	44.12	43.72	2.94	2.75	13.72	13.87	Anadasas	
Ω	yellow	179	44.12	43.90	2.94	2.81	13.72	13.69		
, 0	yellow	157	44.12	44.00	2.94	2.63	13.72	13.96	1	
· 14	dark green	202	47.41	46.95	3.95	3.62	17.28	16.98		
×	yellow green	66	38.80	38.37	2.31	2.50	12.93	13.21	16.16	16.37
. 	yellow	97	47.29	47.09	3.44	3.60	13.78	14.00	-	-

Teble II Melting po

Melti	ng poir	Melting point, colour and element analysis of molecular complexes of acetanilides with picrylchloride	alysis of mo	olecular co	mplexes of	acetanilide	es with pica	ylchloride			
	Donor	Donor Colour	D°.cc	%	C	H	% н	Z	%	CI	CI %
			4	Calc.	punoj	Calc.	punoj	Calc.	found	Calc.	punoj
	**	yellow	65	43.96	44.20	2.87	2.89	14.64	14.56	9.28	9.36
		yesllow	70	40.29	39.87	3.39	3.52	13.46	13.62	17.03	17.19
	7.	yellow	89	40.29	40.53	3.39	3.48	13.46	13.94	17.03	17.12
_	6)	yellow	92	36.40	36.17	2.16	2.51	12.13	12.43		
_		yellow	26	45.39	45.46	3.27	3.38	14.12	14.21	8.95	8.46
	b.c	yellow	71	45.39	45.14	3.27	3.19	14.12	14.51	8.95	8.39
		yellow	77	45.39	45.51	3.27	4.34	14.12	14.37	8.95	8.79
		orange	79	43.64	43.88	3.15	2.81	14.49	14.18	8.60	8.31
		brown	74	43.64	43.92	3.15	2.93	14.49	14.13	8.60	8.43
_		brown	09	43.64	43.73	3.15	2.74	14.49	14.67	8.60	8.19
_		yellow	52	39.29	38.98	2.57	2.57	16.37	16.21	8.30	8.62
_	ш	pale yellow	86	39.29	39.36	2.57	2.72	16.37	16.72	8.30	8.80
_		yellow	7.2	39.29	39.43	2.57	2.94	16.37	16.66	8.30	8.71
		yellow	135	42.20	42.44	2.58	3.00	13.14	13.42	8.32	7.92
_		pale yellow	83	42.20	42.38	2.58	2.83	13.14	13.36	8.32	7.96
_	777	pale yellow	170	42.20	42.17	2.58	2.84	13.14	13.29	8.32	7.89
_		black	8	45.12	44.51	3.52	3.15	16.45	16.17	8.34	8.53
		green yellow	72	37.22	37.48	1.99	2.31	12.40	12.19	23.58	23.93
_		yellow	74	45.12	45.30	2.35	2.80	13.16	13.26	8.34	8.63

RESULTS AND DISCUSSION

The results of element analyses of the molecular complexes under investigation, Tables 1 and 2 are in good agreement with those required for 1:1 complexes. Compounds isolated from mixtures containing twice as many acceptors than donors (in a trial to test the possibility for the existence of 1:2 complexes) were only 1:1 complexes. This is in accordance with previous conclusions that the presence of a donating π – system is essential for CT complex formation (Issa, 1981).

The acceptors used in the present investigation are either acidic molecules (I) or neutral molecules (II) and (III). Since the donor molecules under investigation have obvious basic character, then it is acceptable that their behaviour towards acceptor (I) would be different from that towards (II) and (III). In the former case, the charge transfer interaction is expected to take place through electron transfer from the donor molecule to the acceptor and proton transfer from the acceptor molecule to the basic center in the donor, while electron transfer only is expected with acceptors (II) and (III). Accordingly each type of molecular complexes is considered separately.

MOLECULAR COMPLEXES WITH PICRIC ACID (I)

The IR spectra of the molecular complexes formed when picric acid is allowed to react with the donors under investigation exhibit some dramatic changes which are used to elucidate both the type of bonding and the structure of these complexes. These changes may be summarized in the following:

The v_{NH} bands of the donor appearing within the wave number range 3300-3200 cm⁻¹ are not observed in the IR spectra of the molecular complexes (El-Ansary, 1985). Meanwhile a group of weak to medium bands are observed within the 3000-2400 cm⁻¹ range. These bands are attributed to the stretching vibration of a hydrogen atom attached to a positively charged nitrogen atom (N⁺-H). This assignment is in agreement with those previously reported for aniline salts (Bellanato, 1960). This group is formed through the transfer of a proton from the acidic OH-group of picric acid (pKa = 0.38) to the basic nitrogen atom of the donor molecule (Weast, 1978; 1979). This is also confirmed by the disappearance of the v_{OH} band of PiOH.

Donor	Colour	m.p.°C	Donor	Colour	m.p.°C
a	buff	75	k	brown	82
b	brown	58	1	yellow	115
С	buff	93	m	buff	116
d	buff	110	n	buff	168
e	buff	120	0	buff	136
f	pale brown	81	р	buff	218
g	buff	83	q.	buff	221
h	buff	85	r	dark brown	151
i	yellow orange	119	ŝ	brown	102
j	buff	76	t	pale brown	129

Table III
Colour and melting point of molecular complexes of acetanilides with trinitrobenzene

For donors 1, m and n, IR spectra of the complexes display the ν_{0H} band of picric acid at 3370, 3310 and 3290 cm⁻¹ respectively. Also the ν_{NH} of the donors are observed at 3120 cm⁻¹. This may be taken as evident that proton transfer does not participate in the formation of these complexes.

The amide I band $(v_{C=0})$ mostly exhibit a shift to lower wave number on complex formation. This is attributed to decreased polarization of the C=O under the influence of the electron withdrawing NH_2^+ group especially in presence of electron donor group in the acetanilides. For donors o,p and q containing a COOH group, a slight shift to higher wave number is observed.

Picric acid exhibits three v_{asym} NO₂ bands which shift to lower wave number on complex formation with donors a, 1, m, n, s and t. This shift indicates the increased polarization of the NO₂ groups in the molecular complexes. This behaviour results from the $\pi - \pi^*$ charge transfer interaction. For other donors, the higher v_{asym} NO₂ band shifts to higher wave number. This can be explained by invoking the occurance of an n- π^* interaction between an n-electron on the substituent with a vacant π -level on the nitro group facing it. This interaction has a high possibility for o- and p- substituents having n-electrons. The v_{sym} NO₂ band shifts to lower wave numbers, which is in accordance with previous studies (Issa, 1981).

The γ_{CH} band of the acceptor (PiOH) is shifted to lower wave numbers (Table 4) while those of acetanilides (Table 5) are mostly shifted to higher wave numbers. These shifts are ascribed to increased polarization of the CH bonds in the acceptor part and the reverse in the donor part of the complex.

In general, the above results lead to the conclusion that picric acid form molecular complexes with acetanilides through proton

Main IR bands of the acceptor part in molecular complexes of acetanilides with trinitrobenzenes (cm-1) Table IV

ric a		acid		picrylchloride	loride		trinitro	trinitrobenzene	
	NO ₂ asym	sym	_ B	NO ₂ asym	NO ₂ sy	NO ₂ sym Y _{CH}	NO ₂ asym	NO ₂ s	NO ₂ sym Y _{CH}
=	1555,1540,1530	1350 784	4	1553,1540	1348	788	1552	1347	920
2	540,1527,1520	1340 782	_	565,1545,1520	1350	775	1550,1540	1355	910
15	560,1530,1520	1340 776	9				1545,1532	1350	915
İ			1	555,1545,1535	1345	775	1550,1540	1355	910
155	555,1545,1520	1340 790	_	555,1545,1530	1350	775	1540,1535	1350	910
				558,1535,1525	1345	755	1555,1540	1358	912
155	555,1545,1523	_	_	555,1540,1527	1350	755	1550,1540	1370	920
155	558,1540,1523	1343 790	0	1550,1535	1350	755	1542,1538	1350	902
155	558,1545,1523	1340 785	_	555,1540,1530	1350	755	1550,1530	1350	902
156	560,1535,1521	1342 778	_	555,1545,1535	1350	755	1552,1532	1350	910
				550,1535,1525	1345	770	1555,1540	1350	006
155	1558,1540,1522		_	560,1550,1530	1345	770	1540,1530	1350	910
	1550,1525	_	_	555,1545,1525	1350	-	1540	1335	915
	1535,1525	_	_	555,1535,1528	1350	755	1555	1350	895
15	555,1535,1530	1355 785	_	565,1550,1535	1350	750	1550	1350	912
155	1558,1549,1535	_	_	545,1535,1525	1350	770	1540	1350	006
	1565,1550	_	_	563,1550,1535	1350	755	1550	1352	895
156	560,1550,1530	_		555,1540,1527	1350	755	1552	1350	920
2	560,1542,1525		_	555,1550,1535	1350	755	1560,1540	1350	910
155	550,1545,1532			555,1545,1535	1350	765	1555,1542	1380	006
	1550,1532	1350 788	_	558,1550,1535	1350	760	1550,1540	1350	910

Table V: Main IR-bands of the donor part in molecular complexes of acetanilides with trinitrobenzenes (cm⁻¹)

			free donor	ľ		picric acid			picrylchloride	qe	#	trinitrobenzene	zene
-	Donor	NH	0=0	YcH	$-N^+H_2$	0=0	тсн	YNH	C=0	ДСП	ΗΝν	0=0	YCH
	a	3280,3240	1658	760,690	3250-2300	1630	765,695	3290,3240	1670	765,700	3040	1690	760,720
	۾	3270,3250	1660	758,717	3050-2320	1636	760,730	- 1			3300,3090	1670	760,730
	၁	3290,3280	1672	903,872,790				3325	1670	915,882,822	3300,3100	1660	920,885,800
	p	3300,3270	1672,1665	845,832,755	3100-2320	1650	845,824,742	3310,3270	1665	840,830,752	3300,3120	099	850,840,765
	ę	3280,3230	1670	835,825,748	1	.		3310,3070	1675	840,830,754	3300,3080	1660	845,840,750
	Ţ	3270,3230	1665	752,712	3090-2430	1630	760,712	3300	1650	755,718	3220,3120	1665	765,720
	5 0	3290,3250	1660	880,088,006	3060-2230	1650	880,790	33z0	1660	920,900,790	3300,3120	1670	925,885,795
	Ч	3300,3250	1662	828,822,760	3100-2360	1650	850,825,780	3320	1687	850,815,755	3320,3120	1670	840,825,765
	. paq	3260,3240	1652	752,715	3100-2280	1650	750,717	3420	1687	758,717	3320,3120	1660	760,730
		3295,3250	1657	900,863.770]		1	3330	1660	915,867,790	3300,3120	1670	920,880,780
	74	3260,3230	1650,1638	840,822,775	3100-2360	1645	842,830,785	3200,3080	1650	855,835,780	3300,3120	1660	860,840,795
	_	3260	1705,1697	792,752,708	*	1708,1638	00,753,710	3260	1991	820,793,705	3380,3120	1710	795,770,730
	Ħ	3300,3270	1685,1672	880,815,808	*	1680,1640	892,825,810	3375	1680	887,820,805	3320,2120	1680	895,828,810
	g	3300,3270	1690,1677	867,852,765	*		870,852,785	3315,3285	1680	890,865,765	3290,3120	1685	865,855,750
	0	3200	1688	792,770,703	3120-2400	1700,1638	795,785,700	3115	1702	810,780,720	3120	1690	800,790,715
	ф	3230	1703	883,780,755	3100-2340	1710,1658	895,810,780	3345	1714,1708	895,780,755	3350,3120	1715	895,796,765
	5	3300	1686,1675	855,837,780	3100-2320		855,840,785	3320	1686,1675	880,850,795	3340,3120	1700	860,840,790
	H	3270,3230	1655,1645	852,815,770	3080-2300	1692,1635	855,825 ₂ 790	3360,3300	1685,1660	855,825,790	3300,3140	1670	860,830,770
	so.	3290,3260	1670	868.822,773	3120-2300	1670,1640	870,830,790	3320,3280	1680	865,850,765	3310	1675	870,825,770
	<u> </u>	3310,3260	1690,1673	858,842,765	3120-2420	1680,1640	855,842,785	3295	1665	890,820,789	3300,3120	1680	865,850,770
1													

transfer from the phenolic OH group of PiOH (except with nitro substituted derivatives 1, m and n) to the basic center (NH group) on the acetanilides. Charge transfer interaction results from the location of an electron from the highest occupied molecular orbital (HOMO) of the donor to the lowest unoccupied molecular orbital (LUMO) on the acceptor. In addition $n-\pi^*$ interaction occures between substituents containing n-electrons and the nitro group facing it. Thus the CT interaction in molecular complexes belonging to this group may be represented as follows:

$$z = Cl (II), H (III)$$

$$\begin{array}{c} CH_3 \\ C = 0 \\ O_2N \\ \hline \\ NO_2 \\ \hline \\ \pi - \pi^* \\ \hline \\ O \\ \hline \\ CH_3 \\ CH_3 \\ \hline \\ CH_3 \\ CH_3 \\ \hline \\ CH_3 \\ \hline \\ CH_3 \\ CH_3 \\ \hline \\ CH_3 \\ CH$$

Molecular complexes with picrylchloride (II) and trinitrobenzene (III)

The IR spectra of molecular complexes formed between acetanilides and picrylchloride (II) of trinitrobenzene (III) are superposition of the IR spectra of their constituents. The spectra of the complexes compared with those of their components (Tables 4 and 5) reveal an apparent shift of the γ_{CH} bands of the acceptor to lower wave numbers while those of the donors are shifted to higher ones. This behaviour results from the increased electron density on the benzene ring of the the acceptor and its decrease on that of the donor which results from intermolecular $\pi - \pi^*$ electron transfer from the HOMO of the donor molecule to the LUMO of the acceptor molecule (Issa, 1981; Kross, 1957; Hindawey, 1983).

The NO₂ bands of the acceptors display some changes which may be useful for elucidation of the bonding in the molecular complexes.

The asym NO₂ bands become broadened and split in many cases. This splitting indicate differentiation of the energy states of the NO₂ groups. For complexes with II three peaks are observed while with III only two peaks are present. The lower energy band displays a shift to lower wave numbers indicating increased polarization of the NO₂ group corresponding to this band. The higher energy band almost shift to higher wave numbers (specially for II complexes) which can be accounted for by assuming the occurance of an $n-\pi^*$ interaction involving the transfer of a lone electron pair from the the nitrogen atom of the acetanilide to a NO2 group facing it in the charge transfer molecule (Kross, 1957). The $n-\pi^*$ would overcome the effect of the π - π * CT interaction, hence the band is shifted to higher values. For complexes of III, the asym NO2 band splits to two peaks, the first at lower wave number while the second shifts either to lower or higher values. Sometimes it retains its position, this may be due to the compansation of the $\pi-\pi^*$ effect by the $n-\pi^*$ interaction (Hindawey, 1983). For complexes of III with 1, m, n, o, p and q only one asym. NO₂ band is observed for the acceptor. This may be attributed to the electron withdrawing effect of the substituents, thus diminishing the $n-\pi^*$ interaction.

The sym. NO₂ bands of both acceptors II and III display shifts to higher wave numbers. This behaviour confirms the existence of CT interaction.

The higher energy NH band of the donors shifts to higher wave numbers while the low energy band exhibit counter shifts or disappears. This indicates the decreased electron density on the nitrogen atom as a result of π - π * and n- π * electron interactions.

Based on the above discussion the molecular complexes with picrylchloride or trinitrobenzene may be represented by the following:

$$CH_{3}$$

$$C = 0$$

$$O_{2}N$$

$$NO_{2}$$

$$NO_{2}$$

$$NO_{2}$$

$$Ia$$

$$In$$

¹H NMR

A further support for the conclusions gained from the IR spectra is obtained from considering the ¹H NMR spectra of molecular complexes in comparison to those of their constituents.

The signals due to aromatic protons of the donor part are shifted to higher δ values while those of the acceptor part exhibit reverse displacement. Such shifts are due to the decreased electron density on the donor ring and its increase on the acceptor one, which results from the intermolecular CT interaction.

The free donors exhibit the NH signal at 10.28-9.8 ppm which are shifted to higher field at 9.45-8.85 ppm on complex formation (Bennett, 1969). This shift can be explained by considering the resonance of the donor as follows:

Such resonance is prohibited or may be reversed as a results of the charge transfer interaction from the donor ring $(\pi-\pi^*)$ and from the nitrogen atom $(n-\pi^*)$.

The ¹H NMR spectrum of Ia exhibits broad signals at 8.9-9.2 ppm with an integration equivalent to two protons while that of the OH group of picric acid no longer exist. These signals are likely to be assigned to the -+NH₂ group formed through the proton transfer from the acceptor to the donor molecule.

The spectrum of In displays two signals at 9.1 ppm and 9.35 ppm the NH and OH protons. This indicates that In complex is formed through electron transfer only confirming that strong withdrawing substituents on the donor hindered the proton transfer from picric acid molecule to the donor.

For complexes of acceptors II and III the NMR spectra display the signals of both donor and acceptor with those of the former shifted downfields and of the later exhibit a reverse displacement. Such shifts confirms the existence of the CT interaction as mentioned above.

REFERENCES

BAİLEY, A.S., HENN, B.R., LONGDON, J.M.L., 1963. Tetrahydron 19, 161 BELLANATO, J., 1960. Spectrachim Acta, 16, 1344.

BENNETT, J., DELMAS, M., MAİRE, J.C., 1969. Drg. Mag. Resonance; 1, 319.

DALE, B., FOSTER, R., HAMMİCK, D.L.I., 1954. Chem. Soc. 3986.

EL-ANSARY, A.L., ABBAS I. M., 1985. Communications (Ankara Univ.) (in press) 31B, 000.

EL-KHOLY, A.E., ISSA, Y.M., MARGHALANI, Y.A., ISSA R.M., 1980. Pak. J. Sci. Ind. Res. 23, 233.

HİNDAWEY, A.M., NASSAR, A.M.G., ISSA, R.M., ISSA Y.M., 1980. *Indion J. Chem.* 19A, 615.

HİNDAWEY, A.M., ISSA, Y.M., ISSA R.M., RİZK H.F., 1983. *Acta Chim.* Hung 112, 415, ISSA, Y.M., HİNDAWAY, A.M., EL-KHOLY, A.E., ISSA R.M., 1981. *Gazz. Chim. İtal* 111, 27.

KROSS, R.D., FASSEL, V.A., 1957. J. Am. Chem. Soc. 79, 38.

MULLİKEN, R.S. 1952. J. Am. Chem. Soc.; 72, 600 (1950).74, 811 (1952); J. Phys. Chem. 56, 801 (1952).

ROSS S.D., LABES, M.M., 1957. J. Am. Chem. Soc. 79, 76.

VOGEL, A.I., 1962., "Practical Organik Chemistry" 3rd Longmans (London).

Weast R.C., "CRC Handbook of Chermistry and Physics" 59th Ed. CRC Inc. (Florida) (1978-1979) p. D 203.