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Sheet pile walls are flexible retaining structures that are used to hold the horizontal 
soil pressures behind them, especially in situations that cause stress changes such 
as excavation. They are divided into two as cantilever and externally supported. 
Cantilever walls are used in excavations with a maximum depth of 6 meters and are 
supported by anchors in excavations deeper than this. Some of the values to be 
calculated in the design of cantilever sheet pile walls are the embedment depth and 
the maximum bending moment that(Mmax) will occur in the cross-section of the 
wall. There are various approaches in analytical methods that have complex 
calculation steps such as determining earth pressures, solving second and third-
order equations. In this study, the Mmax that will occur in the cross-section of a 
cantilever sheet pile wall penetrates in the sand is estimated by the expressions 
obtained with the help of multiple linear regression(MLR) analysis. The results 
showed that the Mmax may not be achieved by only MLR models but with the help 
of polynomial equations. 

  

KONSOL PALPLANŞ DUVARLARIN MAKSİMUM EĞİLME MOMENTİNİN ÇOKLU 
LİNEER REGRESYON ANALİZİ İLE TAHMİNİ 

 

Anahtar Kelimeler Öz 
Konsol Palplanş, 
Eğilme Momenti, 
Çoklu Lineer Regresyon, 
Tahmin, 
Kum. 
 

Palplanş duvarlar, özellikle kazı gibi gerilme değişikliklerine neden olan 
durumlarda, yatay zemin basınçlarını arkalarında tutmak için kullanılan esnek 
istinat yapılarıdır. Temel olarak konsol ve dış destekli olarak ikiye ayrılırlar. 
Maksimum 6 metre derinliğe sahip kazılarda konsol duvarlar kullanılır ve bundan 
daha derin kazılarda ankrajlarla desteklenir. Konsol palplanş duvarların 
tasarımında hesaplanacak değerlerden bazıları gömme derinliği ve duvar kesitinde 
oluşacak maksimum eğilme momentidir. Toprak basınçlarının belirlenmesi ve ikinci 
ve üçüncü mertebeden denklemlerin çözülmesi gibi karmaşık hesaplama 
adımlarına sahip analitik yöntemler için çeşitli yaklaşımlar bulunmaktadır. Bu 
çalışmada, yapılacak bir kazı nedeniyle kuma gömülü bir konsol palplanş duvarın 
kesitinde oluşacak maksimum eğilme momenti, çoklu lineer regresyon analizi 
yardımıyla elde edilen ifadelerle tahmin edilmeye çalışılmıştır. Sonuçlar, sadece 
lineer regresyon modellerinin yardımı ile değil ancak tahmin sonuçlarının polinom 
ifadeler yardımıyla iyileştirilmesi sonucunda tatmin edici derecede başarılı tahmin 
edilebileceğini göstermiştir. 

Alıntı / Cite 
Akan, R., (2022). Estimation of the Maximum Bending Moment of Cantilever Sheet Pile Walls by Using Multiple 
Linear Regression Analysis, Journal of Engineering Sciences and Design, 10(1), 247-256. 
Yazar Kimliği / Author ID (ORCID Number)  Makale Süreci / Article Process 
R. Akan, 0000-0002-9277-1659 
 

 Başvuru Tarihi / Submission Date 
 Revizyon Tarihi / Revision Date 
 Kabul Tarihi / Accepted Date 
 Yayım Tarihi / Published Date 

 23.09.2021 
 27.10.2021 
 26.11.2021 
 23.03.2022 

 
 
 
 

                                                             
*İlgili yazar / Corresponding author: recepakan@hotmail.com, +90-246-211-1197 

https://orcid.org/0000-0002-9277-1659
mailto:recepakan@hotmail.com


AKAN 10.21923/jesd.999619 

 

248 
 

1. Introduction 
 
The demand for deep excavation has increased as the country's population and urbanization have grown so the 
necessity of bearing the horizontal earth pressure issues has arisen. Sheet pile walls are commonly employed 
applications in geotechnical engineering as retaining structures, notably to bear lateral earth pressures produced 
by excavation. Sheet pile walls can also be constructed of wood, reinforced concrete but usually steel. Steel sheet 
pile walls have interlocking edges so they can work as a whole wall and provide water impermeability. 
 
Sheet pile walls are used as cantilever walls or externally supported walls, depending on soil properties, 
excavation depth. Cantilever sheet piles are utilized for heights of up to 5 to 6 m and anchors are linked to the 
sheet pile walls to offer greater passive resistance by the infill for beyond. Sheet pile walls, unlike retaining walls, 
are generally temporary constructions that are constructed to sustain the soil mass laterally and are flexible.  
 
For more than six decades, sheet pile walls have been a subject of study. Rowe (1951), Bransby and Milligan 
(1975), and Seok et al. (2001) are some of the studies that have done model studies on embedded walls. In addition, 
Rowe (1952)  investigated the impact of several factors on flexible retaining walls, including surcharge load, 
anchor position, excavation level, soil type, wall flexibility, and soil pressure distribution on the flexible retaining 
wall. 
 
There are many theoretical methods used to calculate the maximum bending moment (Mmax), which are 
commonly obtained by the approximate method based on the Rankine earth pressure theory in current civil 
engineering applications. There are various approaches that empirical and semi-empirical offer more accurate 
estimates (Coduto, 2001; Das, 2007; Rankine, 1857). Design tables for normalized embedment depths for sheet 
pile walls were published by Bolton et al. (1989, 1990a, 1990b) based on undrained shear strength for cohesive 
soils and friction angle for non-cohesive soils. For anchored sheet pile walls embedded in sandy soils, Hagerty and 
Nofal (1992) produced simplified design charts for normalized embedment depth and anchor strength. The 
embedment depths of sheet pile walls subjected to lateral linear stresses in cohesionless soils were estimated 
using normalized relationships by Choudry et al. (2006) and Gajan (2011). Akan (2020), investigated the impact 
of the increment ratio of the theoretical depth of the wall on the maximum bending moment and anchor force of a 
single anchored sheet pile wall in the sand with varied internal friction angles when the groundwater level occurs. 
 
Mishra et al. (2020), used a functional network (FN), genetic programming (GP), and group data processing 
approach to simulate a retaining wall (GMDH). To get an expression for the design of the reinforced concrete 
retaining wall, Akbay et al. (2020) and to obtain a decision diagram for retaining wall selection, Choi and Lee 
(2010) used regression analysis. Srivastava and Malhotra (2016) used regression analysis to estimate passive 
horizontal earth pressures, and Dagdeviren and Kaymak (2020) used regression analysis to obtain a pre-sizing 
recommendation for a T-shaped retaining wall. 
 
Azzouz et al. (1976) develop regression equations to predict the compression index and compression ratio from 
classification or index data, and statistical techniques are utilized to assess and evaluate experimental data from 
consolidation experiments on a wide variety of undisturbed soils. These regression equations are then compared 
to several other comparable but more limited empirical correlations that have been reported by other researchers. 
Yoon and Kim (2006) use consolidation data to develop site-specific empirical correlation models to estimate the 
compression index of inorganic marine clay at Kwangyang new port in Korea. Regression analysis is used to make 
correlations in calculating compression index utilizing. Natural water content, void ratio, liquid limit, plasticity 
index, passing percentage, and specific gravity are among the soil characteristics utilized. Hirata et al. (1990) used 
multiple regression analysis to properly identify the connections between a mechanical characteristic and several 
physical parameters in both natural and artificially blended cohesive soils. The shear strength of soils is 
represented by two types of regression models. The Atterberg limit is used in the first model, whereas the Cam-
Clay model is used in the second. Teymen and Mengüç (2020) evaluated the characteristics of uniaxial compressive 
strength (UCS), unit weight, Brazilian tensile strength, Schmidt hardness, Shore hardness, point load index, and P-
wave velocity. Simple regression analysis, multiple regression analysis, artificial neural networks, adaptive neuro-
fuzzy inference system, and genomic expression programming have all been used to forecast the UCS. Using several 
graphs, the computed UCS values were compared to the real UCS values were then compared. Adefemi and Wole 
(2013) used two-way analysis of variance and multiple regression analysis to analyze the findings of statistical 
research on the impact of compaction delays on characteristics of lime stabilized yellowish-brown lateritic soil. 
Yoon et al. (2015) use in-situ experimental data from a range of slope locations in South Korea to develop an 
estimation method for calculating saturated hydraulic conductivity of Korean weathered granite soils. Using 
diverse physical soil characteristics, a robust regression analysis was conducted, and an empirical solution was 
proposed. Abdi et al. (2018) used artificial neural networks and multiple regression analysis to predict UCS and 
modulus of elasticity (E) in sedimentary rocks. Rock samples from four different rock types were cored and 
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submitted to extensive laboratory testing for this purpose. Physical characteristics of investigated rocks such as P 
wave velocity, dry density, porosity, and water absorption were used as model inputs, whereas UCS and E were 
used as output factors to build the prediction models. Mahdiabadi and Khanlari (2019) used MLR, multiple 
nonlinear regression, artificial neural networks, and adaptive neuro-fuzzy inference system to predict UCS and E 
in calcareous mudstones of the Aghajari Formation. The point loading, block punch, and cylinder punch tests were 
performed on samples of calcareous mudstones. The determination coefficients (R2), mean absolute percentage 
error, and variance accounted for were used to evaluate the performance of the created models. Bera et al. (2005) 
offer a regression study on bearing capacity of square footing on reinforced pond ash. Using all feasible regression 
approaches based on model test data to choose the important subset of the predictors, a power model was 
constructed to estimate bearing capacity of a square footing on reinforced pond ash at any settlement. Kumar et 
al. (2013) want to use soft computing techniques like multiple regression and artificial neural network models to 
forecast rock characteristics using drill bit speed, penetration rate, drill bit diameter, and equivalent sound level 
produced while drilling as input factors. UCS, Schmidt rebound number, dry density, P wave velocity, tensile 
strength, E, and porosity n were determined using a database of instances, and the prediction abilities of models 
were examined.  
 
The Mmax that will occur in the cross-section of a cantilever sheet pile wall is calculated in this work using 
expressions acquired from multiple linear regression (MLR) analysis, which simplifies the calculation procedure. 
For this aim, a cantilever sheet pile wall was driven into a sandy soil with the groundwater level at the dredge line 
in front and at various levels from the soil surface to the dredge line rear of the wall was modeled with the aid of 
Matlab R2015a. The acquired Mmax findings are then submitted to MLR analysis using SPSS Statistics v17.0, and 
MLR expressions are created to estimate the Mmax.  The accuracy of the estimation is measured using the 
determination coefficient (R2) and the mean absolute relative error (MARE), and the findings are encouraging. 
 
2. Material and Method 
 
The findings of the Mmax were acquired by executing step-by-step MLR analysis with the assistance of SPSS 
Statistics v17.0, and the solutions of a total of 833 cantilever sheet pile wall models were conducted with the help 
of Matlab R2015a. As a next step, the acquired results from MLR equations were enhanced with polynomial 
functions. Established regression models and improved models, expressions, and estimation assessment criteria 
presented in tables and scatter plots illustrated in figures. 
 
2.1. Cantilever Sheet Pile Walls 
 
In the experimental investigations, the cantilever sheet pile walls rotated from a position such as O, and therefore 
the active and passive earth pressures switched places at the bottom of this point (Das, 2014). Figure 1 depicts the 
earth pressures that will occur in this situation. 
 

 
Figure 1. Lateral Earth Forces (PA, PP) Acting on the Cantilever Sheet Pile Wall 
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The approximation analytical approach was utilized to simplify the solutions. The active and passive pressure 
distributions behind the wall and in front of the wall are assumed to extend to the bottom of the wall in the 
approximation analysis, while the passive pressure behind the wall below the O point operates at the base of the 
wall (Sitharam, 2013). Figure 2 depicts lateral soil pressure distributions using the approximation analysis 
approach. 
 

 
Figure 2. Lateral Earth Forces (PA, PP) Adopted in the Approximate Method 

 
Rankine's theory may be used to determine the active and passive lateral earth pressure coefficients, as shown 
below (Rankine, 1857)(Eqs. 1-2). 
 

𝐾𝑎 =
1－sin (ϕ)

1＋sin (ϕ)
                                (1) 

𝐾𝑃 =
1+sin (ϕ)

1−sin (ϕ)
                               (2) 

 
where ϕ is the internal friction angle of soil. The active and passive earth pressures for cantilever sheet pile walls 
may be calculated using Rankine's theory. as well as the moment equilibrium achieved at the wall's base, using the 
following formulas (Eqs. 3-5). 
 

𝑃𝑎 =
1

2
𝛾′(𝐻 + 𝐷)2𝐾𝑎                     (3) 

𝑃𝑃 =
1

2
𝛾′𝐷2𝐾𝑃                                                                                (4) 

(𝐻 + 𝐷)3𝐾𝑎 =  𝐷3𝐾𝑃                   (5) 
 
The excavation depth is denoted by H, whereas the embedment depth is denoted by D. Equation 6 may also be 
used to get γ', which is the effective unit weight of soil. The unit weight of water, 𝛾𝑤 , is assumed as 9.81 kN/m3 for 
the study purposes. 
 
𝛾′ = 𝛾𝑠 − 𝛾𝑤                                                                (6) 
 
3.2. Model 
 
The internal friction angle (ϕ) of the sand is raised by 1° in the range of 20° to 45°, excavation depth (H) and 
groundwater level (GWL, L1) are increased by 0.5m in the ranges of 2m to 6m and 0m to 6m in the models for the 
solution of the Mmax, respectively. The natural unit weight of the soil above the GWL is 𝛾𝑛 = 19 kN/m3, whereas 
the saturated unit weight of the soil below the GWL is 𝛾𝑠 = 21 kN/m3. Figure 3 depicts a schematic illustration of 
the relevant model. 
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Figure 3. The Soil Profile and Cantilever Sheet Pile Wall Model  

 
Figure 4 illustrates the active and passive lateral earth pressures, as well as the hydrostatic water pressure, that 
will act in the built model. The components of active earth pressure (P'A1, P'A2, P'A3, P'A4, P'A5), passive earth force 
(PP), and hydrostatic water force (Pw ) may be calculated using the formulas below ( Eqs. 7-10). 
 

 
Figure 4. The Components of the Lateral Forces Acting on the Sheet Pile Wall  

 

𝑃𝐴1
′ =

1

2
𝐾𝑎𝛾𝑛𝐿1

2                                                                                                               (7) 

𝑃𝐴2
′ = 𝛾𝑛𝐾𝑎𝐿1(𝐿2 + 𝐷)                                               (8) 

𝑃𝐴3
′ =

1

2
𝐾𝑎𝛾′(𝐿2 + 𝐷)2                                                                     (9) 

𝑃𝑃
′ =

1

2
𝐾𝑃𝛾′𝐷2                                                                           (10) 

𝑃𝑊𝐴 =
1

2
𝛾𝑤(𝐷 + 𝐿2)2                        (11) 

𝑃𝑊𝑃 =
1

2
𝛾𝑤𝐷2                     (12) 
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At a depth such as z, where the forces calculated above cancel each other out horizontally, the shear force is zero 
and the bending moment is maximum. The following equation (Eq. 13) determines this depth, z, and the value of 
the moment at a point of C at this depth yields the Mmax (Eq. 14). 
 

𝑃𝐴1
′ + 𝛾𝑛𝐾𝑎𝐿1(𝐿2 + 𝑧) +

1

2
𝐾𝑎𝛾′(𝐿2 + 𝑧)2 +

1

2
𝛾𝑤(𝑧 + 𝐿2)2 −

1

2
𝐾𝑃𝛾′𝐷𝑧2  −

1

2
𝛾𝑤𝑧2  = 0                      (13) 

𝑀𝑚𝑎𝑥 =  𝑃𝐴1
′ (𝑧 + 𝐿2 +

𝐿1

3
) +

1

2
𝛾𝑛𝐾𝑎𝐿1(𝐿2 + 𝑧)2 +

1

6
𝐾𝑎𝛾′(𝐿2 + 𝑧)3 +

1

6
𝛾𝑤(𝑧 + 𝐿2)3 −

1

6
𝐾𝑃𝛾′𝑧3 −

1

6
𝛾𝑤𝑧3            (14) 

 
3.3. Multiple Linear Regression (MLR) Analysis 
 
Regression analysis, which is extensively used in statistics, uses mathematics to anticipate linear connections 
between data (Olmschenk et al., 2019). An independent variable and a dependent variable have a cause-and-effect 
relationship in basic regression analysis (Sato-Ilic, 2017). There is one dependent variable and at least two 
independent variables in an MLR analysis. Simple regression analysis and MLR analysis are two types of regression 
analysis depending on the number of independent variables. The regression analysis method is used to investigate 
the impact of independent variables on the dependent variable as well as the cause-and-effect connection between 
them (Chantana et al., 2019; Zhang and Thomas, 2012). 
 
A general MLR equation is as follows (Eq. 15). 
 
𝑌 = 𝛽0 +  𝛽1𝑋1 +  𝛽2𝑋2 +  … … . + 𝛽𝑛𝑋𝑛  +  𝜀            (15) 
 
where Y is the dependent variable, X is the independent variable, and 𝜀 is the error term in the equation. 
 
In this paper, 833 cantilever sheet pile wall models were solved using Matlab R2015a, and the results of Mmax 
were analyzed by performing a step-by-step MLR analysis using SPSS Statistics v17.0. Two MLR models that have 
the highest R2 were examined and enhanced by using polynomial functions derived from trend curves of estimated 
and calculated Mmax (Fig. 5-6). The dependent variable in both models is Mmax, whereas the independent 
variables are fi, H, L1 in the first model and fi, Hi, L1, and L1H in the second. Here, fi denotes the internal friction 
angle (ϕ), H denotes the excavation depth, L1 denotes the groundwater level (GWL), and L1H denotes the GWL to 
H ratio. R2 and MARE evaluate the improved and unimproved prediction performance of both models. The R2 is a 
criterion for determining how closely variables in a regression equation are related (Polat, 2015). R2 assesses a 
regression equation's accuracy as well as the influence of an independent variable on the dependent variable. As 
a result, the coefficient of determination is used to analyze the connection between dependent and independent 
variables in various analytic situations. In addition, MARE was utilized as a second assessment criterion to 
measure the estimating success of the produced expressions, which determines the percent difference between 
estimated and calculated Mmax outcomes using the equation below (Eq. 16). 
 

 𝑀𝐴𝑅𝐸 =
1

𝑛
∑ |

𝑇𝑡−𝐻𝑡

𝐻𝑡
|𝑛

𝑡=1 ∗ 100                (16) 

 
n    :  Number of data evaluated 
Tt  :   Estimated value 
Ht  :  Calculated value 
 
4. Results 
 
Table 1 displays the variables and the adjusted R2 of various models while Table 2 displays the MLR equations, R2, 
and MARE of Model 3 and Model 4 which have the highest R2. As shown in Table 1, model 4 using fi, H, L1, and L1H 
as variables produces the best results among the models developed to predict the Mmax. Models 3 and 4, which 
are the best two models were investigated in this study, and the findings are shown in Figs. 5-6 and Table 2. 
 

Table 1. Results of MLR Analysis 

Model 
Independent 
Variables 

R R Square 
Adjusted R 
Square 

1 H .703 .495 .494 

2 H-fi .834 .695 .694 

3 H-fi-L1 .920 .847 .846 

4 H-fi-L1-L1H .933 .871 .871 
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Model 3, which is developed by adding the L1 variable to the fi and H variables, has a 22 percent improvement in 
R2 when compared to Model 2. Similarly, the R2 value of Model 4 developed by adding the L1H variable to Model 3 
increased by 3% when compared to Model 3 when the MARE decreased about 13% (Table 2). This demonstrates 
that all variables have a substantial influence on estimating Mmax. 
 

Table 2. Equations and Variables of MLR Model 3 and Model 4 

Model 
Independent 

Variables 
The equation obtained from MLR analysis (x) 

MARE  
(%) 

R2 

3 H-fi-L1 Mmax=637.290+342.487*H-39.814*fi -146.584*L1 75.359 .846 

4 H-fi-L1-L1H 
Mmax=-379.723+542.429*H-39.814*fi -

424.294*L1+1400.452* L1H 
65.577 .871 

 
Model 3 has adjusted R2 of 0.846 and MARE of 75.359%, whereas Model 4 has adjusted R2 0.871 and MARE of 
65.577% (Table 2). Figures 5 and 6 depict the dispersion of theoretically computed values versus estimated values 
derived from the regression equations of Model 3 and Model 4.  
 

 
Figure 5. Scatter of Estimated and Calculated Mmax Results of Model 3 

 
 

 
Figure 6. Scatter of Estimated and Calculated Mmax Results of Model 4 
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Figures 5-6 include a polynomial curve that depicts the connection between computed and estimated Mmax 
values. The Mmax values predicted by the MLR equations are employed as a variable in the equation of this 
polynomial curve and the accuracy of the calculation is enhanced. The R2 and MARE values of these polynomial 
equations and the improved predictive values obtained with them are shown in Table 3, and scatter diagrams of 
the calculated values and the improved predictive values are shown in Figures 7-8.   
 

Table 3. Polynomial Equations for Improving the Results of the Mmax of Model 3 and Model 4 

Model Polynomial Equations MARE (%) R2 

3 0.0008x2 + 0.1809x + 81.735 20.622 0.979 

4 0.0007x2 + 0.2912x + 93.147 22.005 0.949 
 
The R2 increases from 0.846 to 0.979 for Model 3 and from 0.871 to 0.949 for Model 4 with the help of the 
polynomial equation, while the MARE decreases from 75.359 to 20.622 and from 65.577 to 22.005, respectively. 
It is shown that Model 3 increases the prediction success by 16% based on R2 and 73% based on MARE, while the 
prediction success of Model 4 increases by 9% based on R2 and 66% based on MARE.  
 

 
Figure 7. Scatter of Improved Estimations and Calculated Results of the Mmax of Model 3 

 

 
Figure 8. Scatter of Improved Estimations and Calculated Results of the Mmax of Model 4 
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The adjusted R2 of the polynomial equation recommended for Model 3 is 0.979 while the MARE is 20.622% and 
the adjusted R2 of the polynomial equation recommended for Model 4 is 0.949 while the MARE is 22.005%.  
Although both models have the satisfying predictive capability with the help of polynomial equations it is seen that 
Model 3 provides more successful prediction than Model 4. 
 
5. Conclusion 
 
The Mmax that will occur in the cross-section of a cantilever sheet pile wall is calculated in this work using 
expressions acquired from MLR analysis, which simplifies the calculation procedure. For his aim, a cantilever sheet 
pile wall was driven into a sandy soil with the groundwater level at the dredge line in front and at various levels 
from the soil surface to the dredge line rear of the wall was modeled with the aid of Matlab R2015a. Then the 
obtained Mmax results are subjected to MLR analysis with the help of SPSS Statistics v17.0 and MLR expressions 
to estimate the Mmax are generated. Accordingly, the following conclusions can be drawn: 
 
- The best model established to determine the Mmax has R2 of 0.846 and MARE of 75.359%. This is an unsuccessful 
result for the estimation of the Mmax by the MLR analysis. 
- The Mmax in the cantilever sheet pile wall, can be estimated by using linear MLR models with an enhancement 
by polynomial equations with R2 of 0.98 and MARE of 20.6.  
- It is shown that Model 3 increases the prediction success by 16% based on R2 and 73% based on MARE. 
- The best model to predict the Mmax has internal friction angle of sand, groundwater level, and excavation depth 
as independent variables. 
- All the results and conclusions presented in the study, include the study-specific soil profile and sheet pile wall 
design conditions. In order to be generalized, it needs to be expanded by further studies. 
 
Conflict of Interest  
 
No conflict of interest was declared by the author.  
 
References 
 
Abdi, Y., Garavand, A.T., Sahamieh, R.Z., 2018. Prediction of strength parameters of sedimentary rocks using artificial neural 

networks and regression analysis. Arab. J. Geosci. 2018 1119 11, 1–11. https://doi.org/10.1007/S12517-018-3929-0 
Adefemi, B.A., Wole, A.C., 2013. Regression Analysis of Compaction Delay on CBR and UCS of Lime Stabilized Yellowish Brown 

Lateritic Soil. EJGE 18, 3301–3314. 
Akbay, Z., Dalyan, İ., Akın, M.S., Gençdal, H.B., 2020. An Application of TBEC-2018 in the Prediction of Retaining Wall Dimensions 

with Simple Regression Analysis. Glob. J. Civ. Eng. 2. 
Azzouz, A.S., Krizek, R.J., Corotis, R.B., 1976. Regression Analysis of Soil Compressibility. Soils Found. 16, 19–29. 

https://doi.org/10.3208/SANDF1972.16.2_19 
Bera, A.K., Ghosh, Ambarish, Ghosh, Amalendu, 2005. Regression model for bearing capacity of a square footing on reinforced 

pond ash. Geotext. Geomembranes 23, 261–285. https://doi.org/10.1016/J.GEOTEXMEM.2004.09.002 
Bolton, M.D., Powrie, W., Symons, I.F., 1990a. The design of stiff in-situ walls retaining over consolidated clay-Part II: short-

term behaviour (continued). Gr. Eng. 22, 34–40. 
Bolton, M.D., Powrie, W., Symons, I.F., 1990b. The design of stiff in-situ walls retaining over consolidated clay-Part II: long-term 

behaviour (continued). Gr. Eng. 23, 22–28. 
Bolton, M.D., Powrie, W., Symons, I.F., 1989. The design of stiff in-situ walls retaining over consolidated clay-Part I: short-term 

behaviour. Gr. Eng. 22, 44–47. 
Bransby, J.E., Milligan, G.W.E., 1975. Soil Deformations near Cantilever Retaining Walls. Geotechnique 24, 175–195. 
Chantana, J., Kawano, Y., Kamei, A., Minemoto, T., 2019. Description of degradation of output performance for photovoltaic 

modules by multiple regression analysis based on environmental factors. Optik (Stuttg). 179, 1063–1070. 
https://doi.org/10.1016/J.IJLEO.2018.11.040 

Choi, M., Lee, G., 2010. Decision tree for selecting retaining wall systems based on logistic regression analysis. Autom. Constr. 
19, 917–928. https://doi.org/10.1016/J.AUTCON.2010.06.005 

Choudry, D., Singh, S., Goel, S., 2006. New approach for analysis of cantilever sheet pile with line load. J. Geotech. 
Geoenvironmental Eng. 43, 540–549. 

Coduto, D.P., 2001. Foundation Design: Principles and Practices. Prentice Hall, New Jersey, USA. 
Dagdeviren, U., Kaymak, B., 2020. A regression-based approach for estimating preliminary dimensioning of reinforced concrete 

cantilever retaining walls. Struct. Multidiscip. Optim. 61, 1657–1675. https://doi.org/10.1007/s00158-019-02470-w 
Das, B.M., 2014. Principles of Foundation Engineering. Cengage Learning, Boston, MA, USA. 
Das, B.M., 2007. Principles of Foundation Engineering, 6th Edition. Brooks/Cole Publishing Company, Pasicif Grove, CA. 
Gajan, S., 2011. Normalized Relationships for Depth of Embedment of Sheet Pile Walls and Soldier Pile Walls in Cohesionless 

Soils. Soils Found. 51, 559–564. https://doi.org/10.3208/SANDF.51.559 
Hagerty, D.J., Nofal, M.M., 1992. Design aids-anchored bulkheads in sand. Can. Geotech. J. 29, 789–795. 
Hirata, S., Yao, S., Nishida, K., 1990. MULTIPLE REGRESSION ANALYSIS BETWEEN THE MECHANICAL AND PHYSICAL 

PROPERTIES OF COHESIVE SOILS. SOILS Found. 30, 91–108. https://doi.org/10.3208/SANDF1972.30.3_91 



AKAN 10.21923/jesd.999619 

 

256 
 

Mahdiabadi, N., Khanlari, G., 2019. Prediction of Uniaxial Compressive Strength and Modulus of Elasticity in Calcareous 
Mudstones Using Neural Networks, Fuzzy Systems, and Regression Analysis. Period. Polytech. Civ. Eng. 63, 104–114. 
https://doi.org/10.3311/PPCI.13035 

Olmschenk, G., Zhu, Z., Tang, H., 2019. Generalizing semi-supervised generative adversarial networks to regression using 
feature contrasting. Comput. Vis. Image Underst. 186, 1–12. https://doi.org/10.1016/J.CVIU.2019.06.004 

Polat, Ö., 2015. A robust regression based classifier with determination of optimal feature set. J. Appl. Res. Technol. JART 13, 
443–446. https://doi.org/10.1016/J.JART.2015.08.001 

Rankine, W.J., 1857. II. On the stability of loose earth. Philos. Trans. R. Soc. London 147, 9–27. 
Rowe, P.W., 1952. Anchored Sheet-pile walls. Proc. Inst. Civ. Eng. 1, 27–70. https://doi.org/10.1680/iicep.1952.10942 
Rowe, P.W., 1951. Cantilever sheet piling in cohesionless soil, in: Engineering. Institution of Civil Engineer, London, England, 

pp. 316–319. 
Sato-Ilic, M., 2017. Knowledge-based Comparable Predicted Values in Regression Analysis. Procedia Comput. Sci. 114, 216–

223. https://doi.org/10.1016/J.PROCS.2017.09.063 
Seok, J.W., Kim, O.Y., Chung, C.K., Kim, M.M., 2001. Evaluation of ground and building settlement near braced excavation sites 

by model testing. Can. Geotech. J. 38, 1127–1133. https://doi.org/10.1139/CGJ-38-5-1127 
Sitharam, T.G., 2013. Advanced Foundation Engineering. Indian Institute of Science, Bangalore, India. 
Srivastava, A., Malhotra, M., 2016. Earth Pressure behind a Retaining Wall under Linearly Varying Geotechnical Parameters. 

Indian J. Sci. Technol. 9, 1–8. https://doi.org/10.17485/IJST/2016/V9IS1/105809 
Teymen, A., Mengüç, E.C., 2020. Comparative evaluation of different statistical tools for the prediction of uniaxial compressive 

strength of rocks. Int. J. Min. Sci. Technol. 30, 785–797. https://doi.org/10.1016/J.IJMST.2020.06.008 
Yoon, G.L., Kim, B.T., 2006. Regression Analysis of Compression Index for Kwangyang Marine Clay. KSCE J. Civ. Eng. 10, 415. 
Yoon, S., Lee, S.R., Kim, Y.T., Go, G.H., 2015. Estimation of saturated hydraulic conductivity of Korean weathered granite soils 

using a regression analysis. Geomech. Eng. 9, 101–113. https://doi.org/10.12989/GAE.2015.9.1.101 
Zhang, J., Thomas, L.C., 2012. Comparisons of linear regression and survival analysis using single and mixture distributions 

approaches in modelling LGD. Int. J. Forecast. 28, 204–215. https://doi.org/10.1016/J.IJFORECAST.2010.06.002 

 


