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Abstract  Keywords 

In a class of diffusion Markov processes, we formulate a problem of 
identification of nonlinear stochastic dynamic systems with random 
parameters, multiplicative and additive noises, control functions, and the state 
vector at a final time moment. For such systems, the identifiability conditions 
are being studied, and necessary conditions are formulated in terms of the 
general theory of extreme problems. The developed engineering methods for 
identification and optimizing nonlinear stochastic systems are presented as 
well as their application for unmanned aerial vehicles under wind 
disturbances caused by atmospheric turbulence, namely, for optimizing the 
autopilot parameters during a rotary maneuver of an unmanned aerial vehicle 
in translational motion, taking into account the identification of its angular 
velocities. 
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1. Introduction 

Stochastic differential and discrete models are applied in 
the study of complex controlled systems under 
conditions of random parametric, structural, and 
external disturbances.  

The mathematical foundations for such researches are 
presented in well-known monographs by Bulinsky and 
Shiryaev, 2005; Evlanov and Konstantinov, 1976; Fleming 
and Rishel, 1975; Gikhman and Skorokhod, 1977; Kazakov, 
1977; Oksendal, 2000; Solodov and Solodov, 1988 et al. . 
Here and further, we apply for the alphabetical citation 
order.  

Strict mathematical methods for optimizing nonlinear 
systems are also known; for example, Dubovitskii and 
Milyutin, 1965; Girsanov, 1970; Ioffe and Tikhomirov, 

1974; Kazakov and Artemyev, 1980; Kolosov, 1984 et al..  

In the applied theory of optimizing nonlinear stochastic 
systems, approximate methods based on parametric or 
functional approximation of the a posteriori probability 
distribution density are used. Parametric approximation 
methods are applied to determine the characteristics of 
stochastic processes, namely, a posteriori moments or 
cumulants, which are usually called semi-invariants, see 
the monographs by Bodner et al., 1987; Chernetsky, 1968; 
Denisov and Rodnishchev, 2017; Dostupov, 1970; 
Kozhevnikov, 1978; Malakhov, 1978; Potseluyev, 1984; 
Pugachev and Sinitsyn, 1985 et al..  

Our theoretical results on this topic were presented in 
research papers (Rodnishchev, 2001a,b; Rodnishchev 
and Khairullin, 2010). These results were implemented in 
the Russian aerospace industry, namely in control 
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systems of spacecraft (Rodnishchev et al., 2019), 
including mini-satellites for communication (Fig. 1) and 
the Earth-observing (Fig. 2), space robot-manipulators 
(SRMs), Fig. 3 (Somov et al. l., 2019), as well as Russian 
passenger airliners, Fig. 4 (Rodnishchev and Somova, 
2019), in control systems of turboprop engines for 
various aviation equipment (Bodner et al., 1987; 
Kozhevnikov et al., 1989).  

In this paper, methods for identification in stochastic 
control systems and study the problem of optimizing 
parameters of unmanned aerial vehicle (UAV) autopilot 
during its turning maneuver in translational movement 
under stochastic atmospheric turbulence are briefly 
presented. 

 

Fig. 1. The communication mini-satellite 

 

Fig. 2. The Earth-surveying mini-satellite 

2. Models and the Problem Statement 

In this section, the problem of identifying vectors of 
parameters m

ia R}{ a  and control r
iu R}{ u  is 

studied for nonlinear stochastic system 
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and control objectives, technical and operational 
requirements to the system are determined by 
constraints on the final system status of the equality type 

.N,0)]([),( 1f
q

sss scfEI =−= yau  (4) 

Here ][E  is the expectation operator, it  and ft  are the 
initial and final points of a time interval and 

)(}{ fff ty i yy ==  . 

As a control vector )( u , we study a program control 
)(tu  or feedback control ),( yu t . Control )(tu  is 

determined on the set 
} ],[,} )( : ],[  )({S fifi2 tttUtttLt = uu , where ],[ fi2 ttL  is 

the space of measurable functions with quadratic 
metrics and rU R  is a convex set.  

 

Fig. 3. The SRM is preparing to capture a failed satellite 

 

Fig. 4. Russian passenger airliner IL 96-300 on landing 

The feedback control ),( yu t  is considered as Borelian 
function as either a random element in 2 L  or a non-
anticipating process relative to Wiener processes jijw ,  

with values in .U   

Next, column a  determinate the controlling parameters; 
l

ib R}{ b  is a random vector; dttWtw ijij )()( =  and 

dttt jj )()( =  are Stratonovich stochastic differentials 

of Wiener processes )(twij  and )(tj , moreover, the 

process )(twij  describes multiplicative noises affecting 
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the system, the process )(tj  describes additive noises, 

)(tWij  are white Gaussian noises that describes random 

internal perturbations common for the system, )(tj  are 

the white Gaussian noises; ),( btCij , ),,,,( aubytij  and 

),,( bytij  are given nonrandom functions satisfying 

given requirements of solution existence (1), and 
p

kz R}{ z  is observed vector of tester coordinates 

., ,1N npkz p
k   The matrix component )( kc  determines 

the selection of observed system coordinates (1), )(twk  is 
derivative of Wiener process, )(twk  is component )(tRk  
of tester additive white noise. 

At last, ),( ausI  are continuous and continuously 
differentiable functionals on a set of variables, and 

),(0 auI  is bounded functionally differentiable on the set 
of variables and k  are the weight numbers. 

At accepted conditions concerning the right parts, 
solution (1) exists, and it is unambiguous. However, this 
solution does not need to be a Markov process. That is 
why, to make (1) describe the Markov process, we 
introduce an extended state vector },{}{ byx = ix . 
Relative to the state vector x  equations (1) reduce 
themselves to an equivalent system of diffusion 
stochastic differential equations 
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These equations have a single solution and describe the 
diffusion Markov process ],[ fi ttt ; the posterior 
density of state probability )|,( zxtp  satisfies the 
Stratonovich-Kushner equation (a generalization of the 
well-known Fokker-Planck- Kolmogorov equation)  

)())()()(()()(/)( −+=  pdpFFpLtp x  (6) 

with nRx  and initial condition ),(|)|,( ii
xzx tptp tt ==

. Here ),()( zxFF =  and = )()( pL )|,(),,,( zxaux tptL  is an 
elliptic operator determined by the formula 

 +−= piipii xxpBxpApL /)]([2/1(/)]([)()( 2
)  (7) 

with coefficients of the drift ),,,( auxtAA ii =  and 
diffusion ).,,,( auxtBB ipip =  In the density function, 

)|,( zxtp  the vector z  means that the whole output 
signal realization of the tester observed on the time 
interval ],[ fi ttt  is applied. 

Assume that pkG  are the mutual forces of tester noises 

and ))2/1(()/(),( −=  xczGxcF kkpkqpqzx  scalar 

function characterize the tester properties. According to 

a theory of Markov processes, original identification 
problem (1) – (3) concerning the extended vector of 
system state },{ 1+= nxxx  reduces itself to an equivalent 
terminal problem with distributed parameters relative to 
a posterior density function )|,( zxtp  in the form 

min;)|,(),( f10 =  + xzxau dtpxI n  (8) 

)())()()(()()(/)( −+=  pdpFFpLtp x  (9) 

with ),()( zxFF =  and the condition ),(|)|,( ii
xzx tptp tt == ; 

.N,0)|,()(),( 1f
q

sss scdtpfI =−=  xzxxau  (10) 

Here the component )(1 txn+  is determined by equation  

tdgtdxcxd kkkn z )()
2

1 ( x=  − +  (11) 

with initial condition 0)( i1 =+ txn  and the operator 

./)]|,()([)()()()( 1+− nxtpgpLpL zxx  

This model is identifiable if the system (5), (11) is 
controllable (Rodnishchev, 2001a; Denisov and 
Rodnishchev, 2017).  

The main objectives of this paper are a brief presentation 
of our general approach to the considered problem and 
its practical application to optimizing the UAV autopilot 
parameters at its route turning under the turbulent wind 
perturbations.  

3. Method and the Approach 

For obtaining the necessary identification conditions in 
terms of conjugate cones in the general theory of 
extreme problems (Dubovitskii and Milyutin, 1965; Ioffe 
and Tikhomirov, 1974), the method by Girsanov (1970) is 
applied.  

In this case, the solution to the equation (6) is needed as 
well as the coupled Bellman parabolic equation. 
However, as it is known, analytic solutions to linear and 
special cases of nonlinear stochastic systems only can be 
obtained. Here our approach (Rodnishchev, 2001) is 
applied, which is based on employing mathematical 
statistics.  

The identification problem with respect to a posteriori 
semi invariant is reduced to the equivalent extreme 
problem of the estimation parameters, control, and 
components of the state vector in the form 
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for 3jN  with initial conditions 

jj ct i1i1 )( = , jpjp bt i11i11 )( =  , jj bt i2i2 )( =  , ... , j
N

j
N jj

bt
ii )( =  

and indexes npj 1N,  , also taking into account (10). 

The equations (13) present variations of semi-invariants 
j

1  of the 1-st order by j -th components for the system 
state vector, coinciding with the mathematical 
expectations; semi-invariants j

2  and jp
11  of 2-nd order 

by j -th components and the relationship between j -th 
and p -th components, coinciding with the dispersion 
and correlation functions of the state vector; at last, 
semi-invariants j

N j
  of the jN -th order.  

For the closure of a shortened system of differential 
equations (13) and an approximate representation of the 
higher moments through the lower moments, the 
method of moment semi-invariants is applied 
(Dashevskii, 1976).  

Assume 8=jN , that is sufficient to solve practical 

problems. Semi-invariants are not independent, and 
they are bound by the conditions for the functions 


 ,f  (Malakhov, 1978): 
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These functional inequalities should be performed in the 
solution of the optimization problem (12), (13) on the time 
interval ],[ fi ttt , so that is the functions f  must belong 

to an integral variety 0f  for the set of differential 

equations  

,2/)](sign1[|)/)(( )13(  +−= fftdtfd 
  (14) 

with 0 , 0)0(sign = , 0)( f  tf  when 0)( i = tf  .
  

4. Optimizing the UAV Autopilot Parameters 

This section solves the problem of stochastic 
optimization of autopilot parameters for the UAV turn 
mode, taking into account the identification of UAV 
angular velocities in atmospheric turbulence. 

At an angular velocity const,# = y  the UAV lateral angular 

motion is described in standard notations by the 
equations  
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where 
xwx LVq /o=  with a nominal true airspeed oV  of the 

UAV flight and a scale 
xw

L  of turbulence; o/V
xw  =   

with the root mean square (RMS) value 
x  of the 

turbulence intensity, )(tN  is standard white noise, and 

o  is the UAV balancing angle of attack. Here we use the 
following notations 
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where de ,,,,,,,,, nnnnllllkk
yxyx   are the UAV 

aerodynamic coefficients, and ddd
e

eee ,,,,,, yxyx iiiqiii   are 

the autopilot gear ratios. 

To determine variations of the additional sliding angle 
w , we use a model for the horizontal wind turbulence 

components, which describes a Gaussian random 
process with a spectral density 

)1/(()( 22

xxx ww LLS 
 +)= , and when using the 

formative filter (Pugachev and Sinitsyn, 1985), it is 
represented by a stochastic differential equation in (15) 
with the input noise )(tN . 

The autopilot gear ratios are linearly related to the 
coefficients  yxyx NNNLLL ,,,,,   of the stochastic 

system (15),  so the definition of the ratios 
ddd

e
eee ,,,,,, yxyx iiiqiii   is reduced to the optimization of 

these coefficients with the angular velocity 
measurements ,, 21 yx

NzNz yx  +=+=  where the 

vector },{ 21 zzz  
x

N  and 
y

N  are standard white 

noises. 
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The effectiveness of the linear control law optimization 
is estimated the functional minimum 

.min])[(
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# 2
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Since wind disturbances caused by horizontal gusts can 
lead to large deviations when turning the UAV, the 
parameters of control law are determined so that 
coefficients 5

1N, iiC  of the characteristic polynomial 
for the closed-loop system (15) provide a consistent 
choice of parameters from the asymptotic stability 
region.  

With the notation,  kq /o  this region has the 

boundary defined by the following constraints: 
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To solve the optimization problem, the additional 
variable )(8 tx is introduced, which is determined by the 
solution of the differential equation  
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with the initial condition 0)( i8 =tx , and the functional 
(16) is reduced to the following terminal form 
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on asymptotic stability region. 
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1N,  pj  taking into account the above restrictions on 

the asymptotic stability region. Equations (18), (19) are 
ordinary differential equations of order 36 with respect 
to semi-invariants 

  and j
1 , j

2 , jp
11  with indexes

.
7
1N, pj  

5. The Simulation Results and Discussion 

The dynamics of the UAV turn with a mass of 320 kg was 
studied, taking into account wind disturbances caused 
by atmospheric turbulence. At the flight altitude 

1000=H  m with airspeed 111o =V  m/s and the 
balancing angle of attack 9.3o =  deg, the UAV 
aerodynamic coefficients have the following values 
(Romanenko et al., 2012): 
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Moreover, coefficients of the characteristic polynomial 
providing stability have the values 

 .120,217,213,9.69,14 54311 ===== CCCCC  

In this case, the UAV autopilot ratios are equal to the 
values 
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which correspond to the following coefficients 6
1N, iia  
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The problem of optimization (18), (19) with restrictions at 
the turbulence scale 310=

xw
L  m is solved with the 

specified height and the RMS value 8.2=x
  m/s for 

turbulence of the wind, which corresponds to the 
”strong” turbulence according to the European 
airworthiness standards. As a result of solving the 
optimization problem with identifying the UAV angular 
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velocities by the proposed approach, the coefficients 
6
1N, iia  were obtained with the values 

4.83,;0

14.125;99.3;

109.6;8.91;
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which correspond to the autopilot gear ratios with the 
following values: 

0.55.0.0152; 0.045;

0.56;0.631; 0.0121;0.268;

ddd

e
eee

=−==

===−=





yx

yx

iii
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Fig. 5. The changing average values of angle   

 

Fig. 6. The changing average values of angular rate  

 

The transients corresponding to the initial values of the 
autopilot gear ratios (20) are shown in Figs. 5 – 8 in 
continuous graphs (1, red). The transients corresponding 
to optimized values of the autopilot gear ratios (21), 
taking into account the wind turbulent disturbances and 
identification of the angular velocities, yx  ,  are 

presented in the same figures by dashed graphs (2, blue).  

The presented data clearly demonstrate that the UAV 
autopilot parameters synthesized, taking into account 
wind effects, on average, provide a parry of disturbances 
caused by atmospheric turbulence, and reduce the 
amplitude of damped oscillations in the transient 
processes. 

6. Conclusions 

Elaborated methods for identification of the parameters 
and control functions of nonlinear stochastic systems 

with perturbations, noises, and functional equality type 
constraints are presented. Important applications 
relating to optimizing the parameters of the UAV  
autopilot during its rotational maneuver in translational 
motion when the turbulent wind disturbances, taking 
into account the identification of the UAV angular 
velocities, are briefly represented. The article’s main 
breakthroughs are as follows:  

(i) For random controlled processes, a fast 
calculation of semi-invariants is performed with 
the necessary accuracy. The results are applied for 
recurrent parametric optimization on the 
specified criteria;  

(ii) The developed algorithms were implemented in 
contemporary computer-aided technology of 
designing UAVs. 
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