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ABSTRACT 
 

A numerical method is derived to take account of full flow-

wall interaction in la large deformation domain. To this end, a 

simplified Lagrangian and nonlinear model is derived to describe 

the wall motion. the flow is described by two dimensional Naiver 

stokes equation. The projection method is used to solve for the 

flow and fourth Rung-Kutta method is used to solve wall 

equation. The formulation of the problem allows full flow and 

wall interaction via the boundary conditions at the interface 

flow-wall. Some numerical simulation will be presented with 

periodic inlet flow.  

The method is applied to study the dynamics of aneurysms 

in arteries and veins. The flow inside the aneurysm is examined 

under the effects of a steady inlet flow as well as a pulsatile inlet 

flow for different aneurysm sizes. The wall model is analyzed 

when the wall is subjected to a constant transmural pressure and 

a quasi uniform inviscid flow. For a steady constant transmural 

pressure, a formal solution of the non linear integral-partial 

differential equation governing the wall motion is derived. For a 

steady and a quasi uniform inviscid flow, a first integral of the 

wall equation is obtained, then the solution is found to satisfy an 

integral non linear equation which is solved by numerical 

iteration.  

 

INTRODUCTION 
 

The flow-wall interaction occurs in large number of practical 

applications, where the coupling between the flow and the 

moving machine components promotes the development and the 

creation of a coupled vibration. In energy domain these coupled 

vibrations arises in drill string, pipeline, compressor and turbine 

rotor-stator of natural gas compression installation for gas 

liquidization, valves of oil well and in offshore oil plate-form, 

the mentioned vibrations occur often in the small deformation 

domain but can reach large deformations domain and cause 

serious risk for the installation. In Aeronautic, elastic flexible 

panels are used as a control tool, B. H. Tan, A.D. Lucey and R. 

M. Howell [17], among others, studied the stability of a panel 

under a uniform flow subjected to an infinitesimal disturbance. 

The panel is supported by a continuous elastic foundation. Euler-

Bernoulli beam model is used to describe the panel motion, while 

the flow is supposed to be irrational, thus the velocity is the 

gradient of a scalar function and the pressure is given by 

linearized Bernoulli theorem. The boundary elements method is 

used to reduce the initially two dimensional problem to one 

dimensional problem using the displacement of the panel as 

unknown variable. It is shown that the system becomes unstable 

if the speed of the flow exceeded some critical prescribed value. 

Two applications are addressed in their work, the interaction of 

the panel with water and the interaction of the panel with air. It 

is show that adding a stiffer spring in the mid-chord of the 

foundation of the panel delays the divergence instability. It is 

shown that increasing the stiffness of the spring beyond some 

critical value does not effect on the instability of the system  

A drill string model is considered by O. Doaré and E. de 

Langre [15] where the stability of a hanging fluid-conveying 

pipe is investigated. The pipe is modeled as Bernoulli-Euler 

beam and the non viscous flow is uniform in the pipe cross 

section. It is concluded that the system become unstable when 
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the flow velocity exceeds some defined critical value. It is found 

that the threshold velocity depends on the length of the pipe, the 

threshold velocity decreases with the increase of the length of the 

pipe  

Another example of flow wall interaction is considered by M. 

Hamadiche and H. Abou-Shady [16], where the stability of optic 

fiber coating system has been studied. In order to increase the 

flexural resistance of the optical fiber, they are usually coated by 

a resin. During the coating process, the fiber runs through a die 

filled by resin. Experimental evidences show that the coating 

system becomes unstable for highly traveling speed of the optical 

fiber. M. Hamadiche and H. Abou-Shady identified the origin of 

the instability of the system by studying the stability of the 

flowing resin in the die when coupled with a viscoelastic optical 

fiber. A numerical code based on the sixth order compact finite 

difference method is derived to solve the two-dimensional 

Navier-Stokes equations. It has been shown that the flow 

bifurcates for a given value of Reynolds number wherever the 

optical fiber vibration has been experimentally observed. The 

stability of the resulting flow coupled with a non-rigid optical 

fiber is analyzed. Two-dimensional and three-dimensional 

stability analysis was undertaken. The system was found to be 

subjected to two different kinds of instabilities induced by two 

unstable and distinguishable groups of modes. The predicted 

threshold optic fiber speed is in good agreement with 

experimental results.  

M. Hamadiche and M. Gad-el-Hak studied the stability of the 

Hagen–Poiseuille flow of a Newtonian fluid in an 

incompressible, collapsible or non collapsible visco-elastic tupe 

using linear stability analysis. The dependence of the tube’s 

diameter in the base state on the axial distance is explicitly 

accounted for in this formulation. A novel numerical strategy is 

introduced to study the spatio–temporal stability of the coupled 

fluid–structure system subjected to infinitesimal axisymmetric 

or non-axisymmetric disturbances. Axisymmetric disturbances 

correspond to the azimuthal wave number 0=n  . There, they 

have identified two convective instability modes one 

propagating upstream and the other downstream. For each of the 

non-axisymmetric disturbances 1=n  – 6  , they have found one 

absolute instability propagating upstream, while for 1,2=n , 

downstream-propagating convective modes are additionally 

observed. Two of the standing waves have equal frequencies at 

their respective cusp points, while a third absolute instability has 

triple that frequency, in good agreement with existing 

experiments. The 1=n  absolute instability mode is replaced by 

a convective mode when the Reynolds number exceeds 200, 

while the other standing waves, at =n  2–6, persist to high Re  

values. Increasing the solid’s viscosity, thickness or shear 

modulus causes the absolute instability modes to become 

convective as well as to ultimately become stable. M. 

Hamadiche, M. Gad-el-Hak and N. Kizilova [12] have shown 

that the absolute instability can be removed by changing the 

viscosity of the meddle layer of multilayered visco-elastic tube.  

In bio-mechanic, the flow-wall interaction occurs in arteries, 

veins and in the heart where small and large displacement can be 

involved. The mentioned application are, of course, not 

exclusive. The numerical simulation of these sort of problems is 

very difficult due to the fact that both fluid domain and solid 

domain are time dependent. The time dependent domain requires 

that the numerical mesh be updated at each time step during 

numerical simulation. When the deformation and the 

displacement are smaller than the characteristic length scale of 

the considered problem, the technique of linearisation becomes 

helpful, and the problem can be reduced to a problem of time 

independent domain by linearisation of the boundary conditions 

at the fluid-solid interface. However, when large deformation 

and large displacement are involved, a careful analysis is needed 

to tackle the domain displacement and the nonlinear deformation 

associated with it.  

An aneurysm is a blood-filled bulge in the wall of a blood 

vessel that commonly occurs in arteries at the base of the brain, 

and in the main artery carrying blood from the left ventricle of 

the heart. When the size of the aneurysm increases, there is a 

significant risk of rupture, resulting in severe hemorrhage, 

complications or death, a phenomena known as a stroke.  

The aneurysms occur when part of a blood vessel inflates 

abnormally due to damage or a weakness in its wall. As the wall 

is weakened, it balloons out under the action of transmural 

pressure at its weakest point creating a saccular or fusiform bulge 

called aneurysm. As the aneurysm grows, the deformation and 

the displacement of the wall become large, the stress increases 

which leads to the rupture of the wall at the aneurysm. The 

aneurysm is likely to form as a result of a biological processes 

caused by biochemical or structural inherited defects, infection 

disease and specific hemodynamic factors [1]-[2]. The fact that 

the aneurysm often occurs at a specific location in arteries and 

veins, characterized by unique hemodynamic conditions, 

strongly suggests that the hemodynamic plays an important role 

in the formation and in the development of aneurysms [3].  

The arterial and venous walls are composed of concentric 

layers with different thicknesses and mechanical properties [5]-

[7]. The innermost layer, called intima, it consists of a mono-

layer of endothelial cells. The endothelial cells are sensitive to 

shear stress and pressure exerted by the blood flow at the wall. 

The intima contributes insignificantly to the mechanical property 
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of the arterial wall. The middle layer, the media, is responsible 

for most of mechanical properties of arteries. The media consists 

of a complex three-dimensional network of elastin and collagen 

fibers, smooth muscle cells and proteoglycans. The outermost 

layer is called adventitia. It consists of thick bundles of collagen 

fibers, some elastin fibers, fibroblasts, nerves and an 

intravascular bed. The adventitia influences the mechanical 

properties mainly by facilitating tethering to the surrounding 

tissue and by limiting the lumen increase and damage of the 

vessel at high transmural pressures. Media and adventitia can be 

considered as fiber-reinforced composites due to the helical 

structure formed by the collagen microfibrils [7]. The abdominal 

aortic aneurysm is characterized by a marked deterioration of the 

media layer, which results in a significant increase in collagen 

fibers and significant decrease in elastin fibers. It is suggested 

that, in abdominal aorotic aneurym, elastin degradation is likely 

to occur in the region of low shear stress [8].  

Several nonlinear mathematical models describing the long 

term evolution of aneurysms have been developed in, among 

others, [7], [8] and [9]. In those models, the replacement rate of 

elastin fibers by collagen fibers is supposed to be dependent on 

hemodynamic conditions. As the time scale of the dynamics 

considered by these models, which is of the order of several 

years, is very large in comparison of the heart cycle, which is of 

the order of one second, the hemodynamic conditions (pressure 

and stress) are found by solving the Navier-Stokes equations in 

a fixed domain. The fixed domain is updated every once in a 

while to take account to the evolution of the geometry of the 

aneurysm. Therefore, the movement of the wall implicitly 

supposed not affect the flow. The present work is mainly 

concerned by the action of the movement of the wall on the flow 

and vice versa; therefore, a full interaction between the flow and 

the wall is considered. In order to build a tractable model 

allowing full flow-wall interaction we opted for a simplified 

equation governing the wall motion. Nevertheless, the obtained 

equation preserves the main feature of aneurysm wall, namely, 

geometrical non linearity. To this end, a mathematical model 

using Lagrangian representation and describing the aneurysm’s 

wall motion is presented, then a numerical simulation, taking 

into account a full coupling between the blood flow and the 

motion of the wall of the aneurysm, is performed.  

The flow-wall interaction occurs in a large number of 

practical applications and theoretical formulation of many 

important problems. The numerical simulation of this type of 

problems is very difficult, for both the fluid domain and the solid 

domain evolve. The time-dependent domain requires that the 

numerical mesh must be updated at each time step during a 

numerical simulation. When the deformation and the 

displacement are smaller than the characteristic length of the 

considered problem, the technique of linearization becomes 

helpful, and the problem can be reduced to a problem of time-

independent domains. However, when large deformation and 

large displacement are involved, a careful analysis is needed to 

tackle the domain displacement and to compute the large 

deformation. A typical problem, where large displacement and 

large deformation in flow-wall coupled dynaminc occur, is the 

abdominal aortic aneurysm, a common vascular disease among 

the adult population.  

The interaction between a non rigid wall and the flow often 

leads to an unstable system [12], [14] and the nature of these 

instabilities is absolute one [13]. In many engineering problems 

the displacement of the wall during its interaction with the flow 

is large enough to invalidate linear approximation of the 

governing partial differential, as can be concluded from the 

experimental work of [10] and theoretical analysis of [18]. The 

nonlinearity in the soft solid part of the system can be 

geometrical, induced by a large displacement of the wall, and can 

be rheological resulting from the nonlinear stress-train relation. 

The two mentioned nonlinearity can of course coexist. The work 

presented here focuses on geometrical nonlinearity. Another 

nonlinearity arises when the Reynolds number of the flow is 

large enough for fluid inertial forces to dominate over fluid 

viscous forces far from the wall. This nonlinearity is taken into 

account here. The problem is formulated as follows: the motion 

of the wall is described using Lagrangian variables while the 

flow is described by Eulerian variables. The formulation yields 

a nonlinear integral partial differential equation governing the 

wall motion. The solution of the wall equation is discussed in 

some peculiar cases in order to validate the wall model. In 

sections 2 and 3 the wall equation is derived. Section 4 presents 

the flow equation used in the numerical simulation. Sections 5, 

6 and 7 present the numerical method and numerical results 

respectively. Analysis of the wall model is presented in section 

8, 9 and 10. A conclusion is given in section 11.  

 

 

2 LAGRANGIAN KINEMATICAL 
DESCRIPTION OF THE WALL 

We consider an incompressible continuum where displacements 

in the a1  and a2  directions are allowed. The continuum is 

observed in a frame of reference R=(0,a1,a2,a3) having the 

vectors (x1,x2,x3) as an orthonormal basis, as sketched in figure 

1. The variables a�, a�,a� are Lagrangian variables describing the 

reference state of the wall, which is a plane shell of thickness h. 

In order to have a simplified governing equation for the motion 
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of the wall, the displacement is assumed to depend only on a1 

and on time t. Assuming the previous assumption is valid, the 

tensor gradient of deformation can be calculated:  

 

 

 

 

 

  

In the case where the continuum is incompressible, 

which henceforth is assumed, the condition det (F) = 1 has to be 

enforced, which yields 
���
�	�=0 . The aneurysm considered here is 

assumed to be tethered at its staring point to a rigid wall, i.e. the 

displacement of the wall of the healthy artery is assumed to be 

small in comparison to the displacement of the wall of the 

aneurysm. Then the non displacement condition at the aneurysm 

starting point requires that u1=0 and the tensor gradient of 

deformation becomes  

  
Therefore, the deformation tensor can be written as  

 

 

 

 

 

Let  be the second Piola-Kirchhoff tensor, a linear strain stress 

dependency can be assumed and a constitutive equation can be 

sought in the form:  

 

 

 

 

 

 

  

where p  is the pressure inside the shell and µ is the elasticity 

coefficient. Let   be the first Piola-Kirchhoff tensor, thus,  

 
 

which yields.  

 

 

 

The above equation shall be used in the momentum equation of 

the wall in the next section. 

3 SHELL’S MOMENTUM EQUATION 

The Lagrangian representation for momentum equation 

governing the motion of a deformable continuum, following 

[11], is  

 

  

(1) 

 

where u is the displacement vector, ρ is the mass density in the 

reference state, f is the density of external forces which shall be 

neglected later and 
� is the first Piola-Kirchhoff tensor. Let a 

slice of the shell be enclosed in the interval a1 and a1+da1  and let 

h be the thickness of the shell in the reference state. The 

integration of the momentum equation over the volume of the 

slice yields  
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(                                                                                               (2) 

 

(2) 

  

 

 

 


��  and 
�� stand for the first Piola-Kirchhoff tensor at the 

exterior and at the interior shell surfaces respectively. Taking into 

account equation 1, the above equation becomes  

 

 

 

                                                                                                 

 (3) 

 

 

 therefore, the simplified version of the equation of motion of 

the shell can be written as  

 

  
 

The explicit form of the first term in the right hand side is  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

  

 

In order to compute the second term on the right hand side of 

equation 4, we recall that Newton’s third law implies that  

 

                                       ; at the interface fluid/solid,        (5) 

  

where σ and  σf  are the Cauchy stress tensor in the solid and 

in the fluid, respectively. According to [11]Error! Reference 

source not found., the surface element in the reference state can 

be mapped onto the surface element in actual stat according to  

 

                                                (6) 

  

where the subscript 0 stands for the quantity in the reference 

state of the solid continuum, and G is the inverse of the tensor of 

gradient of deformation F , and GT is the transpose of G , that is,  

 

 

                 (7) 

Figure 1: Schematic representation of the aneurysm 
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Substituting equation 6 into equation 1 yields  

 


. �� . ����� = 
� . �� . ����� ;at the interface fluid/solid       (8) 

 

Knowing that in incompressible material, the first Piola-

Kirchhoff is by definition  

 

                              (9) 

 

equation 8 becomes  

 

                            (10) 

  

at the interface fluid/solid. In an inviscid fluid the Cauchy 

stress tensor is  

 

                                                       (11) 

  

Henceforth the axial shear stress at the interface solid/fluid 

shall be neglected in the solid model as the model written in this 

paper prohibits the axial displacement of solid particles. Taking 

into account the fact that n0 is the normal to the surface of the 

shell in the reference state, it must be identified as x2. Let pe and 

pi stand for the outside and the inside fluid pressure respectively, 

then equation 10 becomes 

 

                (12) 

  

at the outside interface fluid/solid, and  

                                          (13) 

  

at the outside interface fluid/solid. Substituting equation 7 

into the precedent equations, we have  

  
Substituting these equations into equation 4 yields  

  

 

 

 

Knowing that u1=0, the above equation becomes 

 

 

  

  

 

 

 

 

 

 

The first equation could be integrated to get an explicit 

formal solution for the pressure inside the shell, that is  

 

       

               (14)  

 

χ is an arbitrary constant. The integration constant stands for the 

tension inside the shell in the state of reference. In an unstressed 

shell in the state of reference, the constant is zero. It is positive 

for a compressed shell in the state of reference and, it is negative 

for a stretched shell in the state of reference. In this work the 

constant is set to zero. Multiplying the the preceding equation by 
���
�	�  and taking the derivative with respect to a1 yields 

 

  

 

               (15) 

 

 

 

substituting this equation in the second momentum equation, i.e. 

the second equation of the set of equations number 14, leads to  

 

  

     

               (16) 

 

 

 

After simplification, the integral-partial differential equation 

describing the wall motion can be written as  

 

 

      (        (17) 

4 BASIC FLOW EQUATIONS 
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The flow is modeled by the two dimensional Navier-Stokes 

equations for incompressible and viscous fluid with mass density 

�� and kinematic viscosity ν, that is,  

 

               (18)

     

               (19) 

 

where � is the velocity vector, � is the pressure to density 

ratio, ∇= � �
�� , �

��  is the gradient operator and ∆= ��
��� + ��

��� is 

the Laplacian operator. The flow equations are subjected to the 

boundary conditions  

  

� = #��$%&'�; at the inlet of the channel          (20) 

 

where #��$%& is a known function which shall be introduced 

explicitly later and '� is the unit vector parallel to the channel 

axis.  

 

  
�(
�� = 0; � = ��; at the exit of the channel          (21) 

 

�� is a given outlet pressure.  

 

 � = 0; at the rigid solid wall           (22) 

 

 � = ���
�* '�; at the elastic wall           (23) 

 

The function #�� involved in the inlet flow is  

  

               (24) 

 

#� is constant of +$1& and  

  

 

               (25) 

 

 

and, unless otherwise stated,  

  

               (26) 

 

The numerical simulation of the flow is difficult with a 

moving boundary. To overcome this difficulty, the physical 

domain is mapped onto a rectangular one using the following 

coordinates transformation:  

               (27)  

 

where -$', .& = #�, and #� is the displacement of the upper 

elastic wall. In a similar way a new variable are introduced for 

% < 0, that is  

  

               (28) 

 

where 0$', .& = −#�, and #� is the displacement of the lower 

elastic wall. The derivative rule is applied to compute all the 

derivatives involved in Navier-Stokes equations, namely,  

  

               (29) 

  

 

               (30)  

 

 

               (31) 

 

Similar expressions for the lower wall can be written in an 

analogous manner.  

5 NUMERICAL METHOD USED FOR WALL 
EQUATION 

Once the interior pressure p
i  and external pressure p

e  are 

known, equation 17 are solved numerically. The time derivative 

is evaluated using a second order finite difference scheme, thus  

  

               (32) 

 

such that the discretised equation can be written as  

 

 

 

               (33) 

 

 

 

A numerical procedure based on a fourth order Range-Kutta 

method coupled with a shooting method is used to solve this 

equation. A similar procedure is developed for the other wall. 

The internal pressure ��  in vicinity of each wall is provided by 

numerical solution of the Poisson equation in the fluid domain. 

The external pressure is maintained constant.  

6 NUMERICAL METHOD USED FOR FLUID 
EQUATIONS 
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A pressure-correction scheme (splitting method) is used to solve 

the two dimensional Navier-Stokes equations for incompressible 

fluid flow. A third-order time accurate scheme is used to evaluate 

the time derivative, namely,  

 

                            (34)  

 

Euler first order scheme has been also tested, and the results 

obtained by the two schemes are in good agreement. The results 

shown here are obtained with third order method. The predictor 

step is  

 

                            (35)  

 

�∗ is the predictor velocity which is not divergence free, 

34 = 567
8  is the Reynolds number, ν is the kinematic viscosity, 9:  

and 7 are the reference velocity and the reference length scales. 

In equation 35, the nonlinear terms are evaluated using first order 

up wind method and the viscous terms are evaluated using a 

second order finite difference method. The second step is to 

correct the predictor velocity �∗, such that the final obtained 

velocity is divergence free. In order to mantain the Navier-Stokes 

equations as the basic flow equations, the pressure has to satisfy 

the following equation,  

  

               (36) 

 

The flow velocity is sought to be divergence free, i.e. ∇ ∙
�<=� = 0; therefore, the pressure is obtained by solving the 

Poisson equation:  

 

               (37) 

 

The gradient conjugate method is used to solve Poisson 

equation with the following boundary conditions  

 
�>
�� = 0; at the inlet of the channel,           (38) 

 

 � = ��; at the exit of the channel,           (39) 

 

and  

 

� ∙ ∇� = 0; at solid and elastic wall,           (40) 

 

Finally, the divergence free flow velocity can be obtained 

from equation 36, that is  

  

               (41) 

 

7 NUMERICAL RESULTS 

In this section we shall show some numerical results such that 

the discretized equation can be written as presented are for steady 

inlet flow with curve and rigid wall, steady inlet flow with elastic 

wall and pulsatile inlet flow with elastic wall. In all cases, the 

constants involved in the definition of ? in equation 25, are such 

that @ = @� = @� = 1, A = 1, B = 1 and C = 3 unless stated 

otherwise.  

7.1 STEADY INLET FLOW WITH RIGID WALL 
In order to examine the effect of the curvature of the wall, some 

numerical experiments have been done with a fixed wall and 

steady inlet flow, that is @� = 0 which cancels the unsteady part 

of the inlet flow. The transmural pressure to fluid density ratio is 

10, i.e. 
∆>
E = 10F�/��. A steady flow is obtained for the 

mentioned control parameters. Figure 2a shows the streamline 

for Reynolds number 34 = 1500, and figure 2b shows 

streamlines for Reynolds number 34 = 2000. Both figures show 

that the flow is quasi symmetric with two rolls located under the 

curve wall. The presence of rolls here is not surprising as the 

flow take place in a divergent-convergent channel. The flow in 

divergent or convergent channel bears the name of Jeffery-

Hamel flow. The main feature of Jeffery-Hamel flow is the 

presence of symmetric rolls for a low Reynolds number regime 

and antisymmetric rolls for a high Reynolds number regime [4]. 

Numerical experiments performed for larger Reynolds number, 

34 = 2500 and 34 = 3000, show that the flow has the same 

features as these shown in figures 2a and 2b, but the rolls are 

larger than those shown in figure 2a and 2b.  

 

7.2 STEADY INLET FLOW WITH ELASTIC 
WALL 

In this subsection the inlet flow is steady, i.e. @� = 0, which 

cancels the unsteady part of the inlet flow, while the curved part 

of the wall is elastic and can move under the action of transmural 

pressure. In this case the flow exhibits some unsteadiness, yet the 

wall displacement is very small in comparison to the width of the 

channel, and the change in  



Conference Extended Paper – Keynote Speech – JTEN – 2014 – 5 

 

50 

 

 
 

 
 

 

 

 

streamlines over time is very small. Figures 3a-3b show the 

streamlines for Reynolds number 34 = 2000 and 34 = 3000, 

respectively, for a transmural pressure to fluid density ratio 
∆>
E =

10F�/��. The figures show that the flow is asymmetric, a well 

known feature of Jeffery-Hamel flow in divergent channels [4]. 

Figures 3c-3d show the streamlines for Reynolds number 34 =
1500  and 34 = 2000, respectively, and for transmural pressure 

to fluid density 
∆>
E = 15F�/��. As expected, the large 

transmural pressure outspreads the wall and allows larger rolls to 

be developed in the divergent-convergent part of the channel. 

Other numerical experiments, which are not shown here, show 

that for moving wall the flow remains asymmetric even for low 

Reynolds number regimes. Keeping in mind the main features of 

Jeffery-Hamel flow in a divergent channel, which can be 

symmetric or antisymmetric, the author has no explanation as 

why the asymmetric solution in figures 3a and 3b has benn 

selected thought the wall displacement is very small, while in a 

fixed wall the flow is quasi symmetric as it has been shown in 

figures 2a and 2b. However, it may be that the small 

displacement creates a small perturbation which causes the 

bifurcation from a symmetric to an asymmetric solution.  

7.3 PULSATILE INLET FLOW WITH ELASTIC 
WALL 

In order to simulate as much as possible the flow in arteries with 

the presence of an aneurysm, a combination of a pulsatile flow 

and a steady flow is used at the inlet of the channel. That is @� =
1 and @� = 0.5. It is found that, after a period long enough for 

the effects of the initial condition to have diminished, the flow 

reaches a periodic state, as is shown in figure 4. Figures 4a-4f 

show respectively, the function ?, the axial velocity component, 

the lower wall displacement, the upper wall displacement, the 

pressure and the membrane tension at the center of the channel. 

In order to examine the flow during a cycle, eight stations are 

selected where the streamline of the flow are plotted. The + signs 

in figure 5 indicate the station in the dimensionless time interval 

[18-19]. Figures 6a and 6b taken at the stations (a) and (b) show 

the streamlines obtained when the flow reaches a steady state 

between two pulses, and this steady flow is rather asymmetric. 

Figures 6c and 6d show that the flow tend to be unidirectional in 

the systolic period, in that the two rolls present in the flow have 

been virtually disappeared in figures 6d-6f. For some other 

numerical experiments, which are not shown here, the rolls 

disappeared at the station (e). The largest wall displacement 

occurs at station (e) as seen in figure 6e. Surprisingly, the largest 

wall displacement takes place at station (e) where the inlet flow 

is not maximum, i.e. there is a delay in the wall response to the 

increase in flow rate. Figures 6g and 6h show that the flow 

reaches steady state again at the end of the period. Figure 7 show 

the streamlines of the flow in the same stations at a higher 

pressure to density ratio, i.e. 
∆>
E = 15F�/��. 

Figure 2: Steady streamlines obtained with curve rigid 

wall and steady inlet flow. (a) Reynolds number Re = 

1500, (b) Reynolds number Re = 2000 
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The same features mentioned for a longer elastic wall, and shown 

in figure 6, exist here. That is the maximum expansion of the 

channel occurs at station (e) in the diastolic part of the cycle, the 

flow is asymmetric, the presence of two rolls located under the 

curved elastic wall and the rolls tend to disappear in the systolic 

part of the cycle as it is shown in figure 7. It is worthwhile to 

note that the presence of rolls under the curve wall invert the 

shear forces exerted by the flow on the wall which must be a 

dramatic event for the endothelial cells.  

 

 

8 ANALYSIS OF THE SHELL MODEL USING 
A STEADY QUASI UNIFORM NON 

VISCOUS FLOW 

In the previous section the spatial pressure variation is found to 

be very small in comparison to the mean pressure in the fluid. 

Therefore, the displacement of the wall is mainly due to the 

difference between the external pressure and the mean internal 

pressure and it is not very sensitive to spatial pressure 

fluctuations. The numerical experiments show that the local 

Figure 3: Streamlines obtained for for elastic wall and steady inlet flow for two aneurysms of different length. (a) and (b) 

transmural pressure to fluid density ratio equal 10. (a) Re = 2000, (b) Re = 3000. (c) and (d) transmural pressure to fluid density 

ratio equal 15. (a) Re = 1500, (b) Re = 2000. 
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Figure 4: (a) The amplitude of pulse at the inlet of the channel versus time, (b) the axial velocity component at the middle of the 

channel versus time, (c) the displacement of the upper wall at the middle of elastic wall versus time, (d) the displacement of the 

lower wall at the middle of the elastic wall versus time , (e) the pressure at the middle of channel versus time and (f) the tension 

inside the wall at the middle of the channel versus time. 
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flow pressure variation has an insignificant effect on the 

movement of the wall. These findings suggest and support the 

analysis done in this section. In order to simplify the analysis, 

the displacement of the wall are assumed to be symmetric, 

therefore only the upper half of the channel shall be considered 

in this analysis. Let �*  be the head pressure at the entrance of the 

channel, then, in a steady inviscid flow, according to Bernoulli 

theorem, the inner pressure at an arbitrary cross-section of the 

channel is  

 

                            (42)  

 

where ��  is the inner pressure, � is the uniform flow velocity in 

the cross-section J of the channel and �� is the mass density of 

the fluid. In a steady uniform flow, the conservation of mass 

yields  

  

               (43) 

 

where K is volume flux and J = $ℎ + #�& ×unity length in 

spanwise direction. Thus, the inner pressure is  

 

                             (44) 

The transmural pressure can be written as  

  

 

               (45) 

 

 

where  

 

                            (46)  

 

Let’s define the new dimensionless variables  

 

               (47)  

 

and introduce the new parameters,  

 

  

               (48) 

 

 

where  

  

               (49) 

 

Using the precedent dimensionless variables, the dynamic 

equation becomes  

  

               (50) 

 

The first integral of the above equation can be written as  

  

               (51) 

 

where  

  

 

 

and N is a constant of integration. So, the solution of equation 50 

can be obtained in the form of a quadrature:  

  

               (52) 

 

which, after some algebra, can be written as  

  

 

               (53) 

Figure 5: The pulse at the entrance of the channel versus 

time. The sign + indicates the stations where a sample of 

streamlines are plotted in this paper. 
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Figure 6: The streamlines for elastic wall and pulsatile inlet flow at some stations selected in a period as it is indicated in 

figure 5. Re = 2000, transmural pressure to fluid density ratio equal 10 m2/s2 
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Figure 7: The streamlines for elastic wall and pulsatile inlet flow at some stations selected in a period as it is indicated in 

figure 5. Re = 2000, transmural pressure to fluid density ratio equal 15 m2/s2. 
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The two arbitrary constants N and O must be fixed by the 

boundary conditions.  

9 PARTICULAR CASE WHERE PQ = R : THE 
PRESSURE VARIATION DUE TO THE 
FLOW VELOCITY IS DISREGARDED 

For low flow rate i.e. S ≪ U, the pressure variation due to the 

fluid velocity is small in comparison the transmurale pressure. In 

this case it is plausible to neglect the terms multiplied by V�. In 

the limit of the approximation V� ≈ 0, equation 53 becomes  

  

               (54) 

 

 

 
 

 

 

the boundary conditions X$0& = 0, X$Y& = 0 specify the 

constants N and O so that  

 

                            (55)  

 

It is clear from this that the shell takes the form of portion of 

a circle centered at �Z
� , U  and of radius 3 = [U� + Z�

\ . This is 

the well known fusiform shape of aneurysms.  

 

10 SOLUTION IN THE FORM OF AN 
INTEGRAL EQUATION 

Let’s reconsider equation 51,  

  

               (56) 

 

where we introduced a new variable  

  

 

 

               (57) 

 

Figure 8: Convergence of the numerical iteration in 

solving integral equation. Equation 71. Error versus 

iteration number, from down to up, S� ∈ ^0.01, … ,0.11`_2 

2 {0.01, · · · , 0.11}, dimensionless trans-mural pressure 

ϕ=-20. The error is difine as follow  abb+b = cd $X<=��Z
� −

X<�&�'c 

Figure 9: Form of the shell for some trasmural pressure 
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Equation 56 can be written as  

  

               (58) 

 

Multiplication of by e yields  

  

               (59) 

 

By integration we have  

  

               (60) 

 

Henceforth, the term involving an integral shall be noted 

f$'&, that is  

  

               (61) 

 

With this notation, equation 60 becomes  

 

                            (62)  

 

Squaring the precedent equation yields,  

  

               (63) 

 

 

 

The boundary condition at X$0& = 0 and X$Y& = 0 allow the 

elimination of the constant N and O, so that the solution becomes  

  

               (64) 

 

 

Note that this is an integral equation as the term f$'& depends 

on the solution X. Let’s note the right-hand side by ?$'&, that is  

  

 

               (65) 

 

 

Then, equation 64 becomes  

  

               (66) 

 

where �� stands for ±. Substitution of A� and A� into the above 

equation yields  

  

               (67) 

 

Notice that ?$0& = ?$Y& = U�$1 + S�&�. In order to enforce 

the boundary condition we have to chose �� according to the sign 

Figure 10: Limit zone where a steady solution has been found 
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of the term Φ, that is �� = −�h�$U&. The solution of equation 

67 reads  

  

 

               (68) 

 

 

where �� stands for = ± as  

 

                            (69)  

 

in order to enforce the boundary conditions at ' = 0 and at 

' = Y, we have to chose �� according to the sign of the term  

  

               (70) 

 

In order to keep the boundary condition being enforced we 

have to take  

 

                

 

Thus, the solution becomes  

  

 

  

               (71) 

 

 

 

 

                            (72) 

 

 

 

               (73)  

 

 

               (74)  

 

where  

  

               (75) 

 

As the right hand side of equation 71 involves the solution X, 

via the function ?$'& defined in equation 72, an iterative method 

is required to solve for X. Figure 8 shows how the error decreases 

with the number of iteration. For low transmural pressure to mass 

density ratio, the numerical method requires only a few 

iterations. However, the number of iterations increases with 

transmural pressure to not converge at all for very large 

transmural pressures. However, it is not clear whether the 

divergence occurs because the steady solution does not exist or 

simply because the numerical procedure becomes unstable for 

large transmural pressure. Figure 8 shows the form of the upper 

shell negative transmural pressure. The used numerical 

procedure does not converge in the zone marked as “Collapsed 

zone”.  

 

 

11 CONCLUSION 

Vibrations induced by flow and elastic wall interaction arise in 

many energetic applications, after a review of some important 

examples in fluid-structure interaction, the paper addresses the 

flow and wall interaction in an abnormally deformed arteries, 

phenomenon known as aneurysm. A simplified nonlinear 

integral-partial-differential equation is devised to describe the 

aneurysm’s wall dynamic. In order to handle large displacements 

and large deformations, Lagrangian variables are used. In some 

interesting particular cases a formal solution of the nonlinear 

integral-partial-differential equation governing the wall motion 

is found. In peculiar, the obtained solution shows that the form 

of the wall under a constant transmural pressure is an arc of a 

circle. A first integral of the wall equation is derived for quasi 

uniform inviscid flow velocity, i.e, for the cases where the axial 

velocity component is much larger than the spanwise velocity 

component.  

A numerical simulation taking into account a full coupling 

between the wall and the flow inside the aneurysm has been 

presented. The wall motion is described by the above mentioned 

integral-partial-differential equation written in Lagrangian form, 

and the flow is described by the two dimensions Navier-Stokes 

equations. Three categories of numerical experiments are done 

here. In the first experiment the curve aneurysm wall is fixed 

(supposed to be rigid) and the inlet flow is steady. It is found that 

the flow in this case is steady, and that for both Reynolds number 

34 = 1500 and 34 = 2000 it is found that two quasi symmetric 

counter rotating rolls appear under the curve aneurysm walls, 

inverting the direction of the shear stress at the interface 

fluid/solid.  

The second experiment used a steady inlet flow and elastic 

wall, i.e the wall allowed is to move under the variation of 

transmural pressure over time. It is found that the flow is 

asymmetric in this case. The flow is found to be unsteady for 
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34 = 2000  and 34 = 3000  and transmural pressure to density 

ratio 
∆>
E = 10F�/��, as well as for 34 = 1500, 34 = 200  and 

transmural pressure to density ratio 
∆>
E = 15 F�/��. However, 

the wall displacement and the variation of the streamlines of the 

flow over time are very small. Two asymmetric rolls appear 

under the curve aneurysm wall, which inverts the direction of the 

shear stress exerted by the flow on the wall. As the symmetry is 

broken in this case, it is inferred that the friction forces in the 

vicinity of the walls must be of different amplitude which could 

lead to asymmetric evolution of the aneurysm shape over a long 

period.  

The third experiment is for a periodic pulsatile flow at the 

inlet of the channel and a curve elastic wall. After a long period, 

when the effects of the initial conditions have been diminished, 

the flow becomes quasi periodic. Samples, in six stations in the 

laps of one period, are taken to examine the flow. Two sub cases 

are considered: in the first, a relatively long aneurysm subjected 

to a relatively low transmural pressure to density ratio is 

considered. In the second, a relatively short aneurysm subjected 

to a relatively high transmural pressure to density ratio is 

considered. In both cases the flow obtained by numerical 

simulation is asymmetric. The presence of two rolls under the 

curve walls is confirmed in these cases too. However, during the 

systolic period, the rolls are virtually removed and the flow tends 

to be unidirectional. An interesting feature of the pulsatile flow 

which appears in the present experiments is that there is a gap 

between the instant where the inlet rate flow reaches its 

maximum and the instant where the maximum expansion of the 

wall occurs, i.e, the maximum of the inlet flow and the maximum 

of walls displacement do not occur simultaneously.  

It is commonly accepted that, in arteries, at the interface 

fluid/solid, there exists a thin layer, the intima, which contains 

the so called endothelial cells that are sensitive to flow induced 

shear stress and pressure. The endothelial cells seem to be able 

to exercise a sort of active control, where the sensors are the 

mechanical parameters (friction and pressure), and the actuators 

are a kind of vasodilators enzymes, which are able to modify the 

rheological parameters of the arteries tissues, allowing them to 

expand or to narrow accordingly and to change the elastin to 

collagen fiber ratio in wall composition. The present work 

presents a methodical approach to compute the shear stress 

exerted by the flow on the endothelial cells, which is a necessary 

step in modeling long term evolution of the aneurysm.  

To the best of the author’s knowledges, nowadays, there is no 

mathematical model which involves a coupling between 

biological factors and mechanical factors at short and long time 

scales. The achievement of this model could lead to insight in the 

creation and the development of aneurysms and likely predicts 

its rupture. The present studies give insight on the interaction 

between the flow and the elastic wall of aneurysms at short time 

scale which constitutes a good step towards a more general 

model that accounts for all time scales in modeling the aneurysm 

development.  
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