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ABSTRACT

Polar decomposition of the changing velocity gradient ten-
sor in a deforming fluent continua into pure stretch rates and
rates of rotations shows that a location and its neighboring loca-
tions can experience different rates of rotations during evolution.
Alternatively, we can also consider decomposition of the veloc-
ity gradient tensor into symmetric and skew symmetric tensors.
The skew symmetric tensor is also a measure of pure rates of
rotations whereas the symmetric tensor is a measure of strain
rates. The measures of the internal rates of rotations due to de-
formation in the two approaches describe the same physics but
in different forms. Polar decomposition gives the rate of rotation
matrix and not the rates of rotation angles whereas the skew
symmetric part of the velocity gradient tensor yields rates of
rotation angles that are explicitly defined in terms of velocity
gradients. These varying rates of rotations at neighboring loca-
tions arise due to varying deformation of the continua, hence are
internal to the volume of matter and are explicitly defined by de-
formation. If the internal varying rates of rotations are resisted
by the continua, then there must exist internal moments corre-
sponding to these. The internal rates of rotations and the corre-
sponding moments can result in additional rate of energy storage
or rate of dissipation. This physics is all internal to the deform-
ing continua and exists in all deforming isotropic, homogeneous
fluent continua but is completely neglected in the presently used
thermodynamic framework for fluent continua. In this paper we
present derivation of a more complete thermodynamic frame-
work in which the derivation of the conservation and balance
laws consider additional physics due to varying rates of rota-
tions. The currently used thermodynamic framework for fluent
continua is a subset of the thermodynamic framework presented
in this paper. The continuum theory presented here considers
internal varying rates of rotations and the associated conjugate

moments in the derivation of conservation and balance laws,
thus the theory presented in this paper can be called “a polar
continuum theory” but is different than micropolar continuum
theories published currently in which material points have six
external degrees of freedom i.e. the rotation rates are additional
external degrees of freedom. In the remainder of the paper we
refer to this new thermodynamic framework as ‘a polar contin-
uum theory’.

The continuum theory presented here only accounts for in-
ternal rotation rates and associated moments that exist as a con-
sequence of deformation but are neglected in the present theo-
ries hence this theory results in a more complete thermodynamic
framework. The polar continuum theory and the resulting ther-
modynamic framework presented in this paper is suitable for
compressible as well as incompressible thermoviscous fluent
continua such as Newtonian, Power law, Carreau-Yasuda flu-
ids etc. and thermoviscoelastic fluent continua such as Maxwell,
Oldroyd-B, Giesekus etc. The thermodynamic framework pre-
sented here is applicable to all isotropic, homogeneous fluent
continua. Obviously the constitutive theories will vary depend-
ing upon the choice of physics. These are considered in subse-
quent papers.

1 INTRODUCTION

In deforming fluent continua, the velocities and the velocity gra-
dients are fundamental quantities of the measure of deformation
of the matter. In general, velocity gradients may vary between
different locations i.e. they may vary between a location and its
neighboring locations. Polar decomposition of the velocity gra-
dient tensor at a location into rates of stretches (left or right)
and rates of rotations shows that if the velocity gradient ten-
sor varies between a location and the neighboring locations so
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does the rate of rotation tensor. We could also consider the de-
composition of the velocity gradient tensor into symmetric and
skew symmetric tensors. The skew symmetric tensor is a mea-
sure of pure rates of rotations while the symmetric tensor is a
measure of strain rates. The measures of the internal rates of ro-
tations due to deformation in these two approaches describe the
same physics but in different forms. Polar decomposition gives
the rates of rotation matrix and not the rates of rotation angles,
whereas the skew symmetric part of the velocity gradient ten-
sor yields rates of rotation angles that are explicitly defined in
terms of velocity gradients. Strain rate measures are purely a
function of stretch rates or alternatively symmetric part of the
velocity gradient tensor. In these measures, the rate of rotation
tensor plays no role. If these varying internal rates of rotations
between neighboring locations in the deforming fluent continua
are resisted by the continua then there must exist internal mo-
ments corresponding to these. The internal rates of rotations and
the corresponding moments can result in rate of energy storage
or rate of dissipation. This physics exists in all deforming fluent
continua, but its degree may vary depending upon the consti-
tution of the matter and the type of the deformation field. This
physics is not considered in the derivation of conservation and
balance laws that constitute the thermodynamic framework we
are currently using for fluent continua. The answer to the ques-
tion of what we should call the resulting continuum theory that
incorporates the physics associated with internal rates of rota-
tions and the corresponding moments is inherent in the descrip-
tion of the physics that the derivation of the theory incorporates.
Since the theory accounts for internal rotation rates and associ-
ated moments, it is undoubtedly ‘a polar continuum theory’: (i)
that only accounts for internal physics of rates of rotations re-
sulting from the velocity gradient tensor and the conjugate mo-
ments (ii) that does not require rotations as additional external
degrees of freedom as this theory is only intended to accommo-
date physics associated with internally varying rates of rotations
that arise due to the varying velocity gradient tensor between
points. Thus, henceforth we shall refer to the continuum the-
ory presented here as ‘a polar continuum theory’ implying that
there may be others that account for different physics of rates of
rotation and moments than considered here. In non-polar con-
tinuum theories (current thermodynamic framework for fluent
continua) used mostly for fluent continua, stress and strain rates
alone contribute to the dissipation i.e. entropy production due
to mechanical work. In such theories the influence of varying
internal rates of rotations is completely neglected in the theory,
hence on the dissipation mechanism as well.

In the present work we consider fluent continua in which
the rates of rotations that exist between neighboring locations
are resisted by the constitution of the matter, hence can result
in additional dissipation. Thus, the polar continuum theory pre-
sented here considers strain rate tensor as well as rate of rotation
tensor arising from the velocity gradient tensor in the deriva-
tion of the conservation and balance laws. The theory presented
here should not be confused with micropolar continuum theo-
ries [1–21] that are designed to accommodate effects at scales
smaller than the continuum scale. Micropolar theories require
definitions of additional strain measures [14] related to the mi-
cromechanics. The polar continuum theory presented here uses
standard measures of strain as used currently in non-polar con-

tinuum theories. In the polar continuum theory presented here,
the motivation is to account for the influence of different rotation
rates at neighboring locations that arise due to different velocity
gradient tensors as this can result in mechanical energy dissipa-
tion in some fluent media. Polar decomposition of the velocity
gradient tensor at neighboring locations clearly substantiates the
validity of this concept, hence the motivation. Another signifi-
cant point to note is that the theory considered here can only
account for internal local rates of rotations due to deformation,
hence this is an intrinsically local polar continuum theory and
thus cannot account for nonlocal effects.

In the following we present a brief literature review of the
published works that are pertinent in context with the work con-
sidered in this paper. The literature review on micropolar theo-
ries, stress couple theories and non-local theories is considered
as these consider the effects of rotations generally as external
degrees of freedom. Even though some of these works may ap-
pear to have no direct connection with the work presented in
this paper, many of the concepts and derivation details in the
cited references are quite helpful in following the details pre-
sented in this paper. A thorough exposition of micropolar theo-
ries has been given in references [1–21]. These theories consider
measures of microdeformation due to microconstituents in the
continuum. In references [22–35] various aspects of micropolar
theories, stress couple theories for bending, buckling, vibration
of beams, microstructure dependent beam theories, rotation gra-
dient theory and strain gradient theory are considered for solid
continua. In most cases use of strain energy density function and
principle of virtual work is made in the derivations. These obvi-
ously hold for thermoelastic solids only in which the deforma-
tion process is irreversible. These concepts and derivations can-
not be used for thermoviscoelastic solids with or without mem-
ory as in such cases the deformation process is not reversible.
We also remark that rotation gradient theory and others cited
here for solid matter are not applicable for fluent continua con-
sidered in this paper as the displacements of the material points
are not available and the fluent continua require consideration
of varying internal rotation rates due to varying velocity gradi-
ent tensor between neighboring locations without regards to dis-
placements. Nonetheless we have cited these works due to some
similarity of concepts between the solid media and the fluent
media.

Much of the published work on polar continuum theories
is for solid matter, based on consideration of displacements as
well as rotations as independent degrees of freedom at the mate-
rial points in Lagrangian description. This is obviously different
than what is considered in the work presented in this paper. First,
we consider fluent continua, hence displacements and rotations,
as used for solid continua are not available as measures of defor-
mation. Based on the physics of deformation of fluent continua,
velocities and velocity gradients must be considered. Secondly,
the present work focuses and incorporates the physics due to in-
ternal varying rates of rotations due to varying velocity gradient
tensor between neighboring locations, hence does not require
additional external rotations as degrees of freedom. These two
differences clearly distinguish the present work from the pub-
lished works cited above and those mentioned in the following.
In reference [36] Altenbach and Eremeyev present a linear the-
ory for micropolar plates. Each material point is regarded as a
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small rigid body with six degrees of freedom. Kinematics of
plates is described using the vector of translations and the vec-
tor of rotations as dependent variables. Equations of equilibrium
are established in R3 and R2. Strain energy density function
is used to present linear constitutive theory. The mathematical
models of reference [37] are extended by the same authors to
present strain rate tensors and the constitutive equations for in-
elastic micropolar materials. In reference [38], authors consider
the conditions for the existence of the acceleration waves in ther-
moelastic micropolar media. The work concludes that the pres-
ence of the energy equation with Fourier heat conduction law
does not influence the wave physics in thermoelastic micropolar
media. Thus, from the point of view of acceleration waves in
thermoelastic polar media, thermal effects i.e. temperature can
be treated as a parameter. In reference [39], authors present a
collection of papers related to the mechanics of continua deal-
ing with micro-macro aspects of the physics (largely related to
solid matter). In reference [40] a micro-polar theory is presented
for binary media with applications to phase-transitional flow of
fiber suspensions. Such flows take place during the filling state
of injection molding of short fiber reinforced thermoplastics. A
similarity solution for boundary layer flow of a polar fluid is
given in reference [41]. In specific the paper borrows consti-
tutive equations that are claimed to be valid for flow behavior
of a suspension of very fine particles in a viscous fluid. Kine-
matics of micropolar continuum is presented in reference [42].
References [43, 44] consider material symmetry groups for lin-
ear Cosserat continuum and non-linear polar elastic continuum.
Grekova et. al. [45–47] consider various aspects of wave pro-
cesses in ferromagnetic medium and elastic medium with micro-
rotations as well as some aspects of linear reduced Cosserat
medium. In references [48–66] various aspects of the kinematics
of micropolar theories, stress couple theories, etc. are discussed
and presented including some applications to plates and shells.

Based on the literature review we make some remarks. First,
most literature is related to micropolar theories that require con-
sideration of additional measures of strains related to microme-
chanics. Such theories necessitate rotation (or rates of rotations)
as additional degrees of freedom. Conjugate to the rotations or
rates of rotations are of course moments. In case of so called
stress couple theories the physics considered is not clear at the
onset. It is only after the derivation of balance laws that one gets
some idea regarding what these theories can possibly do. The
fundamental question of what these theories correct or complete
or supplement when compared with current non-polar contin-
uum theories is not clear.

The work presented in this paper is formulated based on ob-
served physics, that in any deforming fluent media the polar de-
composition of the velocity gradient tensor shows that the rates
of rotations vary between neighboring locations. If the varying
rotation rates and their gradients result in energy storage or dis-
sipation, then its energy conjugate moment tensor must exist in
the deforming matter. This necessitates the existence of moment
(per unit area) on the oblique plane of the deformed tetrahedron.
Thus, at the onset, we consider average force per unit area and
velocities, and average moment per unit area and the rates of
rotations on the oblique plane of the deformed tetrahedron. The
work presented here follows strictly thermodynamic approach
i.e. for fluent continua we present derivations of: (i) conserva-

tion of mass and present reasons for not deriving conservation
of inertia (ii) balance of linear momenta (iii) balance of angu-
lar momenta (iv) balance of moments of moments (or couples)
(v) first law of thermodynamics and (vi) second law of thermo-
dynamics based on stress and strain rates, moment and rotation
rates as energy conjugate pairs. The mathematical description
for fluent continua derived here is applicable to compressible
and incompressible thermoviscous fluids as well as thermovis-
coelastic fluids when augmented with the appropriate constitu-
tive theories. We reiterate and point out that the theory for fluent
continua presented here incorporates additional physics due to
rates of rotations which is neglected in the currently used ther-
modynamic framework. Thus this theory presents a more com-
plete form of thermodynamic framework for isotropic, homoge-
neous fluent continua as it incorporates additional physics due
to varying rates of rotations which is neglected in the current
thermodynamic framework. The currently used thermodynamic
framework is retained as a subset of the thermodynamic frame-
work presented in this paper.

2 MATHEMATICAL DESCRIPTION FOR FLUENT
CONTINUA

For a deforming volume of matter, whether solid or fluid, ma-
terial particles and their motion i.e. displacements are the most
fundamental quantities. If xi is the position of a material particle
in the reference configuration then its coordinates x̄i in the cur-
rent configuration can be determined using x̄i = xi +ui in which
ui are the displacements. This physics exists in all deforming
continua. Based on this we can derive conservation and balance
laws using deformed tetrahedron in the current configuration
(Fig. 1 (b)) and its corresponding undeformed counterpart in the
reference configuration (Fig. 1 (a)). If the resulting equations are
expressed as functions of xi and t, then we have a Lagrangian
description. On the other hand, if the resulting equations are a
function of x̄i and t then we have Eulerian description. Due to the
fact that x̄i = xi + ui, the Lagrangian and Eulerian descriptions
are identical mathematical representations of the same physics.
Using x̄i = xi +ui we can easily convert one type of description
to another type without any loss of information. At this stage the
Lagrangian and the Eulerian descriptions are equally suited for
solid as well as fluent continua and have total transparency in
deriving one from the other. If some special consideration of the
physics in a continua requires some modification in either one of
the two descriptions, then the transparency between the two will
obviously be lost. We consider specific cases in the following.
Refer to reference [67] (Chapters 6 and 7) for details.

In case of solids the material points are identified (xi) and
their displacements are monitored (ui) hence x̄i = xi+ui holds at
each material point, thus the Lagrangian and Eulerian descrip-
tions are equivalent, therefore either one can be used for the
mathematical description of the physics.

Due to complex motion of fluid particles, monitoring of their
motion i.e. displacements is not feasible. Thus, in the case of
fluent continua, the first adjustment required by physics of com-
plex motion is not to monitor material point displacements (ui).
This of course suggests that we do not know the whereabouts
of the material points during evolution. Deformed positions x̄i
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of the material points in the current configuration is only due
to displacements ui which we do not have anymore. Since we
cannot monitor displacements of the material particles in fluent
continua, it is perhaps fitting in case of fluent continua not to
label the material points. Thus, in case of fluent continua we
ignore material point displacements i.e. the motion of the mate-
rial points during the evolution. The only other alternative left at
this stage is that we consider fixed locations in the flow at which
we monitor the state of the continua (temperature, velocity, etc.)
during evolution. These fixed locations are occupied by different
fluid particles during evolution. Thus, we could view these loca-
tions as current positions of different fluid particles for different
values of time. As time elapses the fluid particles currently oc-
cupying these positions leave their positions which in turn are
occupied by other fluid particles. Here, there are two important
things to note: (i) each fixed location is the current position of
some fluid particle, hence perhaps appropriate to label these as
x̄i, keeping in mind that there are no xi as ui are not monitored
(ii) we do not know which fluid particles are at which locations.
Monitoring the state of fluent continua (velocities, temperature,
etc.) at each location provides the evolution of the deforming
continua.

We need to determine what mathematical model would be
able to describe the physics that we have just discussed. Since
the locations at which the evolution is monitored, though fixed,
are current locations of different material particles at different
values of time. This perhaps suggests that we can begin by choos-
ing Eulerian description in which x̄i are the fixed locations. In
order for this mathematical model to be applicable for fluids,
ūi, ūi, j must be eliminated. The resulting mathematical model
does not contain ui and xi nor does it require their use. We must
decide what to call this mathematical model, certainly not Eu-
lerian as a true Eulerian description requires xi and ui so that
its counterpart Lagrangian description can be obtained transpar-
ently. In this model, ui do not exist, hence neither do the strains.
This is perfectly fine for fluids as in the case of fluid motion
description displacements and strain measures play no role; in-
stead velocities at x̄i (fixed) and their gradients (strain rates) are
fundamental measures of deformation. In summary we have: (i)
Eulerian description in which x̄i are fixed locations (ii) ui (or ūi)
are assumed zero hence all strain measures are zero as well (iii)
velocities v̄i and its gradients ∂ v̄i

∂ x̄ j
are fundamental quantities in

the kinematic description of motion using conservation and bal-
ance laws. This description is what is used currently in fluid me-
chanics. In the absence of ūi and xi this description can not be
a true Eulerian description. The origin of the derivation of this
mathematical model is true Eulerian description with the restric-
tion that we do not have ūi and xi available to us. The derivation
of the conservation and balance laws for polar fluent continua
in this paper are presented utilizing this approach, i.e. configu-
rations in figure 1 (a) and (b) are assumed to exist at the onset
and during the derivation of conservation and balance laws, but
at the end only the Eulerian description is retained with the re-
striction that ūi = 0 and x̄i in the model are the fixed locations
at which the evolution is monitored. In simple terms we follow
Eulerian description but ensure that xi and ūi are not part of the
formal mathematical model. Thus, in all subsequent material in
this paper use of ‘Eulerian description’ refers to what has been
defined here as Eulerian description for fluent continua.

We use an over bar on quantities to express quantities in the
current configuration in Eulerian description, that is, all quan-
tities with over bars are functions of current coordinates x̄i and
time t. We denote ρ̄ to be the density of the fluid in the current
configuration and φ̄ , θ̄ , and η̄ denote the Helmholtz free-energy
density, temperature, and entropy density, respectively. σ̄σσσσσσσσ

(0) is
the Cauchy stress tensor (in Eulerian description in contravari-
ant basis). The superscript ‘0’ is used to signify that it is rate
of order zero and the lowercase parenthesis distinguish it from
the second Piola-Kirchhoff stress tensor σσσσσσσσσ [0] used in Lagrangian
description. Dot on any quantity refers to the material derivative.

If the existence of different rates of rotation at neighboring
locations, as evident from the polar decomposition of the veloc-
ity gradient tensor, can result in additional mechanical energy
dissipation, then there must also coexist energy conjugate mo-
ments in the deforming matter. Just like forces and velocities re-
sult in rate of work, moments and rates of rotation can also result
in rate of work. Thus in the development of the polar continuum
theory in Eulerian description for fluent media we consider ex-
istence of moments and rotation rates independent of forces and
velocities. Consider a volume of matter V˜ in the reference con-
figuration (figure 1 (a)) with closed boundary ∂V˜. The volume
V is isolated from V˜ by a hypothetical surface ∂V as in the cut
principle of Cauchy. Consider a tetrahedron T1 shown in figure 1
(a) such that its oblique plane is part of ∂V and its other three
planes are orthogonal to each other and parallel to the planes of
the x-frame. Upon deformation, V˜ and ∂V˜ occupy V̄˜ and ∂V̄˜ and
likewise V and ∂V deform into V̄ and ∂V̄ . The tetrahedron T1
deforms into T̄1 whose edges (under finite deformation are non-
orthogonal covariant base vectors g̃i. The planes of the tetrahe-
dron formed by the covariant base vectors are flat but obviously
non-orthogonal to each other. We assume the tetrahedron to be
the small neighborhood of material point ō so that the assump-
tion of the oblique plane ĀB̄C̄ being flat but still part of ∂V̄ is
valid. When the deformed tetrahedron is isolated from volume
V̄ it must be in equilibrium under the action of disturbance on
surface ĀB̄C̄ from the volume surrounding V̄ and the internal
fields that act on the flat faces which equilibrate with the mat-
ing faces in volume V̄ when the tetrahedron T2 is placed back in
the volume V̄ . Consider the deformed tetrahedron T̄1. Let P̄PPPPPPPP be
the average stress per unit area on plane ĀB̄C̄, M̄MMMMMMMM be the average
moment per unit area on plane ĀB̄C̄ henceforth referred to as
moment for short, and n̄nnnnnnnn be the normal to the face ĀB̄C̄. P̄PPPPPPPP, M̄MMMMMMMM,
and n̄nnnnnnnn all have different directions.

2.1 Polar decomposition of velocity gradient tensor and
consideration of local rotation rates

Polar decomposition of the velocity gradient tensor is helpful
in decomposing deformation into stretch rate tensor and rota-
tion rate tensor. Whether we use left stretch rate tensor or right
stretch rate tensor, the rotation rate tensor is unique. Thus, at
each location with infinitesimal volume surrounding it, the ve-
locity gradient tensor [L̄] can be decomposed into pure rates of
rotation [t R̄] and right or left stretch rate tensors [t S̄r] and [t S̄l ].
[t R̄] is orthogonal and [t S̄r] and [t S̄l ] are symmetric and positive
definite. The rotation rate tensor can equivalently be obtained
due to rotation rates tΘ̄ΘΘΘΘΘΘΘΘ at each location in the flow domain.
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Thus, at each location int the flow domain the rotation rate [t R̄]
matrix can be viewed as being due to tΘ̄ΘΘΘΘΘΘΘΘ . If varying rotation
rates at varying locations in the flow domain are resisted by the
constitution of the fluent continua then this must result in ad-
ditional dissipation that requires existence of energy conjugate
moments M̄MMMMMMMM in the deforming matter. Thus, at the onset tΘ̄ΘΘΘΘΘΘΘΘ and
its conjugate M̄MMMMMMMM are considered in the derivation of the polar con-
tinuum theory for the fluent continua. Details of polar decompo-
sition of [L̄] and rotation rates tΘ̄ΘΘΘΘΘΘΘΘ are given in the following. Let

[L̄] = [t R̄][t S̄r] = [t S̄l ][
t R̄] (2.1)

Let (tλi,{φ}i); i = 1,2,3 be the eigenvalues of [L̄]T [L̄] in
which {φ}T

i {φ} j = δi j, then

[L̄]T [L̄] =
[
Φ̄
]
[t λ̄ ]

[
Φ̄
]T

= [t S̄r]
2 (2.2)

The columns of [Φ̄ ] are eigenvectors {φ}i and [t λ̄ ] is a diag-
onal matrix of tλi, i = 1,2,3. If we choose

[t S̄r] =
[
Φ̄
][√

t λ̄

][
Φ̄
]T (2.3)

Then (2.2) holds, hence [t S̄r] can be defined using (2.3). [t R̄]
can now be determined using (2.1)

[t R̄] = [L̄][t S̄r]
−1 (2.4)

Thus, we have established [t R̄] and [t S̄r] in polar decomposi-
tion (2.1). Using

[L̄] [L̄]T = [t S̄l ]
2 (2.5)

and following a similar procedure we can establish the fol-
lowing

[t S̄l ] =
[
Φ̄
][√

t λ̄

][
Φ̄
]T (2.6)

[t R̄] = [t S̄l ]
−1[L̄] (2.7)

in which (tλi,{φ}i); i = 1,2,3 are eigenpairs of [L̄][L̄]T. [t R̄]
defined by (2.4) or (2.7) is unique. The rate of rotation matrix
[t R̄] can equivalently be obtained due to rotation rates tΘ̄ΘΘΘΘΘΘΘΘ at each
location. Thus, at each location [t R̄] can be viewed as being due
to rates of rotations tΘ̄ΘΘΘΘΘΘΘΘ . Rate of energy dissipation due to tΘ̄ΘΘΘΘΘΘΘΘ re-
quires coexistence of moments M̄MMMMMMMM (per unit area) on the oblique
surface of the tetrahedron in the deforming matter. Thus we have

[L̄] =
∂{v̄}
∂{x̄}

= [t R̄][t S̄r] = [t S̄l ][
t R̄] (2.8)

where

[t R̄] =
[t R̄(t

Θ̄ΘΘΘΘΘΘΘΘ)
]

(2.9)

Explicit forms of tΘ̄ΘΘΘΘΘΘΘΘ i.e. tΘ̄x1 , tΘ̄x2 , and tΘ̄x3 or tΘ̄1, tΘ̄2, and
tΘ̄3 in terms of velocity gradients are given in section 2.6.

2.2 Rotation rate gradients and strain rate gradients

Even though the presence of varying rates of rotations between
neighboring locations in the flow domain may influence the dis-
sipation in some fluent continua, the precise manner in which
this occurs is not yet established. All we know at this stage is
that in fluent continua forces and velocities, the rotation rates
and moments can also be work conjugate if the deforming flu-
ent continua resists varying rotation rates between between the
neighboring locations in the flow domain. Through the deriva-
tions of the balance laws presented in section 3 we establish that
the symmetric part of the rotation rate gradient tensor is energy
conjugate to the moment tensor. Thus, it is fair to say that the
polar part of the theory presented here is due to rates of rotation
gradients. The purpose of the material presented in this section
is to demonstrate that the polar continuum theory presented here
is not the same as the strain rate gradient theory published or ref-
erenced in the literature.

In case of solid matter, author in reference [68] shows a re-
lationship between the gradients of local rotations in terms of
gradients of strain tensor and rotation tensor. Based on simi-
lar works, it is argued and mostly accepted that the continuum
theories that incorporate rotation gradients are same as those de-
rived using strain gradients. Surana et. al. [69]: (i) first derived
a relationship between the gradients of rotations and the gra-
dients of strain tensor (similar to reference [68]) and (ii) then
demonstrated using these relations that the continuum theories
based on rotation gradients and those based on strain gradients
are in fact not the same. The resulting theories from the two ap-
proaches describe different physics. In the following we present
a derivation similar to reference [69] but for fluent continua to
demonstrate that the theories based on rotation rate gradients are
not the same as those that are derived using strain rate gradients.
This is necessary to differentiate the work presented in this pa-
per from the published works on strain rate gradient theories.
For simplicity consider a two dimensional state of deformation
in x1x2-plane. Velocity gradients tensor [L̄] is given by

[L̄] =
[

∂{v̄}
∂{x̄}

]
= [D̄]+ [W̄ ] (2.10)

[D̄] and [W̄ ] are symmetric and skew symmetric tensors.

[W̄ ] =

 0 1
2

(
∂ v̄1
∂ x̄2
− ∂ v̄2

∂ x̄1

)
1
2

(
∂ v̄2
∂ x̄1
− ∂ v̄1

∂ x̄2

)
0

=

[
0 tΘ̄x3

−tΘ̄x3 0

]
(2.11)

in which

t
Θ̄x3 =

1
2

(
∂ v̄1

∂ x̄2
− ∂ v̄2

∂ x̄1

)
= t

Θ̄3 (2.12)

is the rate of rotation tensor about the x3 axis. Gradients of
tΘ̄3 with respect to x̄1 and x̄2 are

t
Θ̄3,1 =

1
2

(
∂ 2v̄1

∂ x̄1∂ x̄2
− ∂ 2v̄2

∂ x̄2
1

)
t
Θ̄3,2 =

1
2

(
∂ 2v̄1

∂ x̄2
2
− ∂ 2v̄2

∂ x̄1∂ x̄2

) (2.13)
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The strain rates are defined by [D̄] (same in co- and contra-
variant bases and Jaumann rates)

[D̄] =

 ∂ v̄1
∂ x̄1

1
2

(
∂ v̄2
∂ x̄1

+ ∂ v̄1
∂ x̄2

)
1
2

(
∂ v̄2
∂ x̄1

+ ∂ v̄1
∂ x̄2

)
∂ v̄2
∂ x̄2

=

[ .
ε̄11

.
ε̄12.

ε̄21
.
ε̄22

]
=

[
γ11 γ12
γ21 γ22

]
(2.14)

in which γ21 = γ12.
Substituting from (2.14) into (2.13) we can obtain

t
Θ̄3,1 =

∂γ11

∂ x̄2
− ∂γ12

∂ x̄1

t
Θ̄3,2 =

∂γ12

∂ x̄2
− ∂γ22

∂ x̄1

(2.15)

In (2.15), the gradients tΘ̄3,1 and tΘ̄3,2 of rotation rate tΘ̄3
are completely expressed in terms of the gradients of γ11 and
γ22 with respect to x̄2 and x̄1 and γ12 with respect to x̄1 as well
as x̄2

Remarks

1. From (2.15) we note that gradients of tΘ̄3 are functions of
∂γ11
∂ x̄2

, ∂γ22
∂ x̄1

, ∂γ12
∂ x̄1

, and ∂γ12
∂ x̄2

but are not functions of ∂γ11
∂ x̄1

and
∂γ22
∂ x̄2

. This is expected due to the fact that ∂γ11
∂ x̄1

and ∂γ22
∂ x̄2

are
gradients of elongation rates per unit length in x̄1 and x̄2 di-
rections, hence can not possibly contribute to the gradients
of the rotation rates.

2. Consideration of tΘ̄3,1 and tΘ̄3,2 in polar theory is identi-
cally equivalent to replacing these by the right sides of the
expressions in (2.15). As long as this condition is satisfied
the polar theory based on the gradients of rotation rates is
the same as the polar theory based on gradients of the strain
rates. We keep in mind that ∂γ11

∂ x̄1
and ∂γ22

∂ x̄2
are not part of the

expressions of the gradients of rotation rates in (2.15).
3. A polar theory based on strain rate gradients must consider

γi j,k i.e. gradients of all six strain rates with respect to x̄k.
Thus at the onset it is clear that the strain rate gradient theory
for 2D cases will also consider ∂γ11

∂ x̄1
and ∂γ22

∂ x̄2
in the deriva-

tion in addition to the other strain rate gradients that appear
in (2.15). If we consider three dimensional case (i.e. R3)
then we would find that additionally ∂γ22

∂ x̄2
will appear in the

strain rate gradient theory but will be absent in the defini-
tions of the gradients of the rotation rates.

4. The rotation rate polar theory resulting due to consideration
of local rotation rates is targeted towards specific physics of
rotation rates resulting in additional dissipation in a deform-
ing fluent continua. We have shown that a polar theory based
on gradients of rates of rotations is not the same as the the-
ories derived using gradients of strain rates. We remark that
equation (2.15) representing gradients of rotation rates as a
function of some (and not all) of the gradients of strain rates
is a consequence of mathematical manipulation.

2.3 Covariant and Contravariant bases

The edges of the deformed tetrahedron T̄1 are covariant base
vectors g̃gg̃ggg̃gggi that are tangent to the deformed material lines at ō.

The faces of the tetrahedron are formed by the covariant base
vectors g̃gg̃ggg̃ggg2,g̃gg̃ggg̃ggg3, g̃gg̃ggg̃ggg3,g̃gg̃ggg̃ggg1 and g̃gg̃ggg̃ggg1,g̃gg̃ggg̃ggg2. Following [67, 70, 71] we can
define

g̃gg̃ggg̃gggi =
∂ x̄k

∂xi
ek (2.16)

xi and x̄k being coordinates of a material point in the refer-
ence configuration and current configuration respectively. If [J]
is the Jacobian of deformation

[J] =
∂{x̄}
∂{x}

or Ji j =
∂ x̄i

∂x j
(2.17)

then the columns of [J] are covariant base vectors g̃gg̃ggg̃gggi. The
contravariant basis are reciprocal to the covariant basis [67, 70,
71] are defined by the base vectors g̃gg̃ggg̃gggi

g̃gg̃ggg̃ggg j =
∂x j

∂ x̄l
eeeeeeeeel (2.18)

We note that
g̃gg̃ggg̃gggi · g̃gg̃ggg̃ggg j = δi j (2.19)

Alternatively to (2.18) we can also define g̃gg̃ggg̃gggi as

g̃gg̃ggg̃ggg1 =
g̃gg̃ggg̃ggg2× g̃gg̃ggg̃ggg3

g̃gg̃ggg̃ggg1 · (g̃gg̃ggg̃ggg2× g̃gg̃ggg̃ggg3)

g̃gg̃ggg̃ggg2 =
g̃gg̃ggg̃ggg3× g̃gg̃ggg̃ggg1

g̃gg̃ggg̃ggg2 · (g̃gg̃ggg̃ggg3× g̃gg̃ggg̃ggg1)

g̃gg̃ggg̃ggg3 =
g̃gg̃ggg̃ggg1× g̃gg̃ggg̃ggg2

g̃gg̃ggg̃ggg3 · (g̃gg̃ggg̃ggg1× g̃gg̃ggg̃ggg2)

(2.20)

The volume of the parallelepiped framed by g̃gg̃ggg̃gggi in the current
configuration is given by (same as denominators in 2.20)

V̄ = g̃gg̃ggg̃ggg1 · (g̃gg̃ggg̃ggg2× g̃gg̃ggg̃ggg3) = g̃gg̃ggg̃ggg2 · (g̃gg̃ggg̃ggg3× g̃gg̃ggg̃ggg1) = g̃gg̃ggg̃ggg3 · (g̃gg̃ggg̃ggg1× g̃gg̃ggg̃ggg2) (2.21)

We note that g̃gg̃ggg̃gggi in (2.18) as well as g̃gg̃ggg̃ggg j in (2.20) satisfy (2.19).
Thus definitions of g̃gg̃ggg̃ggg j in (2.18) and (2.20) are exactly the same,
as both definitions with (2.16) satisfy (2.19). We note that g̃gg̃ggg̃ggg1, g̃gg̃ggg̃ggg2,
g̃gg̃ggg̃ggg3 are normal to the faces of the deformed tetrahedron formed
by g̃gg̃ggg̃ggg2, g̃gg̃ggg̃ggg3; g̃gg̃ggg̃ggg3, g̃gg̃ggg̃ggg1; g̃gg̃ggg̃ggg1, g̃gg̃ggg̃ggg2 covariant base vectors. Covariant and
contravariant directions are important in defining and choosing
the correct measures of strains, stresses, moment intensities, etc.
Under the action of P̄PPPPPPPP and M̄MMMMMMMM on surface ĀB̄C̄ and the stress and
moment intensities on the faces of the tetrahedron formed by
g̃gg̃ggg̃ggg2, g̃gg̃ggg̃ggg3; g̃gg̃ggg̃ggg3, g̃gg̃ggg̃ggg1; and g̃gg̃ggg̃ggg1, g̃gg̃ggg̃ggg2 base vectors, the tetrahedron T̄1 is in
equilibrium.

2.4 Definition of stress measures

2.4.1 Contravariant Cauchy stress tensor The definition
of the stresses on the non-oblique faces of the tetrahedron in the
contravariant directions is the most natural way to define stress.
Let σ̄σσσσσσσσ˜ (0) or σσσσσσσσσ˜ (0) be the contravariant stress tensor with compo-

nents σ̄˜(0)i j or σ˜(0)i j and dyads g̃ggggggggi⊗ g̃gggggggg j. Component σ̄˜(0)11 or σ˜(0)11 is
in the g̃gg̃ggg̃ggg1 direction on a face of the tetrahedron with unit exterior
normal g̃gg̃ggg̃ggg1 i.e. on the g̃gg̃ggg̃ggg1 face. Likewise σ̄˜(0)12 or σ˜(0)12 and σ̄˜(0)31

or σ˜(0)31 act on the g̃gg̃ggg̃ggg1 and g̃gg̃ggg̃ggg3 faces in the g̃gg̃ggg̃ggg2 and g̃gg̃ggg̃ggg1 directions.
Using the dyads g̃ggggggggi⊗ g̃gggggggg j or contravariance law of transformation
we can write

σσσσσσσσσ
(0) = g̃ggggggggi⊗ g̃gggggggg jσ˜(0)i j (2.22)
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using (2.16) we can write

σσσσσσσσσ
(0) = eeeeeeeeei⊗eeeeeeeee jσ

(0)
i j

σ
(0)
i j = Jikσ˜(0)kl J jl

or [σ (0)]T = [J] [σ˜(0)] [J]T
(2.23)

σσσσσσσσσ (0) is the contravariant Cauchy stress tensor (Lagrangian)
from which σ̄σσσσσσσσ

(0) can be easily obtained by replacing [J] with
[J̄]−1 and σσσσσσσσσ (0) with σ̄σσσσσσσσ

(0) in (2.23). Since the dyads of σσσσσσσσσ (0) or
σ̄σσσσσσσσ

(0) are eeeeeeeeei⊗eeeeeeeee j, the Cauchy principle holds between P̄PPPPPPPP and σ̄σσσσσσσσ
(0)

i.e.

P̄PPPPPPPP =
(

σ̄σσσσσσσσ
(0)
)T
· n̄nnnnnnnn (2.24)

2.4.2 Covariant Cauchy stress tensor Instead of using
contravariant directions and stress components σσσσσσσσσ˜ (0) and covari-
ant basis g̃gg̃ggg̃gggi we could use covariant stress components (σ˜(0))i j
or (σ̄˜(0))i j and contravariant basis g̃gg̃ggg̃gggi. Consideration of (σ˜(0))i j
of course will require a different deformed tetrahedron such that
covariant vectors g̃gg̃ggg̃gggi are normal to its non-oblique faces. The
adverse consequences of choosing this measure of stress for fi-
nite deformation are discussed in references [67, 72]. Here we
proceed using this measure as an alternative to the contravariant
stress measure. Using dyads g̃ggggggggi⊗g̃gggggggg j and components (σ˜(0))i j we
can write

σ̄σσσσσσσσ (0) = g̃ggggggggi⊗ g̃gggggggg j(σ˜(0))i j (2.25)

using (2.18) in (2.25) we can write

σ̄σσσσσσσσ (0) = eeeeeeeeei⊗eeeeeeeee j
(
σ̄(0)

)
i j(

σ̄(0)
)

i j = J̄ki
(
σ˜(0))kl J̄l j

or [σ̄(0)] = [J̄]T [σ˜(0)][J̄]
(2.26)

σ̄σσσσσσσσ (0) is the covariant Cauchy stress tensor (Eulerian) from
which σσσσσσσσσ (0) can be obtained by replacing [J̄] with [J]−1 and σ̄σσσσσσσσ (0)

with σσσσσσσσσ (0) in (2.26). Since the dyads of σ̄σσσσσσσσ (0) are eeeeeeeeei ⊗ eeeeeeeee j, the
Cauchy principle holds between P̄PPPPPPPP and σ̄σσσσσσσσ (0) i.e.

P̄PPPPPPPP =
(
σ̄σσσσσσσσ (0)

)T · n̄nnnnnnnn (2.27)

RemarkThe Cauchy stress tensors σσσσσσσσσ (0) or σ̄σσσσσσσσ
(0) and σσσσσσσσσ (0) or

σ̄σσσσσσσσ (0) are nonsymmetric at this stage and so are stress tensors σσσσσσσσσ˜ (0)and σσσσσσσσσ˜ (0). Following the details in reference [67] we can also
define Jaumann stress tensor (0)σ̄σσσσσσσσ J using σ̄σσσσσσσσ

(0) and σ̄σσσσσσσσ (0) stress
measures.

2.5 Definitions of moment tensors

2.5.1 Contravariant Cauchy moment tensor When the
deformed tetrahedron with moment M̄MMMMMMMM (per unit area) on its
oblique face ĀB̄C̄ is isolated from volume V̄ , its non-oblique
face will have existence of moments (per unit area) on them.
As in the case of stress, contravariant basis is the most natural

way to define these. Let mmmmmmmmm˜ (0) or m̄mmmmmmmm˜ (0) be the contravariant mo-

ment tensors with components m˜(0)i j or m̄˜(0)i j and dyads g̃ggggggggi⊗ g̃gggggggg j.

Component m˜(0)11 or m̄˜(0)11 is along g̃gggggggg1 direction on a face of the
tetrahedron with unit exterior normal g̃gggggggg1 i.e. on g̃gggggggg1 face. Like-
wise m˜(0)12 or m̄˜(0)12 and m˜(0)31 or m̄˜(0)31 act on g̃gggggggg1 and g̃gggggggg3 faces in the
g̃gggggggg2 and g̃gggggggg1 directions. Using the dyads g̃ggggggggi⊗ g̃gggggggg j or contravariance
law of transformation we can write

mmmmmmmmm(0) = g̃ggggggggi⊗ g̃gggggggg jm˜(0)i j (2.28)

Using (2.16) we can write

mmmmmmmmm(0) =eeeeeeeeeeeeeeeeeeeeeeeeeeei⊗eeeeeeeee jm
(0)
i j

m(0)
i j = Jikm˜(0)kl J jl

or [m(0)]T = [J] [m˜(0)] [J]T
(2.29)

mmmmmmmmm(0) is contravariant Cauchy moment tensor (Lagrangian)
from which m̄mmmmmmmm(0) can be obtained by replacing [J] with [J̄]−1 and
mmmmmmmmm(0) with m̄mmmmmmmm(0). Since the dyads of mmmmmmmmm(0) or m̄mmmmmmmm(0) are eeeeeeeeei⊗eeeeeeeee j, based
on Koiter [17], the Cauchy principle is assumed to hold between
M̄MMMMMMMM and m̄mmmmmmmm(0) i.e.

M̄MMMMMMMM =
(

m̄mmmmmmmm(0)
)T
· n̄nnnnnnnn (2.30)

We need to establish whether m̄mmmmmmmm(0) is symmetric or not, hence
at this stage m̄mmmmmmmm(0) is not symmetric.

2.5.2 Covariant Cauchy moment tensor Instead of using
contravariant directions we could instead use covariant direc-
tions with moment tensor components (m˜(0))i j and contravari-
ant basis with dyads g̃gg̃ggg̃gggi⊗ g̃gg̃ggg̃ggg j. Consideration of (m˜(0))i j will of
course require a different deformed tetrahedron such that covari-
ant vectors g̃gg̃ggg̃gggi are normal to its non-oblique faces. The adverse
consequences of choosing this measure are similar to those for
the choice of (σ˜(0))i j for the stress measure. Using the dyads
g̃ggggggggi⊗ g̃gggggggg j with components (m˜(0))i j we can write

m̄mmmmmmmm(0) = g̃ggggggggi⊗ g̃gggggggg j (m˜(0))i j (2.31)

Using (2.17) we can write

m̄mmmmmmmm(0) = eeeeeeeeei⊗eeeeeeeee j
(
m̄(0)

)
i j(

m̄(0)
)

i j = J̄ki
(
m˜(0))kl J̄l j

or [m̄(0)] = [J̄]T
[
m˜(0)] [J̄]

(2.32)

m̄mmmmmmmm(0) is a covariant Cauchy moment tensor (Eulerian) from
which mmmmmmmmm(0) can be obtained by replacing [J̄] with [J]−1 and m̄mmmmmmmm(0)
with mmmmmmmmm(0). Following Koiter and since the dyads of m̄mmmmmmmm(0) are ēeeeeeeeei⊗
ēeeeeeeee j, the Cauchy principle holds between M̄MMMMMMMM and m̄mmmmmmmm(0) i.e.

M̄MMMMMMMM =
(
m̄mmmmmmmm(0)

)T · n̄nnnnnnnn (2.33)

As in the case of the contravariant moment tensor, m̄mmmmmmmm(0) is
also a non-symmetric Cauchy moment tensor in covariant basis
unless established otherwise.
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2.6 Velocity and rotation rate gradient tensors

The velocity gradient tensor L̄LLLLLLLL and its decomposition into sym-
metric and skew symmetric parts D̄DDDDDDDD and W̄WWWWWWWW gives

L̄i j =
∂ v̄i

∂ x̄ j
or [L̄] =

[
∂{v̄}
∂{x̄}

]
= [D̄]+ [W̄ ] (2.34)

[D̄] =
1
2

(
[L̄]+ [L̄]T

)
; [W̄ ] =

1
2

(
[L̄]− [L̄]T

)
(2.35)

Let {tΘ̄} = [tΘ̄x1
tΘ̄x2

tΘ̄x3 ]
T be the rates of rotation about

ox1, ox2, and ox3 axes of the x-frame, then we have

[W̄ ] =

 0 tΘ̄x3
tΘ̄x2

−tΘ̄x3 0 tΘ̄x1

−tΘ̄x2 −tΘ̄x1 0

 (2.36)

in which

t
Θ̄1 =

t
Θ̄x1 =

1
2

(
∂ v̄2

∂ x̄3
− ∂ v̄3

∂ x̄2

)
t
Θ̄2 =

t
Θ̄x2 =

1
2

(
∂ v̄1

∂ x̄3
− ∂ v̄3

∂ x̄1

)
t
Θ̄3 =

t
Θ̄x3 =

1
2

(
∂ v̄1

∂ x̄2
− ∂ v̄2

∂ x̄1

) (2.37)

We define gradients of tΘ̄ΘΘΘΘΘΘΘΘ by

Θ̄ L̄i j =
∂ (tΘ̄i)

∂ x̄ j[
Θ̄ L̄
]
=

∂{tΘ̄}
∂{x̄}

=
[

Θ̄ D̄
]
+
[

Θ̄W̄
] (2.38)

Symmetric and skew symmetric tensors [Θ̄ D̄] and [Θ̄W̄ ] are
defined by

[Θ̄ D̄] =
1
2

([
Θ̄ L̄
]
+
[

Θ̄ L̄
]T
)

[
Θ̄W̄

]
=

1
2

([
Θ̄ L̄
]
−
[

Θ̄ L̄
]T
) (2.39)

3 CONSERVATION AND BALANCE LAWS

We remark that the continuum theory considered here incorpo-
rates new physics due to rates of rotations. This physics is absent
in the currently used thermodynamic framework for isotropic,
homogeneous fluent continua. This new physics due to rates of
rotations may influence some or all conservation and balance
laws. In order to determine the precise influence of the new
physics (or lack of it) on the conservation and balance laws,
we must initiate the derivations of the conservation and balance
laws at a fundamental stage as we do for the non-polar case [67]
so that the resulting equations can be compared with the non-
polar case to determine how these laws are modified or influ-
enced by the physics due to rates of rotations. We caution that
after the derivation of conservation and balance laws we may

find that some laws are not influenced by this new physics in
which case the corresponding equations will obviously be the
same as those for the non-polar case. Nonetheless the deriva-
tion of all conservation and balance laws must be presented in
completeness otherwise we can not determine whether a partic-
ular law is influenced by this new physics when compared to the
non-polar case. We wish to remark that in the following sections
even if some derivations yield the same equations as for the non-
polar case, their derivations are essential to keep in the paper as
these are necessary to establish this conclusion compared to the
non-polar case.

In polar continuum theory we must consider velocity gra-
dient tensor and rate of rotation gradient tensor in the deriva-
tions of the following conservation and balance laws based on
the assumption of thermodynamic equilibrium during evolution:
(i) Conservation of mass and conservation of inertia (ii) Balance
of linear momenta (iii) Balance of angular momenta (iv) Bal-
ance of moments of moments (v) First law of thermodynamics,
balance of energy (vi) Second law of thermodynamics, entropy
inequality. We consider the derivations in the following.

3.1 Conservation of mass and inertia

The derivation of the continuity equation based on conservation
of mass remains the same as for non-polar continuum, Follow-
ing reference [67] we can derive the following continuity equa-
tion in Eulerian description.

∂ ρ̄

∂ t
+∇̄∇∇∇∇∇∇∇∇ ········· (ρ̄v̄vvvvvvvv) = 0 (3.1)

or
Dρ̄

Dt
+ ρ̄div(v̄vvvvvvvv) = 0 (3.2)

in which ρ̄(x̄xxxxxxxx, t) is the density of a material point at x̄xxxxxxxx in the
current configuration. Micro-polar continuum theories consider
continua with micro-fibers. In a deforming volume of matter
these micro-fibers (considered inextensible in micro-polar con-
tinuum theory) will have inertial effects due to rotation. Con-
servation of inertia refers to such inertial effects. In the polar
continuum theory presented here this inertial effect is neglected
at present but can be included if desired. Thus, we assume that
in the polar continuum theory considered here there is only one
conservation law leading to the same continuity equation (3.1)
or (3.2) as in the case of non-polar continuum theory.

3.2 Balance of linear momenta

For a deforming volume of matter, the rate change of linear mo-
menta must be equal to the sum of all other forces acting on it.
This is Newton’s second law applied to a volume of matter. This
derivation also is exactly the same as that for non-polar contin-
uum theory. Following reference [67] we can write the follow-
ing in Eulerian description (using contravariant Cauchy stress
tensor).

ρ̄
Dv̄vvvvvvvv
Dt
− ρ̄F̄FFFFFFFFb−∇̄∇∇∇∇∇∇∇∇ · σ̄σσσσσσσσ (0) = 0 (3.3)

or ρ̄
∂ v̄i

∂ t
+ ρ̄ v̄ j

∂ v̄i

∂ x̄ j
− ρ̄F̄b

i −
∂ σ̄

(0)
ji

∂ x̄ j
= 0 (3.4)
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in which F̄FFFFFFFFb are body forces per unit mass and σ̄σσσσσσσσ
(0) is the

contravariant Cauchy stress tensor (See reference [67] for using
covariant Cauchy stress tensor σ̄σσσσσσσσ

(0) and Jaumann stress tensor
(0)σ̄σσσσσσσσ J in place of σ̄σσσσσσσσ

(0) and the consequences of doing so). Equa-
tions (3.3) or (3.4) are the momentum equations in x1, x2, and
x3 directions.

3.3 Balance of angular momenta

The principle of balance of angular momenta for a polar contin-
uum can be stated as follows. The time rate of change of total
moment of momentum for a polar continuum is equal to the
vector sum of the moments of external forces and the moments.
Thus, due to the surface stress P̄PPPPPPPP, surface moment M̄MMMMMMMM (per unit
area), body force F̄FFFFFFFFb (per unit mass), and the momentum ρ̄v̄vvvvvvvvdV̄
for an elemental mass ρ̄dV̄ in the current configuration (using
Eulerian description) we can write the following

D
Dt

∫
V̄ (t)

x̄xxxxxxxx× ρ̄v̄vvvvvvvvdV̄ =
∫

∂V̄ (t)

(
x̄xxxxxxxx× P̄PPPPPPPP−M̄MMMMMMMM

)
dĀ+

∫
V̄ (t)

x̄xxxxxxxx× ρ̄F̄FFFFFFFFbdV̄

(3.5)
In the following derivation we consider contravariant basis.

We use Cauchy principle P̄PPPPPPPP = (σ̄σσσσσσσσ (0))T · n̄nnnnnnnn or P̄j = σ̄
(0)
m j n̄m and

express cross products using permutation symbol εεε. We also use
Cauchy principle M̄MMMMMMMM = (m̄mmmmmmmm(0))T · n̄nnnnnnnn or M̄k = m̄(0)

mk n̄m. Substituting
into (3.5).

D
Dt

∫
V̄ (t)

ρ̄εi jkx̄iv̄ jdV̄ =
∫

∂V̄ (t)

(
εi jkx̄iσ̄

(0)
m j n̄m− m̄(0)

mk n̄m

)
dĀ

+
∫

V̄ (t)

ρ̄εi jkx̄iF̄b
j dV̄

(3.6)

Using transport theorem for the left side of (3.6), Gauss’s
divergence theorem for the first term on the right side of (3.6)
and using Dx̄i

Dt = v̄i

∫
V̄ (t)

ρ̄εi jk

(
v̄iv̄ j + x̄i

Dv̄ j

Dt

)
dV̄ =

∫
V̄ (t)

(
εi jk

(
x̄iσ̄

(0)
m j

)
,m
−
(

m̄(0)
mk

)
,m

)
dV̄

+
∫

V̄ (t)

ρ̄εi jkx̄iF̄b
j dV̄

(3.7)

We note that
εi jkv̄iv̄ j = 0 (3.8)

and

(
x̄iσ̄

(0)
m j

)
,m

= x̄i,mσ̄
(0)
m j + x̄iσ̄

(0)
m j,m

= δimσ̄
(0)
m j + x̄iσ̄

(0)
m j,m

= σ̄
(0)
i j + x̄iσ̄

(0)
m j,m

(3.9)

Using (3.8) and (3.9) in (3.7) and regrouping

∫
V̄ (t)

εi jk

(
x̄i

(
ρ̄

Dv̄ j

Dt
− ρ̄F̄b

j − σ̄
(0)
m j,m

))
dV̄

=
∫

V̄ (t)

(
−m̄(0)

mk,m + εi jkσ̄
(0)
i j

)
dV̄ (3.10)

Using momentum equations (3.4) in (3.10), we obtain∫
V̄ (t)

(
−m̄(0)

mk,m + εi jkσ̄
(0)
i j

)
dV̄ = 0 (3.11)

Since V̄ (t) is arbitrary, (3.10) implies

m̄(0)
mk,m− εi jkσ̄

(0)
i j = 0 (3.12)

Equations (3.12) represents balance of angular momenta.
We note that σ̄σσσσσσσσ

(0) is a nonsymmetric Cauchy stress tensor. It
is instructive to expand (3.12) into three equations

∂ m̄(0)
i1

∂ x̄i
−
(

σ̄
(0)
23 − σ̄

(0)
32

)
= 0

∂ m̄(0)
i2

∂ x̄i
−
(

σ̄
(0)
31 − σ̄

(0)
13

)
= 0

∂ m̄(0)
i3

∂ x̄i
−
(

σ̄
(0)
12 − σ̄

(0)
21

)
= 0

(3.13)

From (3.13), we note that the off diagonal elements of stress
tensor σ̄σσσσσσσσ

0 are balanced by the gradients of the Cauchy moment
tensor. Equations (3.13) can also be obtained in covariant basis
and Jaumann rates by replacing m̄mmmmmmmm(0),σ̄σσσσσσσσ (0) with m̄mmmmmmmm(0),σ̄σσσσσσσσ (0) and
(0)m̄mmmmmmmmJ ,(0) σ̄σσσσσσσσ J .

Remarks

1. In the balance of angular momenta, the rate of change of
angular momenta is balanced by the vector sum of the mo-
ments of the forces. Thus this balance law naturally contains
moments due to components of the stress tensor acting on
the faces of the deformed tetrahedron. Normal stress com-
ponents obviously do not contribute to this. Hence, the mo-
ments contained in this balance law due to stresses are only
caused by shear stresses.

2. In the case of non-polar fluent continua, the balance of an-
gular momenta is a statement of self equilibrating moments
due to shear stresses that yields

εεε : σ̄σσσσσσσσ
(0) = 0 (3.14)

which implies that σ̄σσσσσσσσ
(0) is symmetric. An important point to

note is that (3.14) is a result of stress couples due to shear
stresses.

3. In the case of polar continua, the existence of moments [m̄(0)]

due to the material constitution resisting the rotations results
in the shear stress couples being balanced by the internal
moments. Thus, for polar continua, the balance of angular
momenta yields (3.13) instead of (3.14), i.e.

[m̄(0)]T
{

∇̄
}
−εεε : σ̄σσσσσσσσ

(0) = 0 (3.15)

We note that (3.15) is also a result of stress couples caused
by shear stresses.
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4. Thus, both non-polar and polar continuum theories use stress
couples in the angular momenta balance law. Referring to
the polar continuum theory presented here as stress couple
theory is inappropriate as the non-polar theory also make
use of stress couples.

5. From (3.12) or (3.13) we note that gradients of [m̄(0)] equili-
brate with the antisymmetric components of the stress tensor
σ̄σσσσσσσσ

(0) as the symmetric components cancel each other in each
of the three equations in (3.13).

6. Lastly, we emphasize that appearance of equation (3.12) in
other theories published in the literature does not neces-
sarily make the polar continuum theory presented here the
same as those in the literature. In this work, we begin by
demonstrating that the varying rotation rates at neighboring
locations, when resisted by the deforming fluent continua,
require existence of internal moment tensor [m̄(0)]. The bal-
ance of angular momenta establishes a relationship between
[m̄(0)] and [σ̄ (0)] (equations (3.12) or 3.13).

3.4 Balance of moments of the moments (or couples)

Forces, moments, moments of moments . . . are progressively higher
order effects or terms, hence must satisfy appropriate balance
laws to ensure absence of rigid rotation or rigid translation of
the deforming volume of continua. Balance of angular momenta
(moments of forces) must be considered for couples created by
forces and the moments. Likewise, since moment is similar to
force, but is a higher order effect or term than force, a balance
law similar to balance of angular momentum i.e. balance of mo-
ment of couples or moments must be considered to ensure lack
of rigid motion of the deforming continua. Just like in the case
of non-polar, isotropic, homogeneous fluent continua balance
of angular momenta (moments of forces) restricts the Cauchy
stress tensor to be symmetric, we can expect this balance law to
impose some restrictions on the Cauchy moment tensor. See ref-
erence [66] for additional information. Many published works
use moment of moments but this is not specifically stated as a
balance law for the polar case, hence we do not cite these ref-
erences here. However, reference [66] explicitly states this as a
balance law and uses it to derive relations similar to those pre-
sented here.

For the deformed tetrahedron to be in equilibrium the mo-
ments of the moments (or couples) must vanish. In the moments
of the moments we must consider M̄MMMMMMMM and also shear components
of σ̄σσσσσσσσ

(0) i.e. εεε : σ̄σσσσσσσσ
(0) (in contravariant basis). Thus, we can write

(neglecting inertial terms)

∫
V̄

x̄xxxxxxxx×
(
εεε : σ̄σσσσσσσσ

(0)
)

dV̄ −
∫

∂V̄

x̄xxxxxxxx×M̄MMMMMMMMdĀ = 0 (3.16)

We expand the second term in (3.16) and then convert the
integral over ∂V̄ to the integral over V̄ using divergence theo-
rem.

∫
∂V̄

x̄xxxxxxxx×M̄MMMMMMMMdĀ =
∫

∂V̄

εi jkx̄iM̄ j =
∫

∂V̄

εi jkx̄im̄
(0)
m j n̄mdĀ

=
∫
V̄

(
εi jkx̄im̄

(0)
m j

)
,m

dV̄

=
∫
V̄

εi jk

(
x̄i,mm̄(0)

m j + x̄im̄
(0)
m j,m

)
dV̄

=
∫
V̄

εi jk

(
δimm̄(0)

m j + x̄im̄
(0)
m j,m

)
dV̄

=
∫
V̄

εi jk

(
m̄(0)

i j + x̄im̄
(0)
m j,m

)
dV̄

=
∫
V̄

εi jkm̄(0)
i j dV̄ +

∫
V̄

εi jkx̄im̄
(0)
m j,mdV̄

=
∫
V̄

εi jkm̄(0)
i j dV̄ +

∫
V̄

x̄xxxxxxxx×
(

m̄mmmmmmmm(0) ·········∇̄∇∇∇∇∇∇∇∇
)

dV̄ (3.17)

Using (3.17) in (3.16) and collecting terms

∫
V̄

x̄xxxxxxxx×
(
−m̄mmmmmmmm(0) ·········∇̄∇∇∇∇∇∇∇∇+εεε ::::::::: σ̄σσσσσσσσ

(0)
)

dV̄ −
∫
V̄

εi jkm̄(0)
i j dV̄ = 0 (3.18)

The first term in (3.18) vanishes due to (3.12) (balance of
angular momenta) and we obtain∫

V̄

εi jkm̄(0)
i j dV̄ = 0 (3.19)

Since V̄ is arbitrary, (3.19) implies

εi jkm̄(0)
i j = 0 (3.20)

That is m̄(0)
i j , the Cauchy moment tensor, is symmetric. Re-

lation (3.20) also holds in covariant basis and Jaumann rates by
replacing m̄mmmmmmmm(0) with m̄mmmmmmmm(0) and (0)m̄mmmmmmmmJ . Thus, we can see that the
consequence of this balance law is to impose the restriction of
symmetry on the Cauchy moment tensor.

We note that in the polar theory presented here, the Cauchy
moment tensor is symmetric, but the Cauchy stress tensor is
nonsymmetric, whereas in the corresponding non-polar theory,
Cauchy stress tensor is symmetric and Cauchy moment tensor is
null as rates of rotations are ignored in the theory. Symmetry of
the Cauchy moment tensor is a restriction placed on the Cauchy
moment tensor due to this balance law.

3.5 First law of thermodynamics

The sum of work and heat added to a deforming volume of mat-
ter must result in the increase in energy of the system. Express-
ing this as a rate statement we can write [67]

DĒt

Dt
=

DQ̄
Dt

+
DW̄
Dt

(3.21)

Ēt , Q̄, and W̄ are total energy, heat added, and work done.
These can be written as
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DĒt

Dt
=

D
Dt

∫
V̄ (t)

ρ̄

(
ē+

1
2

v̄vvvvvvvv ········· v̄vvvvvvvv− F̄FFFFFFFFb ········· ūuuuuuuuu
)

dV̄ (3.22)

DQ̄
Dt

=−
∫

∂V̄ (t)

q̄qqqqqqqq ········· n̄nnnnnnnndĀ (3.23)

DW̄
Dt

=
∫

∂V̄ (t)

(
P̄PPPPPPPP ········· v̄vvvvvvvv+M̄MMMMMMMM ········· tΘ̄ΘΘΘΘΘΘΘΘ

)
dĀ (3.24)

Where ē is specific internal energy, F̄FFFFFFFFb is body force per
unit mass, ūuuuuuuuu are displacement, and q̄qqqqqqqq is rate of heat. Note the
additional term M̄MMMMMMMM ········· tΘ̄ΘΘΘΘΘΘΘΘ in DW̄

Dt contributes additional rate of work
due to rates of rotation. In (3.22), we have neglected the energy
due to rotary inertia. This is consistent with the assumption used
in the conservation law in section 3.1. We expand each of the
integrals in (3.22)–(3.24). Following reference [67], it is straight
forward to show that:

D
Dt

∫
V̄ (t)

ρ̄

(
ē+

1
2

v̄vvvvvvvv ········· v̄vvvvvvvv− F̄FFFFFFFFb ········· ūuuuuuuuu
)

dV̄

=
∫

V̄ (t)

ρ̄

(
Dē
Dt

+ v̄vvvvvvvv ········· Dv̄vvvvvvvv
Dt
− F̄FFFFFFFFb ········· v̄vvvvvvvv

)
dV̄ (3.25)

−
∫

∂V̄ (t)

q̄qqqqqqqq ········· n̄nnnnnnnndĀ =−
∫

V̄ (t)

∇̄∇∇∇∇∇∇∇∇ ········· q̄qqqqqqqqdV̄ (3.26)

DW̄
Dt

=
∫

∂V̄ (t)

P̄PPPPPPPP ········· v̄vvvvvvvvdĀ+
∫

∂V̄ (t)

M̄MMMMMMMM ········· tΘ̄ΘΘΘΘΘΘΘΘdĀ (3.27)

Using contravariant Cauchy stress tensor σ̄σσσσσσσσ
(0), Cauchy prin-

ciple, and following the details in reference [67] we can write

∫
∂V̄ (t)

P̄PPPPPPPP ········· v̄vvvvvvvvdĀ =
∫

V̄ (t)

(
v̄vvvvvvvv ·········
(

∇̄∇∇∇∇∇∇∇∇ ········· σ̄σσσσσσσσ (0)
)
+ σ̄

(0)
ji

∂ v̄i

∂ x̄ j

)
dV̄ (3.28)

Likewise using contravariant moment tensor (per unit area)
m̄mmmmmmmm(0), Cauchy principle, and following the details similar to these
used in deriving (3.28), we can write

∫
∂V̄ (t)

M̄MMMMMMMM ········· tΘ̄ΘΘΘΘΘΘΘΘdĀ =
∫

V̄ (t)

(
t
Θ̄ΘΘΘΘΘΘΘΘ ·········
(

∇̄∇∇∇∇∇∇∇∇ ·········m̄mmmmmmmm(0)
)
+ m̄(0)

ji
∂ (tΘ̄i)

∂ x̄ j

)
dV̄

(3.29)
Using (3.25)–(3.29) in (3.21)

∫
V̄ (t)

ρ̄

(
Dē
Dt

+ v̄vvvvvvvv ········· Dv̄vvvvvvvv
Dt
− F̄FFFFFFFFb ········· v̄vvvvvvvv

)
dV̄ =−

∫
V̄ (t)

∇̄∇∇∇∇∇∇∇∇ ········· q̄qqqqqqqqdV̄

+
∫

V̄ (t)

(
v̄vvvvvvvv ·········
(

∇̄∇∇∇∇∇∇∇∇ ········· σ̄σσσσσσσσ (0)
)
+ σ̄

(0)
ji

∂ v̄i

∂ x̄ j

)
dV̄

+
∫

V̄ (t)

(
t
Θ̄ΘΘΘΘΘΘΘΘ ·········
(

∇̄∇∇∇∇∇∇∇∇ ·········m̄mmmmmmmm(0)
)
+ m̄(0)

ji
∂ (tΘ̄i)

∂ x̄ j

)
dV̄

(3.30)

Transferring all terms to left of equality and regrouping

∫
V̄ (t)

ρ̄

(
v̄vvvvvvvv ·········
(

Dv̄vvvvvvvv
Dt
− F̄FFFFFFFFb−∇̄∇∇∇∇∇∇∇∇ ········· σ̄σσσσσσσσ (0)

))
dV̄

+
∫

V̄ (t)

(
Dē
Dt

+∇̄∇∇∇∇∇∇∇∇ ········· q̄qqqqqqqq− σ̄
(0)
ji

∂ v̄i

∂ x̄ j

− m̄(0)
ji

∂ (tΘ̄i)

∂ x̄ j
− t

Θ̄ΘΘΘΘΘΘΘΘ ·········
(

∇̄∇∇∇∇∇∇∇∇ ·········m̄mmmmmmmm(0)
))

dV̄ = 0

(3.31)

Using (3.3) (balance of linear momenta) and (3.12) balance
of angular momenta, (3.30) reduces to

∫
V̄ (t)

(
ρ̄

Dē
Dt

+∇̄∇∇∇∇∇∇∇∇ ········· q̄qqqqqqqq− σ̄
(0)
ji

∂ v̄i

∂ x̄ j

− m̄(0)
ji

∂ (tΘ̄i)

∂ x̄ j
− t

Θ̄ΘΘΘΘΘΘΘΘ ·········
(
εεε ::::::::: σ̄σσσσσσσσ

(0)
))

dV̄ = 0

(3.32)

Since V̄ (t) is arbitrary, (3.32) implies that

ρ̄
Dē
Dt

+∇̄∇∇∇∇∇∇∇∇ ········· q̄qqqqqqqq− σ̄
(0)
ji

∂ v̄i

∂ x̄ j
− m̄(0)

ji
∂ (tΘ̄i)

∂ x̄ j
− t

Θ̄ΘΘΘΘΘΘΘΘ ·········
(
εεε ::::::::: σ̄σσσσσσσσ

(0)
)
= 0

(3.33)
Equation (3.33) is the final form of the energy equation in

which σ̄σσσσσσσσ
(0) is a nonsymmetric Cauchy stress tensor and m̄mmmmmmmm(0) is

a symmetric Cauchy moment tensor. Thus in (3.33) we can use

m̄(0)
m j

∂ (tΘ̄i)

∂ x̄ j
= m̄(0)

m j

(
Θ̄ D̄i j +

Θ̄W̄i j

)
= m̄(0)

m j

(
Θ̄ D̄i j

)
as m̄(0)

m j

(
Θ̄W̄i j

)
= 0

(3.34)

Equation (3.33) representing balance of energy can also be
derived in covariant basis or in Jaumann rates. In (3.33) we re-
place σ̄σσσσσσσσ

(0), m̄mmmmmmmm(0) by σ̄σσσσσσσσ (0), m̄mmmmmmmm(0) and (0)σ̄σσσσσσσσ J , (0)m̄mmmmmmmmJ to obtain its cor-
responding form in covariant basis and in Jaumann rates.

3.6 Second law of thermodynamics

If η̄ is the entropy density in volume V̄ (t), h̄ is the entropy flux
between V̄ (t) and the volume of matter surrounding it and s̄ is
the source of entropy in V̄ due to non-contacting bodies, then
the rate of increase in entropy in volume V̄ (t) is at least equal
to that supplied to V̄ (t) from all contacting and non-contacting
sources [67, 70, 71]. Thus

D
Dt

∫
V̄ (t)

η̄ρ̄dV̄ ≥
∫

∂V̄ (t)

h̄dĀ+
∫

V̄ (t)

s̄ρ̄dV̄ (3.35)

Using Cauchy’s postulate for h̄ i.e.

h̄ =−Ψ̄ΨΨΨΨΨΨΨΨ ········· n̄nnnnnnnn (3.36)

Using (3.36) in (3.35)

D
Dt

∫
V̄ (t)

η̄ρ̄dV̄ ≥−
∫

∂V̄ (t)

Ψ̄ΨΨΨΨΨΨΨΨ ········· n̄nnnnnnnndĀ+
∫

V̄ (t)

s̄ρ̄dV̄ (3.37)
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We recall that [67]

D
Dt

∫
V̄ (t)

η̄ρ̄dV̄ =
∫

V̄ (t)

ρ̄
Dη̄

Dt
dV̄ (3.38)

and

−
∫

∂V̄ (t)

Ψ̄ΨΨΨΨΨΨΨΨ ········· n̄nnnnnnnndĀ =−
∫

V̄ (t)

∇̄∇∇∇∇∇∇∇∇ ·········Ψ̄ΨΨΨΨΨΨΨΨdV̄ =−
∫

V̄ (t)

Ψ̄i,idV̄ (3.39)

Substituting from (3.38) and (3.39) in (3.37) and transferring
all terms to the left of inequality∫

V̄ (t)

(
ρ̄

Dη̄

Dt
+Ψ̄i,i− s̄ρ̄

)
dV̄ ≥ 0 (3.40)

Since volume V̄ (t) is arbitrary, (3.40) implies

ρ̄
Dη̄

Dt
+Ψ̄i,i− s̄ρ̄ ≥ 0 (3.41)

Equation (3.41) is the entropy inequality and is the most fun-
damental form resulting from the second law of thermodynam-
ics. A more useful form of (3.41) can be derived if we assume

Ψ̄ΨΨΨΨΨΨΨΨ =
q̄qqqqqqqq
θ̄

; s̄ =
r̄
θ̄

(3.42)

Where θ̄ is absolute temperature, q̄qqqqqqqq is heat vector, and r̄ is a
suitable potential. Using (3.42)

Ψ̄i,i =
q̄i,i

θ̄
− q̄i

(θ̄)2 θ̄,i =
q̄i,i

θ̄
− q̄i

(θ̄)2 ḡi ; ḡi = θ̄,i (3.43)

Substituting for s̄ from (3.42) and forΨ̄i,i from (3.43) into (3.41)
and multiplying by θ̄ .

ρ̄θ
Dη̄

Dt
+(q̄i,i− ρ̄ r̄)− q̄iḡi

θ̄
≥ 0 (3.44)

From energy equation (3.33) (after inserting ρ̄ r̄ term) in con-
travariant basis

∇̄∇∇∇∇∇∇∇∇ ········· q̄qqqqqqqq− ρ̄ r̄ = q̄i,i− ρ̄ r̄ =−ρ̄
Dē
Dt

+ σ̄
(0)
ji

∂ v̄i

∂ x̄ j

+ m̄(0)
ji

∂ (tΘ̄i)

∂ x̄ j
+ t

Θ̄ΘΘΘΘΘΘΘΘ ·········
(
εεε ::::::::: σ̄σσσσσσσσ

(0)
) (3.45)

Substituting from (3.45) into (3.44)

ρ̄θ
Dη̄

Dt
− ρ̄

Dē
Dt

+ σ̄
(0)
ji

∂ v̄i

∂ x̄ j
+ m̄(0)

ji
∂ (tΘ̄i)

∂ x̄ j

+ t
Θ̄ΘΘΘΘΘΘΘΘ ·········
(
εεε ::::::::: σ̄σσσσσσσσ

(0)
)
− q̄iḡi

θ̄
≥ 0

(3.46)

or

ρ̄

(
Dē
Dt
−θ

Dη̄

Dt

)
− σ̄

(0)
ji

∂ v̄i

∂ x̄ j
− m̄(0)

ji
∂ (tΘ̄i)

∂ x̄ j

− t
Θ̄ΘΘΘΘΘΘΘΘ ·········
(
εεε ::::::::: σ̄σσσσσσσσ

(0)
)
+

q̄iḡi

θ̄
≤ 0

(3.47)

Let Φ̄ be Helmholtz free energy density (specific Helmholtz
free energy) defined by

Φ̄ = ē− η̄ θ̄ (3.48)

Hence

Dē
Dt
− θ̄

Dη̄

Dt
=

(
DΦ̄

Dt
+ η̄

Dθ̄

Dt

)
(3.49)

Substituting from (3.49) into (3.47)

ρ̄

(
DΦ̄

Dt
+ η̄

Dθ̄

Dt

)
+

q̄iḡi

θ̄
− σ̄

(0)
ji

∂ v̄i

∂ x̄ j

− m̄(0)
ji

∂ (tΘ̄i)

∂ x̄ j
− t

Θ̄ΘΘΘΘΘΘΘΘ ·········
(
εεε ::::::::: σ̄σσσσσσσσ

(0)
)
≤ 0

(3.50)

or

ρ̄

(
DΦ̄

Dt
+ η̄

Dθ̄

Dt

)
+

q̄iḡi

θ̄
− tr

(
[σ̄ (0)]T [L̄]T

)
− tr

(
[m̄(0)][Θ̄ L̄]

)
− t

Θ̄ΘΘΘΘΘΘΘΘ ·········
(
εεε ::::::::: σ̄σσσσσσσσ

(0)
)
≤ 0

(3.51)

m̄mmmmmmmm(0) is symmetric but σ̄σσσσσσσσ
(0) is not symmetric. Since m̄mmmmmmmm(0) is

symmetric, we can use the following in (3.51).

tr
(
[m̄(0)][Θ̄ L̄]

)
= tr

(
[m̄(0)][Θ̄ D̄]

)
(3.52)

The entropy inequality (3.51) in covariant basis and in Jau-
mann rates can be obtained by replacing σ̄σσσσσσσσ

(0), m̄mmmmmmmm(0) with σ̄σσσσσσσσ (0),
m̄mmmmmmmm(0) and (0)σ̄σσσσσσσσ J , (0)m̄mmmmmmmmJ .

3.7 Stress decomposition and balance laws

It is instructive to decompose stress tensor σ̄σσσσσσσσ
(0) (considering

contravariant basis) into symmetric sσ̄σσσσσσσσ
(0) and antisymmetric aσ̄σσσσσσσσ

(0)

tensors

σ̄σσσσσσσσ
(0) =s σ̄σσσσσσσσ

(0)+a σ̄σσσσσσσσ
(0) (3.53)

where

sσ̄σσσσσσσσ
(0) =

1
2

(
σ̄σσσσσσσσ

(0)+
(

σ̄σσσσσσσσ
(0)
)T
)

aσ̄σσσσσσσσ
(0) =

1
2

(
σ̄σσσσσσσσ

(0)−
(

σ̄σσσσσσσσ
(0)
)T
) (3.54)

We substitute these in the balance of linear momenta (3.4),
balance of angular momenta (3.12), energy equation (3.33), and
entropy inequality (3.51). First we note that

εεε ::::::::: σ̄σσσσσσσσ
(0) = εεε :::::::::

(
sσ̄σσσσσσσσ

(0)+a σ̄σσσσσσσσ
(0)
)
= εεε :::::::::

(
aσ̄σσσσσσσσ

(0)
)

(3.55)

as

εεε :::::::::
(

sσ̄σσσσσσσσ
(0)
)
= 0 (3.56)
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σ̄
(0)
ji

∂ v̄i

∂ x̄ j
=
(

sσ̄
(0)
ji +a σ̄

(0)
ji

)
(D̄i j +W̄i j)

=
(

sσ̄
(0)
ji

)
D̄i j +

(
aσ̄

(0)
ji

)
W̄i j

(3.57)

as

(
sσ̄

(0)
ji

)
W̄i j =

(
aσ̄

(0)
ji

)
D̄i j = 0 (3.58)

we can write (3.57) as

tr
(
[σ̄ (0)][L̄]

)
= tr

(
[sσ̄

(0)][D̄]
)
+ tr

(
[aσ̄

(0)][W̄ ]
)

(3.59)

Using (3.55)–(3.59) in (3.4), (3.12), (3.33), and (3.51) we
can obtain

ρ̄
∂ v̄i

Dt
+ ρ̄ v̄ j

∂ v̄i

∂ x̄ j
− ρ̄F̄b

i −
∂sσ̄

(0)
ji

∂ x̄ j
−

∂aσ̄
(0)
ji

∂ x̄ j
= 0 (3.60)

m̄(0)
mk,m− εi jk

(
aσ̄

(0)
i j

)
= 0 (3.61)

ρ̄
Dē
Dt

+∇̄∇∇∇∇∇∇∇∇ ········· q̄qqqqqqqq− tr
(
[sσ̄

(0)][D̄]
)
− tr

(
[aσ̄

(0)][W̄ ]
)

− tr
(
[m̄(0)][Θ̄ D̄]

)
− t

Θ̄ΘΘΘΘΘΘΘΘ ·········
(
εεε ::::::::: aσ̄σσσσσσσσ

(0)
)
= 0

(3.62)

ρ̄

(
DΦ̄

Dt
+ η̄

Dθ̄

Dt

)
+

q̄iḡi

θ̄
− tr

(
[sσ̄

(0)][D̄]
)
− tr

(
[aσ̄

(0)][W̄ ]
)

− tr
(
[m̄(0)][Θ̄ D̄]

)
− t

Θ̄ΘΘΘΘΘΘΘΘ ·········
(
εεε ::::::::: aσ̄σσσσσσσσ

(0)
)
≤ 0

(3.63)

A simple calculation by expanding the terms shows that

tr
(
[aσ̄

(0)][W̄ ]
)
=−t

Θ̄ΘΘΘΘΘΘΘΘ ·········
(
εεε ::::::::: aσ̄σσσσσσσσ

(0)
)

(3.64)

If we substitute (3.64) in (3.62) and (3.63) then the energy
equation and entropy inequality simplify.

ρ̄
Dē
Dt

+∇̄∇∇∇∇∇∇∇∇ ········· q̄qqqqqqqq− tr
(
[sσ̄

(0)][D̄]
)
− tr

(
[m̄(0)][Θ̄ D̄]

)
= 0 (3.65)

ρ̄

(
DΦ̄

Dt
+ η̄

Dθ̄

Dt

)
+

q̄iḡi

θ̄
−tr
(
[sσ̄

(0)][D̄]
)
−tr
(
[m̄(0)][Θ̄ D̄]

)
≤ 0

(3.66)

Remarks

(1) Equations (3.60), (3.61), (3.65), and (3.66) can also be ex-
pressed in covariant basis and using Jaumann rates.

(2) Equations (3.1) (Continuity), (3.60), (3.61), (3.65), and (3.66)
constitute a complete mathematical model for fluent media
in Eulerian description.

(3) From (3.65) and (3.66) we can conclude that sσ̄σσσσσσσσ
(0), D̄DDDDDDDD and

m̄mmmmmmmm(0), Θ̄D̄DDDDDDDD are conjugate pairs, hence are responsible for con-
version of mechanical energy into heat or entropy. The con-
jugate pairs are instrumental in deciding the dependent vari-
ables in the constitutive theories and some of their argument
tensors. These conjugate pairs suggest that sσ̄σσσσσσσσ

(0) can be ex-
pressed as a function of D̄DDDDDDDD and m̄mmmmmmmm(0) as a function of Θ̄D̄DDDDDDDD.
We note that q̄qqqqqqqq and ḡgggggggg are also conjugate, thus q̄qqqqqqqq can be ex-
pressed as a function of ḡgggggggg. These details will be considered
in the separate papers on constitutive theories.

4 Closure of mathematical model and comments on
constitutive theories

In this mathematical model the dependent variables are (num-
bers in lower case brackets indicate the count i.e. number of
variables):

ρ̄(1), v̄i(3), sσ̄σσσσσσσσ
(0)(6), aσ̄σσσσσσσσ

(0)(3), m̄mmmmmmmm(0)(6), ē(1),

θ̄(1), q̄qqqqqqqq(3), Φ̄(1), η̄(1), a total of 26.

In these, Φ̄ and η̄ will be eliminated, ē(ρ̄, θ̄) i.e. ē is a function
of ρ̄ and θ̄ for the most general case of compressible matter,
hence ē is also eliminated. This leaves us with the remaining 23
dependent variables in the mathematical model. We have con-
tinuity equation (1), linear momentum equations (3), angular
momentum equations (3), energy equation (1) and, from the en-
tropy inequality, we have constitutive theories for sσ̄σσσσσσσσ

(0) (6), m̄mmmmmmmm(0)

(6), and q̄qqqqqqqq, (3), a total of 23 equations, hence this mathematical
model will have closure once we have constitutive theories for
sσ̄σσσσσσσσ

(0) (6), m̄mmmmmmmm(0) (6), and q̄qqqqqqqq (3).
Development of the constitutive theory is clearly treatment

of matter specific physics. The mathematical model derived here
is valid for compressible as well as incompressible fluids as
well as hypo-elastic solids. In the case of fluids, the derivations
of the constitutive theory must consider: (i) polar thermoflu-
ids that have mechanism of dissipation such as Newtonian and
generalized Newtonian fluids (Power law, Carreau-Yasuda flu-
ids, etc.) (ii) polar thermoviscoelastic fluids that have mecha-
nisms of dissipation as well as memory. The general constitutive
theories for such polar fluids must naturally yield constitutive
theories for Maxwell model, Oldroyd-B model, and Giesekus
model for polar case as well as currently used constitutive theo-
ries within nonpolar continuum mechanics theories. The deriva-
tions of these constitutive theories in contravariant and covariant
bases and Jaumann rates are presented in companion papers.

5 Summary and Conclusions

The development of the continuum theory (polar continuum the-
ory) presented in this paper for isotropic, homogeneous fluent
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continua is motivated by the fact that the polar decomposition of
changing velocity gradient tensor at a location and its neighbors
with different velocity gradient tensors can result in different
rates of rotations which if resisted by the fluent continua result
in conjugate internal moments. These conjugate internal rates of
rotations and the internal moments can result in additional en-
ergy dissipation. The currently used thermodynamic framework
for isotropic, homogeneous fluent continua completely ignores
this physics in the derivation of the conservation and balance
laws. The theory resulting from incorporating the new physics
considered here is in fact ‘a polar theory’ as it considers rates of
rotations and moments as a conjugate pair. The rates of rotations
are internal and are completely defined using skew symmetric
part of the velocity gradient tensor, thus this theory does not
require rotations as external degrees of freedom. The thermody-
namic framework resulting from this new theory is obviously a
more complete thermodynamic framework for isotropic, homo-
geneous fluent continua as it incorporates additional physics due
to internal rates of rotations in the derivation of conservation and
balance laws that is completely ignored in the presently used
framework. In fact, the currently used thermodynamic frame-
work is a subset of the more complete thermodynamic frame-
work presented in this paper resulting from the polar theory.

Derivation of conservation and balance laws have been pre-
sented for polar fluent continua in contravariant and covariant
bases and in Jaumann rates using Cauchy stress tensor, Cauchy
moment tensor, heat vector, Helmholtz free energy density, and
entropy density. Derivations show that (i) Cauchy stress tensor
is nonsymmetric (ii) Cauchy moment tensor is symmetric due
to moment of moments (or couples) balance law (iii) Decom-
position of Cauchy stress tensor into symmetric and antisym-
metric tensors shows that (a) symmetric Cauchy stress tensor
and symmetric part of the velocity gradient tensor are conjugate
(due to energy equation and entropy inequality) (b) antisymmet-
ric part of the Cauchy stress tensor is balanced by the gradients
of the Cauchy moment tensor (due to balance of angular mo-
menta). (iv) Cauchy moment tensor and symmetric part of the
gradient of rate of rotation tensor are conjugate (due to energy
equation and entropy inequality) (v) It is shown that the con-
stitutive theories for symmetric Cauchy stress tensor, Cauchy
moment tensor, heat vector and the thermodynamic relations for
specific internal energy and others provide closure to the math-
ematical model presented here. Details of the constitutive the-
ories for polar thermofluids and polar thermoviscoelastic fluids
are presented in separate papers that follow.

We emphasize that the polar theory presented here is not
a micropolar theory (as mentioned in section 1). The theory
presented here is for isotropic, homogeneous fluent continua in
which internal varying rates of rotations and their gradients can
result in additional energy dissipation. The polar theory pre-
sented in this paper is inherently local and hence not capable
of capturing nonlocal effects. We remark that the polar contin-
uum theory presented in this paper is not to be labeled as “stress
couple theory” (see remarks in section 3.3). Rate of dissipation
due to rates of rotations necessitates existence of conjugate mo-
ment tensor. It is only after the balance of angular momenta we
realize that only the antisymmetric part of the Cauchy stress ten-
sor is balanced by the gradients of the Cauchy moment tensor.
We note that the existence of the Cauchy moment tensor is es-

tablished long before we realize a relationship between its gra-
dients and the antisymmetric part of the Cauchy stress tensor.
We note that the continuum theory presented in this paper is a
more complete thermodynamic framework for isotropic, homo-
geneous fluent continua compared to what is being used now as
it incorporates additional physics due to rates of rotations which
is completely ignored in the current thermodynamic framework.
The polar continuum theory presented here based on rates of in-
ternal varying rotations is not the same as the strain rate gra-
dient theory (see section 2.2). Since the theory presented here
accounts for the deformation physics resulting in internal vary-
ing rotation rates and the conjugate moment tensor, it is perhaps
fitting to call this theory “an internal polar theory for fluent con-
tinua” so that this theory can be clearly distinguished from the
micropolar theories. In forthcoming publications related to the
constitutive theories we refer to this polar theory as “internal
polar theory”.
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