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ABSTRACT 
 
In this study, a faculty-course timetabling problem is solved by using a Simulated Annealing based 
algorithm. In this sort of problems, both the objectives and the constraints are usually highly institution-
specific. Thus, there is not a single commonly used tool to solve this planning problem. Since the 
problems are institution-specific, the results of this study have not been compared to those of the studies 
which are published already. Comparing with the many of the studies, the most important difference of 
this study is to take the lecturer seniority into consideration. This study separates the problem into two 
main components in the solution progress. While the first one is dealing with searching of the lectures 
which can be located into the same time interval, the second one is dealing with assigning the lectures to 
the most suitable place in the timetable. That algorithm is experimented with 2006-2007 academic year 
first term data of Faculty of Business Administration at Istanbul University. The results of proposed 
algorithm is compared to those of genetic algorithms and tabu search. Thus, the genetic algorithms 
approach can not even find a feasible solution. And the tabu search approach finds worse solutions than 
the proposed algorithm. 
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TAVLAMA BENZETİMİ ALGORİTMASINI KULLANARAK FAKÜLTE 
DERSLERİNİN ÇİZELGELENMESİ 
 
 
ÖZET 
 
Bu çalışmada fakülte derslerinin çizelgelenmesi problemi Tavlama Benzetimi temelli bir algoritma ile 
çözülmüştür. Bu tür problemlerde hem  amaçlar hem de kısıtlar genellikle kuruma özgüdür. Bu nedenle 
böyle bir planlama problemini çözecek ortak bir araç bulunmamaktadır.  Problemlerin kuruma özgü 
olması nedeniyle çalışmanın sonuçları literatürdeki bir çalışmanın sonuçlarıyla karşılaştırılamamıştır. Bu 
çalışmanın literatürde yer alan pek çok çalışmadan en önemli farklarından birisi öğretim üyesi 
kıdemlerinin dikkate alınmış olmasıdır. Çözüm sürecinde problem iki ana parçaya ayrılmıştır. Bunlardan 
birincisi aynı zaman dilimine yerleştirilebilecek dersleri aramakla ilgilenirken, ikincisi derslerin zaman 
çizelgesinde en uygun yerlere yerleştirilmesiyle ilgilenmektedir. Algoritma İstanbul Üniversitesi İşletme 
Fakültesi’ nin 2006-2007 Akademik takvimi birinci yarıyıl verileriyle  denenmiştir. Önerilen algoritmanın 
sonuçları ile genetik algoritmalar ve tabu arama algoritmalarının sonuçları kıyaslanmıştır. Buna göre, 
genetik algoritmalar yaklaşımı uygun çözüm dahi bulamamaktadır. Tabu arama yaklaşımı ise daha 
başarısız çözümler bulmaktadır.  
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1. INTRODUCTION 
 
University course timetabling problems are combinatorial problems, which consist 
of scheduling a set of courses within a given number of rooms and time periods. 
Solving a real world timetabling problem manually often requires a significant 
amount of time, sometimes several days or even weeks (Abdennadher and Marte, 
2000). Although many of them are not about specifically university course 
timetabling, there have been a lot of research for timetabling. One of the examples 
for course timetabling is the study of Henz and Würtz (1996). They suggested the 
constraint logic programming approach which is, according to them, competitive or 
better than traditional operations research algorithms for many real-world problems. 
Burke et al. (2007) investigated a simple generic hyper-heuristic approach upon a set 
of widely used constructive heuristics in timetabling. Within the hyper-heuristic 
framework, they developed a tabu search approach to search for permutations of 
graph heuristics which were used for constructing timetables in exam and course 
timetabling problems. Head and Shaban (2007) combined two problems, student 
scheduling and course scheduling, which are typically treated as separate tasks. 
They build the schedule based on heuristic functions and place the students into 
classes simultaneously. 

 
In this study, it has been tried to solve university course timetabling problem using 
simulated annealing (SA) algorithm which is a stochastic heuristic algorithm, and 
searches the solution space using a stochastic hill climbing process. In this sort of 
problems, both the objectives and the constraints are usually highly institution-
specific. Thus, the results of this study can not be compared to those of any other 
study in that area. Note that, almost all of the studies similarly focused on satisfying 
lecturer preferences. However, none of them has dealed with lecturer seniorities. In 
order to mention the differences of the problem discussed here from the problems of 
the other studies, some examples may be given as follows: in the problem which is 
studied by Abdennadher and Marte (2000), lecturers must have one hour break 
between courses and monday afternoon is reserved for professors; Schimmelpfeng 
and Helber (2006) described teaching groups for their problem and assign these 
groups to the lectures; MirHassani (2006) included an overload constraint for the 
lecturers in his study; the problem which Henz and Würtz (1996) studied has two 
unusual constraints which limits some courses to certain time slots and introduces 
unavailability times for some lecturers; Avella and Vasil’ev (2005) predefined some 
penalty values according to the courses which are scheduled at a given time; and 
Daskalaki et al. (2004) included a constraint in which a timetable should 
accommodate requests for sessions of consecutive teaching periods. In this regard, 
the results of the SA approach has been compared to those of the genetic algorithms 
(GA) and tabu search (TS) approaches which have been adapted from similar 
studies. The use of SA as a technique for discrete optimization dates back to the 
early 1980s. It was heralded with much enthusiasm as it appeared to be both simple 
to implement and widely applicable, and as a result of articles in popular scientific 
journals researchers from a wide variety of disciplines experimented with it in the 
solution of their own problems (Reeves, 1995). Simulated annealing has been used 

 2



 
 
 
 
 
 
 
 
 
İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi                                    Güz 2007/2 

in various combinatorial optimization problems and has been particularly successful 
in circuit design problems (Kirkpatrick et al., 1983). Timetabling problems are sort 
of scheduling problems, since they can be defined as the scheduling of a set of 
activities requiring a given amount of resources, and involving groups of people 
over a finite time period (Avella and Vasil’ev, 2005). A SA example to the 
scheduling problem is the study of Anagnostopoulos et al. (2006). They considered 
the traveling tournament problem to abstract the salient features of Major League 
Baseball in the United States. They aimed at scheduling Major League Baseball 
such that total travel distance should be minimized and home/away game constraints 
should be satisfied as well. The study of Loukil et al. (2007) can be mentioned as 
another example on this topic. Their study deals with a production scheduling 
problem in a flexible job-shop with particular constraints: batch production; 
existence of two steps: production of several sub-products followed by the assembly 
of the final product; possible overlaps for the processing periods of two successive 
operations of the same job. They tried to schedule multi-objective production case 
by SA. 
 
In this study, the timetabling problem is based on the rules which must be observed 
in Istanbul University Faculty of Business Administration (IUFBA). These rules are 
assembled into two categories. First category is that of obligatory rules which make 
the solution of the problem erroneous even if one of them is violated. The other 
category is that of the rules which are observed the more, the more satisfactory 
solution is obtained. Indeed, satisfying lecturer desires is the only rule for this 
category. These categories may be, respectively, called hard constraints which 
usually relate to operational limitations that can not be bypassed in the real world 
and soft constraints which are deemed desirable (Burke and Newall, 2004). 
Obligatory rules are as follows: 
 
1. Each lecture must be assigned to only one room and one day. In other words, each 
lecture must be assigned to a single timeslot. Although actual lengths of lectures 
vary, each lecture must initially be assigned to one hour which will be the starting 
time of the lecture.  
 
2. The lengths of the lectures and school hours must be taken into consideration 
while assigning the lectures. For example if the school hours are from 9 am to 5 pm 
and the length of the lecture is 3 hours, this lecture can not be assigned to 4 pm since 
it would have exceed the official school hours. 
 
3. More than one lecture can not be assigned to a given room at the same time 
interval. 
 
4. A lecturer can not have more than one lecture assigned in a given time interval. 
 
5. To allow students to choose alternative lectures from the same department, some 
predefined lectures must not overlap. In addition to this, the lectures of the same 
class must not overlap as well. 
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6. At least half of the total school hours in each day must be filled with lectures. 
 
The rest of the paper organized as follows: Section 2 presents the mathematical 
formulation of above problem; Section 3 identifies the main SA structure; Section 4 
presents two other comparative methods which are GA and TS; Section 5 gives an 
application of developed algorithms; and section 6 gives a brief conclusion. 
 
 
2.   FORMULATION OF THE PROBLEM 
 
The problem in this study can be stated as follows: The number of lectures, the 
number of lecturers and the number of different rooms are denoted by J, I and L, 
respectively. Lectures can be assigned to any school day. Each day consists of 8 
hours. Thus, D = 5, H = 8, and they denote the number of days and hours of 
timetable respectively. Yj denotes the length of lecture j (j=1,…,J),  Ci denotes the 
seniority coefficient of lecturer i (i=1,…,I). The coefficients of veteran lecturers will 
be greater. Thus, the probability of satisfying their wishes will increase, and Pidh 
denotes the desire coefficient (a higher value indicating a higher preference) of 
lecturer i for day d (d=1,…,D) and hour h (h=1,…,H). 
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where Xji = 1 if i lectures j, otherwise Xji = 0, αdh = 1 if a lecture is assigned to any 
room on day d and at hour h, otherwise αdh = 0, Z j* j = 1 if lecture j* and lecture j can 
not overlap, otherwise Z j* j = 0, and Sjldh = 1 if lecture j is assigned to room l on day 
d and at hour h, otherwise Sjldh = 0.  
 
It can obviously be seen that such a mathematical model is not easily implemental. 
Indeed, it may require a computer with very high level of specifications and 
software with very high level of performance. However, this model is helpful to 
explain the problem.  
 
As previously mentioned, the problem has two categories of rules. The first one is 
dialing with satisfying the lecturer desires, which is represented by (A) in the model. 
Second category is discussed as follows: 
 

1. Obligatory rule 1 is imposed by (1), 
2. Obligatory rule 2 is imposed by (2), 
3. Obligatory rule 3 is imposed by (3), 
4. Obligatory rule 4 is imposed by (4), 
5. Obligatory rule 5 is imposed by (5), 
6. Obligatory rule 6 is imposed by (7a) and (7b), 

 
in this model. 
 
 
3. THE MAIN SA STRUCTURE 
 
As mentioned before, some of the lectures can not overlap. In order to avoid 
overlapping of these lectures, assigning each lecture to a unique day-hour pair may 
be considered, if there is enough available space in the timetable. However, the time 
period is limited to one week (5 days × 8 hours a day) while the number of lectures 
is 133 for the test problem, which makes such an assignment impossible.  
 
Inspired by the partitioning approach of Abdullah et al (2007), this study employs 
some subsets (vectors) in solution progress: maximum L lectures may overlap in a 
given time interval as long as all the constraints are satisfied.  Suppose that there are 

 5 



 
 
 
 
 
 
 
 
 
Tunçhan CURA 
 

K vectors, denoted by bk (k=0,…, K-1), and each of them has maximum L elements 
denoted by bk,l (l=0,…,L-1). So, the index l represents room number. Lectures will 
be assigned to each bk,l. Of course there should be no restriction for the lectures to be 
located into a given bk. A variable hourk is used for limiting the maximum hour of a 
lecture in bk. For example, a 3-hour lecture can not be located into bk where hourk = 
2. Fig. 1 shows a sample bk vector where L = 15. Since bk,0 = 40, lecture 40 is 
assigned to bk, bk,2 and bk,4 are empty as to the Figure 1. 
 
In the case of K = 15, table 1 shows a sample timetable matrix to where all of the b 
vectors are assigned and is denoted by sd,h in this study (d=0,…,D-1; h=0,…,H-1). If 
bk is not assigned to sd,h then sd,h = -1. However, a preceding element (bk) of sd,h may 
overflow through current element (bk

*) dependent on hourk. For example, if s0,0 is 13 
and hour13 is 3 then  b13 will overflow through s0,2 as seen in table 1. However, there 
will not be an overlapping in that case, since s0,2 is empty (s0,2=-1). 
 
SA algorithm which is developed for this study swaps the cells in s and it swaps 
lectures among bk to maximize objective function explained in (A). 
 
 

Table 1. A Sample s Matrix 

 Day 

1(d=0) 

Day 

2(d=1) 

Day 

3(d=2) 

Day 

4(d=3) 

Day 

5(d=4) 

Hour 1(h=0) 13 2 8 4 3 

Hour 2(h=1) -1 -1 -1 -1 -1 

Hour 3(h=2) -1 11 -1 5 10 

Hour 4(h=3) 1 -1 6 -1 -1 

Hour 5(h=4) -1 -1 -1 -1 -1 

Hour 6(h=5) 9 7 -1 14 12 

Hour 7(h=6) -1 -1 0 -1 -1 

Hour 8(h=7) -1 -1 -1 -1 -1 
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Figure 1. A Sample b Vector 

 
 
3.1. Defining the Number of b Vectors  
 
Let X be the number of different lecture lengths. Thus, each different length, the 
number of lectures with this length and the number of bk where hourk equals this 
length are denoted by λx, δx and µx (x=1,…,X) respectively. For example, if there are 
3 lectures and their lengths are 2 hours, 2 hours and 3 hours successively, then the 
number of different lengths (X) will be 2 (λ1=2 hours and λ2=3 hours), and δ1 will be 
2 and δ1 will be 1.  
  
It is assumed that the proportion between the number of lectures with a specific 
length and the number of bk where hourk equals that length must be direct for the test 
problem. If it is supposed that X is 2 and µ*

1, µ*
2 represent the number of b vectors 

for only one day, following equations will be obtained: 
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Eq.(11) is obtained with the help of  Eq. (9) and Eq. (10). 
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In order to ensure Eq. (12), µ*

x values might have to be adjusted by reducing one 
each. As explained above, µ*

x is calculated for one day in Eq. (11). Hence, µ*
x must 

be multiplied by D to obtain final µx value for whole timetable. The number K of b 

vectors will be after all. ∑μ
=

X

1x
x

 
For the test problem X = 2, λ= {2, 3}, δ = {37, 96}, J = 133, D = 5, and H = 8 in this 
study. Thus, K will be 15 and set of hour will be {2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 
3, 3, 3, 3, 3, 3}, according to calculation above. 
 
 
3.2. Filling the b Vectors with Lectures 
 
After defining K and hourk, next step will be filling each bk with lectures. Each bk is 
filled with randomly selected lectures initially. Therefore, that would most probably 
cause errors which are violations of the obligatory rules 4 and 5.  
 
In this study, a fitness function is used for measuring the compatibility between 
lecture j and vector bk. This functions’ value is a rational number between 0 and 1. 
As the fitness functions’ value approaches to the unity the compatibility between j 
and bk increases while it decreases as the fitness function’ value approaches to 0. 
The fitness function is defined as: 
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where θk is the number of empty elements in bk, ε is a very small number to avoid 
division by zero error, o is a lecture, qj,k=1 if j exists in bk, otherwise 0, qo,k =1 if o 
exists in bk, otherwise 0 and gj,k is the number of compatible elements with j in 
vector bk, it includes empty elements but excludes j and o. In other words, if bk 
contains lecture j currently or lecture o is in bk and it is compatible with j, gj,k will 
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not enclose them. The “compatibility of two lectures” is yielded when these lectures 
can overlap without violating the rules 4 and 5. 
 

   For k = 0 to K - 1 
    For l = 0 to L – 1 
        If bk,l ≠ 0 then 
             Search the  such that f1(bk,l, k*, -1) - f1(bk,l, k, -1) is  *k

b
                    maximum and  f1(bk,l, k*,-1) >  f1(bk,l, k,-1) 

             If k* is found, search lecture l*
 in bk

* such that f1( , k, bk,l) is 
maximum 

** l,kb

                    and    f1( , k, bk,l) ≥ f1( , k*, -1) ** l,kb ** l,kb

                    If l* is found, swap bk,l and  ** l,kb

                End if  
            End For 
   End For 

Figure 2. An Algorithm for Error Reducing 

Until all of the b vectors have no error (violations of rule 4 and 5), an algorithm 
which is called error reducer algorithm is used for assembling compatible lectures 
into the proper bk. Figure 2 shows the sketched algorithm. 
 
 
3.3. The Energy Function 
 
In this paper, the energy function is derived from the objective function (A). In a 
similar manner, the b vectors and the s matrix are used for calculating the energy 
function which will be maximized by the SA solver algorithm. Since b vectors are 
located in s matrix, each of them is assigned to a unique d, h pair. Thus, the 
calculation of the energy function of bk for a given d, h pair will be as: 
 

∑ ∑ ×=
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CP)h,d,k(f    (14) 

where Xj (X0=0) is a number which represents the lecturer who lectures j, Pi, d, h (P0, d, 

h=0) and Ci (C0= 0) have already been explained for (A) and they are used in the 
same purpose here. If Yj < hourk and j is located in bk then sliding j within hourk will 
be allowed to satisfy preferences of lecturer of j. In this study, the energy function is 
described as: 
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M = J × max{Y1, ...,Yj} × max{C1, ...,CI} × max{P1,0, 0, ..., PI,D,H} + 1  (20) 

 
where θk is number of empty elements in bk and γ is total error count as already 
mentioned. That is, γ is the total count of rule 4 and 5 violations in all b vectors. M is 
a huge number to penalize violations of the obligatory rules. It is calculated as seen 
in Eq. (20) for this study. This penalization approach is similarly used in some 
integer programming formulations of the university course timetabling problems 
(Schimmelpfeng and Helber, 2006; Avella and Vasil’ev, 2005; MirHassani, 2006; 
Daskalaki et al., 2004). Most commonly, the objective functions of the models 
contain penalizations of the violations with respect to some weights.   
 
While Eq. (16) is penalizing the violations of the rules 4 and 5; Eq. (17), Eq. (18) 
and Eq. (19) are penalizing violations of the rules 2, 3 and 6 respectively. 
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3.4. The Cooling Schedule and Acceptance Probability Function 
 
Classical SA which is also called Boltzman annealing is taken as basis in this study. 
Its acceptance probability function is P(Tr). This function controls accepting new 
solution snew and bnew with energy function value f (snew) while current solution is sold 
and bold with energy function value f (sold) and the current temperature is Tr. 
 
The rate at which the temperature parameter is reduced is vital to the success of any 
annealing process. This is governed by the number of repetitions at each temperature 
and the rate at which the temperature is reduced. The theory suggests that the system 
should be allowed to move very close to its stationary distribution at the current 
temperature before temperature reduction, and that the temperature should converge 
gradually to a value of zero. It also suggests that, in order to achieve this, a number 
of iterations exponential in problem size will be necessary at each temperature 
(Reeves, 1995). 
 
Dhawan suggested a cooling schedule (Yeh and Fu, 2007) which has performed the 
best for SA algorithm in this study. It is defined as 
 

)1rln(
T

T 0
r +
= ,  r = 1, 2, ..., ∞     (21) 

 
where T0 is the initial temperature and it has been set to 25 empirically for this 
study. The stopping condition has been met when Tr = 3.5. 
 
The underlying design concept is that at a high temperature, it is quite probable to 
find a solution distant from the real global minimum having only a fewer energy 
function values than the current value. Normally, this kind of new solution will 
always be accepted. To reduce these undesirable moves, the acceptance probability 
function is defined as (Yeh and Fu, 2007)  
 

rT/fr
e1

1)T(P
Δ+

=        (22) 

 

where ∆f = f (snew) – f (sold), since the energy function searches global maximum in 
this study, ∆f is defined as ∆f = f (sold) – f (snew). 
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4.   SA AND SOME OTHER HEURISTICS FOR TIMETABLING PROBLEM 
 
Since the problem is institution specific, there is not a commonly used solver tool 
for the university-course timetabling problem. In addition to this, the IUFBA test 
data is such huge that the model described in Eq. (A) – Eq. (8) can not be solved by 
any known software (e.g. Lingo 8.0). Thus, it is not possible to compare the results 
of this study to those of a previously proposed method or to those of reliable 
software.   
 
In addition to SA, the most commonly used metaheuristic algorithms for this sort of 
problems are GA and TS. In order to compare the results of this study to those of the 
both, a similar structural design has been adapted into each of them.  
 
Note that all the parameters mentioned in this study have been determined 
empirically for each one of the benchmark algorithms. That is, each algorithm has 
been tested individually for different parameter values. The parameter values which 
ensure the best solution are accepted and given in this paper. Thus, analyses are 
made with respect to those parameter values in section 5 and section 6. 
 
 
4.1. The Solver SA Algorithm 
 
It has been shown that all the obligatory rules are observed by penalizing the 
violations except for rule 1. Since the lectures are assigned to only one bk,l initially, 
there can be no repetition of any given lecture. Thus, whenever the energy function 
reaches a value that is greater or equal to zero, all of the obligatory rules would be 
observed, if the punitive number M is defined as seen in Eq. (20). Fig. 3 shows the 
solver SA algorithm. 
 
In this algorithm, three additional terms which are ratio, centers and shaking take 
place. These terms are discussed successively as follows: 

 
ratio: This is a variable which can have rational values between 0 and 1. 

Initially it has the value 1, but it is reduced by cooling schedule progressively. 
 
centers: There are three center variables: centerforb, centerford, and centerforh. 

These all determine the selections for swapping operations. Initial center values are 
randomly set as follows: 

 
centerforb = round{random(0, 1) × (K – 1)}    (23) 

centerford = round{random(0, 1) × (D – 1)}    (24) 

centerforh = round{random(0, 1) × (H – 1)}    (25) 
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Create initial s and b 
Create initial centers 
Set ratio = 1 
Set best_s = s 
Set best_b = b 
Set error = count of total errors for b 
Set besterror = error 
Set energy = f(s) 
Set bestenergy = energy 
while Tr > 3.5  
    for counter = 0 to 1500  
         Set bswapped = false 
         Set lectureswapped = false 
         if random(0, 1) < 0.000033 then 
            energy = bestenergy 
            error=besterror 
            b = best_b 
           s = best_s 
          centerforb = bestcenterforb   
          centerforh = bestcenterforh 
          centerford = bestcenterford  
         Else if  
           random (0, 1) < 0.000033 then 
  shake centers 
         End if 
         if besterror > 0 and  
           random(0,1) < 0.0001 then 
             Call error reducer algorithm for b 
         Else if random(0,1) < 0.71 then 
           Select d1

*, h1
*, d2

*, h2
* randomly 

             depending on centers  
           Set bswapped = true 
         End if 
         if bswapped = False or  
           random(0, 1) < 0.71 then 
           select k1

*, k2
* randomly depending 

           on cenerforb  
           Set lectureswapped = true 
         End if 
         if bswapped = true then 

           swap and  *
1

*
1 h,ds *

2
*
2 ,hds

         End if 

         if lectureswapped = true then 
           select l1

*, l2
* randomly 

           swap and  *
1

*
1 l,kb *

2
*
2 l,kb

         End if  
         error = count of total errors for b 
         Δf = energy - f(s) 
         if Δf < 0 or  
           random(0,1) < P(Tr) then  
           energy = energy – Δf 
         Else 
           if bswapped = true then 

             swap and  

  

*
1

*
1 h,ds *

2
*
2 ,hds

           End if 
           if lectureswapped = true then 
             swap and  *

1
*
1 l,kb *

2
*
2 , lkb

           End if 
         End if 
         if bestenergy < energy then 
           if lectureswapped = true then 
             centerforb = round{(k1

* + k2
*) / 2} 

             bestcenterforb = centerforb 
           End if 
           if bswapped = true then 
             centerforh = round{(h1

* + h2
*) / 2)} 

             centerford = round{(d1
* + d2

*) / 2)} 
             bestcenterforh = centerforh 
             bestcenterford = centerford 
           End if 
           bestenergy = energy 
           besterror = error 
           best_s = s 
           best_b = b 
         End if 
    End for 
    if bestenergy < 0 then Set r = 0 
    r = r + 1 
    Tr = T0 / ln(r + 1) 
    ratio = min{2 / ln(r + 1), 1} 
End while 

Figure 3. The Solver SA Algorithm for The Problem 

 
In this study, whenever a random selection occurs for bk or sd,h; the domain of the 
selection would be focused on these center values as follows:  
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ℓ= round {random (-ratio × 0.5 × (K-1),  ratio × 0.5 × (K-1))} + centerforb  (26) 

∂= round {random (-ratio × 0.5 × (D-1),  ratio × 0.5 × (D-1))} + centerford (27) 

Ω= round {random (-ratio × 0.5 × (H-1),  ratio × 0.5 × (H-1))} + centerforh (28) 

⎩
⎨
⎧

<+
≥−

=
0ifK

0if)1K(mod
k*

n
ll

ll
      (29) 

⎩
⎨
⎧

<∂+∂
≥∂−∂

=
0ifD

0if)1D(mod
d*

n       (30) 

⎩
⎨
⎧

<Ω+Ω
≥Ω−Ω

=
0ifH

0if)1H(mod
h*

n       (31) 

 
shaking: This is an operation to randomly change the places of centers. The 

probability of shaking is 0.000033. 
 

There are some probabilities in the algorithm. All of these are determined 
empirically. The swapping probability of both b and s at the same time is 0.71 × 
0.71 ≈ 0.5 as seen in Figure 3. 
 
 
4.2. Genetic Algorithms  
 
GA is a population-based evolutionary heuristic, where every possible solution is 
represented by a specific encoding, often called individual (Colorni et al., 1998). 
First developments in GA field took place nearly 40 years ago. However, most early 
applications were in the realm of artificial intelligence – game playing and pattern 
recognition for instance. Some of the early researches focused on function 
optimization. Recently, many GA studies have taken place in Operational Research 
area. GAs were developed initially by Holland and his associates in the 1960s and 
1970s. Goldberg gives an interesting survey of some of the practical work carried 
out in this era. The name genetic algorithm originates from the analogy between the 
representation of complex structure by means of a vector of components, and the 
idea, familiar to biologists, of the genetic structure of a chromosome (Reeves, 1995). 
 
With respect to the structural design of this study, a GA is formed where population 
size is 30 and the possibility of mutation operation is set to 0.005. Each individual 
consists of two groups of chromosomes which represent b vectors and s matrix 
denoted by sb (the number of genes in sb is K × L) and ss (the number of genes in ss 
is D × H) respectively.  This separated design ensures the number of lectures not to 
directly affect the chromosome lengths. That is because lectures are factors which 
increase the search space dramatically (Beligiannis et al., in press). 
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In many cases it has been observed that increasing the number of crossover points 
has improved the performance of GA (Reeves, 1995). Thus, the two-point crossover 
operator in which two parts of the first parent are copied and the rest between is 
taken in the same order as in the second parent is employed. Following example 
shows how the crossover operator works: 
 
 

sb1 = {2, 0, 0, 0, 0, 1, 3, 0, 5, 0, 0, 0, 0, 4, 0} (crossover points = {4, 9}) 

sb2 = {0, 0, 2, 1, 0, 0, 0, 0, 4, 5, 3, 0, 0, 0, 0}  

ss1 = {-1, -1, -1, 1, -1, -1, 0, 2, -1} (crossover points = {1, 5}, 

ss2 = {-1, 1, -1, -1, 2, -1, 0, -1, -1} 

sboffspring = {2, 0, 0, 1, 0, 0, 0, 5, 3, 0, 0, 0, 0, 4, 0} 

ssoffspring = {-1, 1, -1, -1, -1, -1, 0, 2, -1} 

 
where K = 3, L = 5, J = 5, D = 3 and H = 3. 
 
 
4.3. Tabu Search 
 
TS is a higher-level metaheuristic procedure for solving discrete and continuous 
optimization problems. TS has its antecedents in methods designed to cross 
boundaries of feasibility or local optimality normally treated as barriers, and 
systematically to impose and release constraints to permit exploration of otherwise 
forbidden regions. The modern form of tabu search derives from Glover. Seminal 
ideas of the method are also developed by Hansen (Reeves, 1995). Zhao and Zeng 
(2008) studied a metaheuristic method which is combination of TS, SA and greedy 
search algorithm for optimizing transit networks, including route network design, 
vehicle headway, and timetable assignment. Causmaecker et al. (2008) studied 
university course timetabling. They developed a TS based metaheuristic and their 
work consists of a multistage approach to solve a non-weekly recurring real world 
timetabling problem with overlapping time slots. In order to generate a TS algorithm 
for the university course timetabling problem, this study uses a similar 
hyperheuristic of Burke at al. (2003) which can be outlined by the following 
pseudocode:  
 
 
Do 

1- Select heuristic, e, with highest rank and apply it   

1- h1: Swap randomly selected elements between two random b vectors and 

           Swap elements of two random timeslots of s 

1- h2: Swap randomly selected elements between two random b vectors 
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1- h3: Swap elements of two random timeslots of s 

2-1 if Δf > 0 then re = re + 1 

2-2 else re = re – 1 and include e in TABULIST 

Until stopping condition is met 

 
Where Δf =f (snew) – f (sold) and re is the rank of heuristic e. This approach describes 
three movements which are denoted by h1, h2, and h3. Thus, this algorithm uses a 
sort of short term memory, which bars recent bad movements listed in TABULIST.  
 
 
5.   Applications and Discussions 
 
The proposed algorithm has been tested with the 2006 – 2007 academic year, first 
term course timetabling data of IUFBA. The desire coefficient matrix consists of 
integer numbers between 0 and 5. There are three distinct seniority coefficient 
values which are 25, 5 and 1. These values correspond to the professors, to the 
associate professors and to the other academic staff respectively. The number of 
lecturers is 72.   

 
Algorithm is tested on a Pentium M 2.13 computer. The average time of solving 
procedure is 1.74 minutes. Figure 4 and Figure 5 show the progression of the 
algorithm. As to the Figure 4, algorithm rapidly (in 37 iterations) finds positive 
solutions which mean feasible ones with the help of error reducer sub algorithm. 
However, it finds the most satisfactory solution relatively slowly (see Figure 5). 

 
Table 2 gives a comparative summary of the results.  Only the lecturers who make 
wishes are involved in those statistics, others are not involved since it doesn’t matter 
for them where their lectures are assigned to. For each group of lecturers the mean 
desire coefficient and standard deviation of desire coefficients are given in Table 2. 
GA approach finds infeasible solutions. When compared to SA, it is seen that the TS 
approach finds not only less satisfactory solutions, but also more variant solutions, 
that is, mean desire coefficient does not represent satisfaction of all the lecturers in 
the group correctly. If the professors are considered, it will be seen that the standard 
deviation / mean is equal to 0.41 for SA approach, while it is 1.09 for TS approach.  
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Figure 4. Progression of the Algorithm for First 37 Iterations 
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Figure 5. Progression of the Algorithm After 37th
  Iteration 
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Table 2. Desire Satisfaction Table of Lecturers 

Seniority 

coefficient 

SA Approach GA Approach∗∗∗
 

TS Approach 

 μ∗
  σ∗∗ μ σ μ σ 

25(for 

professors) 

4.117647 1.699447 1,003268 
 

1,832142 
 

1,98366 
 

2,172379 
 

5(for 

associate 

professors) 

3.655172 1.767052 1,034483 
 

1,586207 
 

1,36782 
 

1,727277 
 

1(for the 

other 

academic 

staff) 

2 2.020726 0,986111 
 

1,665219 
 

1,87847 
 

2,166063 
 

 
 
6. CONCLUSION 
 
According to the results of application given in table 2, the GA algorithm has not 
reached a feasible solution, in other words, rules 4 and 5 have been violated. The 
error reducer sub-algorithm could not be adapted into the GA approach. However, it 
has produced much lesser satisfactory solution than SA approach. That sub-
algorithm could be embedded into the TS approach and it has reached a non-violated 
solution which is still less satisfactory than that of the SA approach. 

 
The mean desire coefficient of assigned lectures is 4.12 for professors in IUFBA. In 
other words, professor desires are satisfied with a proportion of 0.82 (4.12 / 5 ≈ 
0.82). This proportion is 0.73 for associate professors and it is 0.4 for the other 
academic staff. Thus, we can say that the SA based approach for the timetabling 
problem of IUFBA produces significant results. 
 

 

 

                                                 
∗∗∗ Solution is errorenous since it includes violations of rules 4 and 5 
∗ Mean desire coefficient 
∗∗ Standard deviation of Desire coefficients 
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