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Abstract
In this paper, the blow up of solutions for a generalized version of the Dullin-Gottwald-Holm equation
which is a nonlinear shallow water wave equation is studied. The precise blow-up scenario and a result
of blow-up solutions are described. The blow-up occurs as wave breaking. This means the solution
(representing the wave) remains bounded but its slope becomes infinite in finite time. We use an approach
devised in [1].

Keywords: Generalized Dullin-Gottwald-Holm equation; shallow water wave; blow-up.

AMS Subject Classification (2020): Primary: 35B44 ; Secondary: 35Q35; 35G20.

1. Introduction
Dullin et al. in [3] presented the following the nonlinear dispersive evolution equation, then called the Dullin-

Gottwald-Holm (DGH) equation:

ut − β2uxxt + k0ux + 3uux + Γuxxx = β2 (2uxuxx + uuxxx) , t > 0, x ∈ <. (1.1)

The DGH equation is an equation modeling the unidirectional propagation of shallow water waves on a flat bottom.
u = u (t, x) is fluid velocity, where t and x are variables related to time and space respectively. β, Γ and k0 are some
physical positive parameters.

In equation (1.1), if β = 0 and Γ 6= 0 , the Korteweg-de Vries (KdV) equation is obtained, and if β = 1 and Γ = 0,
the Camassa-Holm (CH) equation is obtained. As can be seen, equation (1.1) contains two different integrable
soliton equations for shallow water waves. The DGH equation (1.1) combines the linear dispersion of the KdV
equation with the nonlinear/nonlocal dispersion of the CH equation. Equation (1.1) has important properties.
Some of these important features are: It has the bi-Hamiltonian structure and soliton solutions and it is completely
integrable [3]. For this equation, blow up occurs in the form of wave breaking: This means: while the solution u
representing the wave remains bounded, ux, which is its first derivative with respect to x becomes infinite in finite
time [1, 12, 15].

Since the equation (1.1) was discovered, a great deal of space has been devoted to it in the literature and this
equation has been the subject of intense research. Its mathematical behaviors such as local well-posedness, global
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strong solutions, global weak solutions, blow up solutions in finite time and stability of peakons have been studied
in many works [8, 11, 12, 15–18].

In present paper, we study the following initial value problem for the generalized DGH equation:{
ut − β2uxxt + (P (u))x + Γuxxx = β2

(
Q′(u)

2 u2x +Q (u)uxx

)
x
, t > 0, x ∈ <,

u (0, x) = u0 (x) , x ∈ <,
(1.2)

where P (u), Q(u) : < → < are given C3-functions. For P (u) = 2ωu + 3
2u

2 (where 2ω = k0) and Q (u) = u, it is
seen that the (1.2) turns into equation equation (1.1). Some mathematical behaviors of equation (1.2) have been
studied by many authors before. In [13, 14], the authors established the well-posedness a finite time for (1.2) by
using Kato’s theory. Furthermore, the stability of peakons of (1.2) was discussed with P (u) = 2ωu+ a+2

2 ua+1 and
Q (u) = ua in [13]. In [4], Dündar and Polat investigated the blow up of the solutions of (1.2) with Q (u) = u. Also
in the same article, they proved stability of solitary waves by using the method in [7] for P (u) = 2ωu+ a+2

2 ua+1

and Q (u) = ua.
In (1.2), if the weak dispersive term Γuxxx is changed into the strong dispersive term Γ

(
u− β2uxx

)
xxx

, we
obtain {

ut − β2uxxt + (P (u))x + Γ
(
u− β2uxx

)
xxx

= β2
(
Q′(u)

2 u2x +Q (u)uxx

)
x
, t > 0, x ∈ <,

u (0, x) = u0 (x) , x ∈ <.
(1.3)

Dündar and Polat studied the well-posedness for (1.3) a finite time in [6]. Also, they showed the existence of solitary
waves and proved the stability of solitary wave solutions of (1.3) in [5].

The main aim of this paper is to investigate the blow up of the solutions of (1.2) in finite time. In [4], authors
obtained the blow up of the strong solutions of (1.2) with Q (u) = u. In this paper, we remove this restriction and
obtain more general results.

The content of this article is as follows: In Section 2, we will give the notations and some basic informations, and
recall some necessary conclusions. In Section 3, we will examine the blow up of solutions of (1.2).

2. Preliminaries
We introduce by summarizing some notations. The convolution is denoted by ∗. ‖.‖B denotes the norm of

Banach space B. Since all space of functions are over <, for convenience, we will not use < in our notations of
function spaces if there is no equivocalness. We denote the norm in the Sobolev space Hs by

‖v‖s = ‖v‖Hs =

(∫
<

(
1 + |ξ|2

)s
|v̂ (ξ)|2 dξ

)1/2

for s ∈ <. Here v̂ (ξ) is the Fourier transform of v. We use the ‖.‖Lp for the norm of the space Lp, 1 ≤ p ≤ ∞. We
define the operator Λs by the formula Λs =

(
1− ∂2x

) s
2 , s ∈ <.

From now on, throughout this article, we assume β = 1 for convenience. Note that if f (x) = 1
2e
−|x|, x ∈ <, then(

1− ∂2x
)−1

v = f ∗ v for all v ∈ L2. Then (1.2) can be rewritten as follows:{
ut + (Q (u)− Γ)ux = f ∗ [Q (u)ux]− ∂xf ∗

[
Q′(u)

2 u2x + P (u) + Γu
]
, t > 0, x ∈ <,

u (0, x) = u0 (x) , x ∈ <.
(2.1)

Or in the equivalent form:{
ut + (Q (u)− Γ)ux =

(
1− ∂2x

)−1
[Q (u)ux]− ∂x

(
1− ∂2x

)−1 [Q′(u)
2 u2x + P (u) + Γu

]
, t > 0, x ∈ <,

u (0, x) = u0 (x) , x ∈ <.
(2.2)

It can be seen that (1.2) is equivalent to (2.1) (or (2.2)) for β = 1. So, we will investigate the blow up of solutions of
(2.1) (or (2.2)).
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2.1 Local well-posedness for the Cauchy problem of (2.1)
Theorem 2.1. [14]. Let n ≥ 2 be a natural number, s ∈

(
3
2 , n
)
, and P , Q ∈ Cn+3, with P (0) = 0. If u0 ∈ Hs, there exists

a maximal T = T (u0) > 0, and a unique solution u to (2.1) (or (2.2)) such that

u = u (., u0) ∈ C ([0, T ) ;Hs) ∩ C1
(
[0, T ) ;Hs−1) .

Moreover, the solution depends continuously on the initial data, i.e., the mapping

u0 → u (., u0) : Hs → C ([0, T ) ;Hs) ∩ C1
(
[0, T ) ;Hs−1)

is continuous.

In [13], Liu and Yin obtained the local well-posedness theorem of the Cauchy problem (2.1) with the constraint
Q(0) = 0 by applying Kato’s theory [10]. Later, in [14] (Theorem 1.2 and Corollary 1.1), the authors removed the
limiting condition Q(0) = 0, which makes an improvement in the results in [13].

Theorem 2.2. Let n ≥ 2 be a natural number, s ∈
(
3
2 , n
)
, and P , Q ∈ Cn+3, with P (0) = 0. Then T in Theorem 2.1 may

be chosen independent of s in the following sense. If

u = u (., u0) ∈ C ([0, T ) ;Hs) ∩ C1
(
[0, T ) ;Hs−1)

to 2.1 (or 2.2), and if u0 ∈ Hs′ for some s′ 6= s, 3
2 < s′ < n, then

u ∈ C
(

[0, T ) ;Hs′
)
∩ C1

(
[0, T ) ;Hs′−1

)
and with the same T . In particular, if P, Q ∈ C∞ and let u0 ∈ H∞ = ∩s≥0Hs, u ∈ C ([0, T ) ;H∞).

Proof. For β = 1, since (1.2) can be rewritten as

dw

dt
+K (t)w + L (t)w = R (t) , w (0) = Λ2u (0) ,

where
K (t)w = ∂x ((Q (u)− Γ)w) , L (t)w = Q′ (u)uxw,

and

R (t) = ux

(
1

2
Q′′ (u)u2x − P ′ (u) + 2Q′ (u)u+Q (u)− Γ

)
,

thus the proof of Theorem 2.2 is alike to the proof of Theorem 1.2 of [6]. The proof is completed with reference the
proof of Theorem 1.2 in [6].

2.2 Some lemmas
We will now give some lemmas that we will use in this paper. We list below without proof.

Lemma 2.1. [9]. Let s > 0. Then we have

‖[Λs, y] z‖L2 ≤ K
(
‖∂xy‖L∞

∥∥Λs−1z
∥∥
L2 + ‖Λsy‖L2 ‖z‖L∞

)
.

Here K is constant depending only on s.

Lemma 2.2. [9]. Let s > 0. Then Hs ∩ L∞ is an algebra. Moreover

‖yz‖s ≤ K (‖y‖L∞ ‖z‖s + ‖y‖s ‖z‖L∞)

where K is constant depending only on s.

Lemma 2.3. [2]. Assume that G ∈ Cn+2 with G (0) = 0. Then for every 1
2 < s ≤ n, we have that

‖G (u)‖s ≤ G̃ (‖u‖L∞) ‖u‖s , u ∈ Hs,

where G̃ is a monotone increasing function depending only on G and s.
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Lemma 2.4. [1]. Let T > 0 and u ∈ C1
(
[0, T ) ;H2

)
. Then for every t ∈ [0, T ) , there exist at least one pair points θ (t) ,

Θ (t) ∈ <, such that

j (t) = inf
x∈<

ux (t, x) = ux (t, θ (t)) , J (t) = sup
x∈<

ux (t, x) = ux (t,Θ (t)) ,

and j (t) , J (t) are absolutely continuous on (0, T ). Furthermore,

dj (t)

dt
= utx (t, θ (t)) ,

dJ (t)

dt
= utx (t,Θ (t)) , a.e.on (0, T ) .

Lemma 2.5. [13]. Let u (t, x) be a solution of (1.2). Then the functionals

E (u) =

∫
<

(
u2 + β2u2x

)
dx,

F (u) =

∫
<

(
2P (u) + β2Q (u)u2x − Γu2x

)
dx

are constant with respect to t, where P′ (s) = P (s).

3. Blow-up analysis

In this section, we examine the blow-up phenomena of the (2.1) (or (2.2)).

Remark 3.1. Given in Lemma (2.5), E (u) =
∫
<
(
u2 + u2x

)
dx (β = 1) is an invariant for equation (2.1). So, we have

that
‖u‖2L∞ ≤

∫
<

(
u2 + u2x

)
= E (u) = E (u0) = ‖u0‖21 .

Remark 3.2. Since Q ∈ Cn+3 with n ≥ 2, by using ‖u‖L∞ ≤ ‖u‖1 = ‖u0‖1 which can be seen in Remark 3.1, a
positive constant a1 > 0 can be found such that

|Q′ (u)| ≤ sup
|z|≤‖u0‖1

|Q′ (z)| ≤ a1. (3.1)

We will first give the following theorem.

Theorem 3.1. Let P,Q ∈ Cn+3, n ≥ 2, P (0) = 0 and u0 ∈ Hs, 3
2 < s ≤ n. Then the solution u (t, x) of (2.2) blows up in

finite time T <∞ if and only if
lim
t→ T

sup
0≤τ≤t

‖ux (τ, x)‖L∞ = +∞. (3.2)

Moreover, if T <∞, then ∫ T

0

(‖ux (t, x)‖L∞ + 1)
2
dt = +∞.

Proof. Let Γ = Q (0). We can rewrite (2.2) as

ut + (Q (u)−Q (0))ux =
(
1− ∂2x

)−1
[Q (u)ux]− ∂x

(
1− ∂2x

)−1 [Q′ (u)

2
u2x + P (u) +Q (0)u

]
. (3.3)

If we apply the operator Λs, then multiply by 2Λsu on both sides of (3.3) and finally integrate with respect to the
variable x over <, we obtain

d

dt

∫
<

(Λsu)
2
dx = −2

∫
<

ΛsuΛs [(Q (u)−Q (0))ux] dx+ 2

∫
<

ΛsuΛs
(
1− ∂2x

)−1
[Q (u)ux] dx

−2

∫
<

ΛsuΛs∂x
(
1− ∂2x

)−1 [Q′ (u)

2
u2x + P (u) +Q (0)u

]
= I1 + I2 + I3. (3.4)
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We now estimate I1, I2, I3. By using Lemma 2.1, Lemma 2.3 with G (u) = Q (u)−Q (0), Remark 3.1 and Cauchy-
Schwartz inequality as well as (3.1), we obtain

I1 = −2

∫
<

ΛsuΛs [(Q (u)−Q (0))ux] dx

= −2

∫
<

Λsu [Λs [(Q (u)−Q (0))ux]− (Q (u)−Q (0)) Λsux] dx

−2

∫
<

(Q (u)−Q (0)) ΛsuΛsuxdx

= −2

∫
<

Λsu [Λs, (Q (u)−Q (0))]uxdx−
∫
<
Q′ (u)ux (Λsu)

2
dx

≤ 2K ‖u‖s
[
‖∂x (Q (u)−Q (0))‖L∞

∥∥Λs−1ux
∥∥
L2 + ‖Λs (Q (u)−Q (0))‖L2 ‖ux‖L∞

]
+ ‖u‖2s ‖Q

′ (u)ux‖L∞

≤ K ‖u‖s [‖Q′ (u)ux‖L∞ ‖u‖s + ‖(Q (u)−Q (0))‖s ‖ux‖L∞ ] + ‖u‖2s ‖Q
′ (u)ux‖L∞

≤ K ‖u‖2s
(

2a1 ‖ux‖L∞ + G̃ (‖u0‖1) ‖ux‖L∞

)
≤ K ‖u‖2s ‖ux‖L∞ . (3.5)

By using Lemma 2.3 with G (u) = G1 (u) − G1 (0) and Remark 3.1, Cauchy-Schwartz inequality and Sobolev
embedding (Hs ↪→ Hs−1), we obtain

I2 = 2

∫
<

ΛsuΛs
(
1− ∂2x

)−1
[Q (u)ux] dx

= 2

∫
<

ΛsuΛs∂x
(
1− ∂2x

)−1
[G1 (u)−G1 (0)] dx (where G′1 (u) = Q (u))

≤ K ‖u‖s ‖G1 (u)−G1 (0)‖s−1
≤ KG̃ (‖u0‖1) ‖u‖s ‖u‖s−1
≤ K ‖u‖2s . (3.6)

By using Lemma 2.2, Lemma 2.3 with G (u) = Q′ (u)−Q′ (0) and Remark 3.1, Cauchy-Schwartz inequality, Sobolev
embedding (Hs ↪→ Hs−1) and (3.1), we obtain

I3 = −2

∫
<

ΛsuΛs∂x
(
1− ∂2x

)−1 [Q′ (u)

2
u2x + P (u) +Q (0)u

]
≤ 2 ‖u‖s

∥∥∥∥Q′ (u)

2
u2x + P (u) +Q (0)u

∥∥∥∥
s−1

≤ K ‖u‖s

[∥∥∥∥(Q′ (u)−Q′ (0) +Q′ (0)

2

)
u2x

∥∥∥∥
s−1

+ ‖P (u)‖s−1 + |Q (0)| ‖u‖s−1

]
≤ K ‖u‖s

[∥∥(Q′ (u)−Q′ (0))u2x
∥∥
s−1 + |Q′ (0)|

∥∥u2x∥∥s−1 + ‖u‖s−1 + |Q (0)| ‖u‖s−1
]

≤ K ‖u‖s
[
K
(
‖Q′ (u)−Q′ (0)‖L∞

∥∥u2x∥∥s−1 +
∥∥u2x∥∥L∞ ‖Q′ (u)−Q′ (0)‖s−1

)
+K (‖u‖s + ‖u‖s ‖ux‖L∞)

]
≤ K ‖u‖s

[(
sup

|z|≤‖u0‖1
|Q′ (z)|

)
‖ux‖L∞ ‖u‖s + G̃ (‖u0‖1)

∥∥u2x∥∥L∞ ‖u‖s + (1 + ‖ux‖L∞) ‖u‖s

]
≤ K ‖u‖2s

[
a1 ‖ux‖L∞ + ‖ux‖2L∞ + 1 + ‖ux‖L∞

]
≤ K ‖u‖2s (1 + ‖ux‖L∞)

2
. (3.7)

Combining (3.5)-(3.7) with (3.4), we get

d

dt
‖u‖2s ≤ K ‖u‖

2
s (1 + ‖ux‖L∞)

2
. (3.8)
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When we apply Gronwall’s inequality to (3.8), we obtain

‖u‖2s ≤ e
K

∫ t
0 (‖ux‖L∞+1)

2
dτ ‖u0‖2s . (3.9)

If the solution to (2.2) blows up in finite time, in other words,

lim
t→ T

sup
0≤τ≤t

‖u‖s = +∞, (3.10)

then from (3.9), we have
lim
t→ T

sup
0≤τ≤t

‖ux (τ, x)‖L∞ = +∞. (3.11)

If (3.11) is valid, since ‖u‖L∞ ≤ ‖u‖s−1 with s > 3
2 , we have (3.10). When the maximal existence time T <∞, if∫ T

0

(‖ux (t, x)‖L∞ + 1)
2
dt < +∞,

from (3.9), we know that ‖u‖s <∞ which contradicts with the fact that T is the maximal existence time. We get the
same result for Γ 6= Q(0). We complete the proof of Theorem 3.1.

Theorem 3.2. Let P,Q ∈ Cn+3, n ≥ 3, P (0) = 0. Given u0 ∈ Hs, 3 ≤ s ≤ n. If Q′ (u) ≥ a2 > 0, then the corresponding
u (t, x) of (2.1) blows up in finite time T <∞ if and only if

lim
t→ T

inf
0≤τ≤t

inf
x∈<

ux (τ, x) = −∞. (3.12)

Proof. If (3.12) is valid, then the corresponding solution u (t, x) of (2.1) blows up in finite time T < ∞ since
‖u‖L∞ ≤ ‖u‖s−1 with s > 3

2 . We prove (3.12) by contradiction. Assume that (3.12) is invalid, then there exists J > 0
such that infx∈< ux (t, x) > −J , then we make inference that the solution will not blow up in finite time. Let’s take
the differentiate of (2.1) with respect to x, so we get

utx +Q′ (u)u2x +Q (u)uxx − Γuxx = ∂xf ∗ [Q (u)ux]− ∂2xf ∗
[
Q′ (u)

2
u2x + P (u) + Γu

]
. (3.13)

Since ∂2x (f ∗ v) = f ∗ v − v and ∂x (f ∗ v) = f ∗ vx, we have

utx +Q′ (u)u2x +Q (u)uxx − Γuxx = f ∗
[
Q′ (u)u2x +Q (u)uxx

]
− f ∗

[
Q′ (u)

2
u2x + P (u) + Γu

]
+

Q′ (u)

2
u2x + P (u) + Γu. (3.14)

From Lemma 2.4, we define
J (t) = ux (t,Θ (t)) = sup

x∈<
[ux (t, x)]

and
j (t) = ux (t, θ (t)) = inf

x∈<
[ux (t, x)] .

Since we deal with a maximum, uxx (t,Θ (t)) = 0 for all t ∈ [0, T ), it follows that a.e. on [0, T )

J ′ (t) = −Q
′ (u (t,Θ (t)))

2
J2 (t) + f ∗

[
Q′ (u)u2x

]
(t,Θ (t)) + P (u (t,Θ (t))) + Γu (t,Θ (t))

−f ∗
[
Q′ (u)

2
u2x + P (u) + Γu

]
(t,Θ (t)) . (3.15)

By Young’s inequality and f (x) = 1
2e
−|x|, we have

‖f ∗ v‖L∞ ≤ ‖f‖L∞ ‖v‖L1 ≤
1

2
‖v‖L1
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and
‖f ∗ v‖L∞ ≤ ‖f‖L1 ‖v‖L∞ ≤ ‖v‖L∞ .

By using these inequalities, (3.1) and Remark 3.1, we obtain∥∥f ∗ (Q′ (u)u2x
)∥∥
L∞ ≤ ‖f‖L∞

∥∥Q′ (u)u2x
∥∥
L1

≤ 1

2
‖Q′ (u)‖L∞ ‖ux‖2L2

≤ a1
2
‖u‖21 =

a1
2
‖u0‖21 . (3.16)

Similarly, we have

‖f ∗ P (u)‖L∞ ≤ ‖P (u)‖L∞ ≤ sup
|z|≤‖u0‖1

|P (z)| (3.17)

and

‖f ∗ u‖L∞ ≤ ‖u‖L∞ ≤ ‖u0‖1 . (3.18)

Using (3.16)-(3.18) and the assumption in lemma, it then follows from (3.15) that a.e. on [0, T ),

J ′ (t) ≤ −a2
2
J2 (t) +A, (3.19)

where

A = 2

(
sup

|z|≤‖u0‖1
|P (z)|+ 3

8
a1 ‖u0‖21 + ‖u0‖1

)
(3.20)

If J (t) >
√

2A
a2

, then J ′ (t) < 0 and J (t) is decreasing. Otherwise, J (t) ≤
√

2A
a2

. Thus we obtain that

−J < j (t) ≤ ux ≤ J (t) ≤ max

{
J (0) ,

√
2A

a2

}
, t ∈ [0, T ) .

From this inequality, we obtain the fact that ux, that is, the slope of solution of (2.1) is bounded. When Theorem 3.1
is applied, the solution of (2.1) will not blow up in finite time. We finish the proof of Theorem 3.2.

Now, we present the following blow up result.

Theorem 3.3. Assume that P,Q ∈ Cn+3, n ≥ 2, P (0) = 0, u0 ∈ Hs, 3
2 < s ≤ n, Q′ (u) ≥ a2 > 0. If there exists a point

x0 ∈ < such that u′0 (x0) < −
√

2A
a2

, then the corresponding solution u (t, x) of (2.1) blows up in finite time T <∞ and

T <
1√

2Aa2
ln

(√
a2
2 u
′
0 (x0)−

√
A√

a2
2 u
′
0 (x0) +

√
A

)
,

where

A = 2

(
sup

|z|≤‖u0‖1
|P (z)|+ 3

8
a1 ‖u0‖21 + ‖u0‖1

)
.

Proof. By Theorem 2.1- Theorem 2.2 and a simple density argument, we only need to prove that theorem
provides for s = 3. Let T be maximal existence time of the solution u ∈ C ([0, T ) ;Hs) ∩ C1

(
[0, T ) ;Hs−1) of (2.1).

Differentiating (2.1) with respect to x, since ∂2x (f ∗ v) = (f ∗ v − v) and ∂x (f ∗ v) = f ∗ vx, we have

utx +Q′ (u)u2x +Q (u)uxx − Γuxx = f ∗
[
Q′ (u)u2x +Q (u)uxx

]
− f ∗

[
Q′ (u)

2
u2x + P (u) + Γu

]
+

Q′ (u)

2
u2x + P (u) + Γu. (3.21)
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Now define j (t) = infx∈R [ux (t, x)] = ux (t, θ (t)) by Lemma 2.4 and let θ (t) ∈ < be a point where this infimum is
attained. For x = θ (t), since uxx (t, θ (t)) = 0, we have

j′ (t) = −Q
′ (u (t, θ (t)))

2
j2 (t) + f ∗

[
Q′ (u)u2x

]
(t, θ (t)) + P (u (t, θ (t))) + Γu (t, θ (t))

−f ∗
[
Q′ (u)

2
u2x + P (u) + Γu

]
(t, θ (t)) . (3.22)

Using (3.16)-(3.18) and the assumption in lemma, it then follows from (3.22) that a.e. on [0, T ),

j′ (t) ≤ −a2
2
j2 (t) +A, (3.23)

where

A = 2

(
sup

|z|≤‖u0‖1
|P (z)|+ 3

8
a1 ‖u0‖21 + ‖u0‖1

)
.

Note that if j (0) ≤ −
√

2
a2
A, then j (t) ≤ −

√
2
a2
A, fol all t ∈ [0, T ). By (3.23), we get

√
a2
2 j (0) +

√
A√

a2
2 j (0)−

√
A
e
√
2a2At − 1 ≤ 2

√
A√

a2
2 j (t)−

√
A
≤ 0.

Due to 0 <

√
a2
2 j(0)+

√
A√

a2
2 j(0)−

√
A
< 1, there exists

0 < T <
1√

2Aa2
ln

(√
a2
2 j (0)−

√
A√

a2
2 j (0) +

√
A

)

such that limt→ T j (t) = −∞. For this reason, the solution u does not exist globally in time. Thus, the proof of
Theorem 3.3 is completed.

4. Conclusion
In this study, we investigated the blow up of solutions of the Cauchy problem (2.1) (or (2.2)), which we obtained

by taking β = 1 in (1.2).
Our main results can be summarised as follows:

1. We give the precise blow up scenario for solutions of the Cauchy problem (2.1), see Theorem 3.2.

2. We also give a blow up result of solutions of (2.1), see Theorem 3.3.
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