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ABSTRACT 

In the present paper, we consider the estimation problem for the scaled Muth distribution 
under Type-II censoring scheme. In order to estimate the model parameters α and β, the 
maximum likelihood, the least-squares, and the maximum spacing estimators are derived. To 
show estimation efficiencies of the estimators obtained with this paper, we present an exten-
sive Monte-Carlo simulation study in which the estimators are compared according to bias 
and mean squared error criteria. Furthermore, we evaluate the applicability of the scaled Muth 
distribution by taking into account both full and Type-II censored data situations by an anal-
ysis conducted on a real-life dataset.
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INTRODUCTION 
The Muth distribution (MD) was firstly introduced 

on the positive real interval by Muth [1] as the statistical 
lifetime model with increasing, decreasing, and bathtub 
failure rates. Moreover, Jodra et al. [2] comprehensively 
studied some statistical features of the MD. In a wide vari-
ety of lifetime data observed in many fields from engi-
neering and natural sciences to health and social sciences, 
the MD has got the potential of a good option for analyz-
ing datasets with such failure rates. In this regard, it is a 
powerful alternative to popular lifetime models such as 
exponential, gamma, Weibull,  log-normal, Rayleigh, and 
inverse Gaussian, with a weak probability mass property 

in the tail [2]. The probability density function of the 
MD is 

( ) ( ) ( )1, exp 1 , 0,x xf x e x e xα αα α α
α

 = − − − > 
 

 (1)

and the corresponding cumulative distribution function is 

( ) ( )1, 1 exp 1 ,  0,xF x x e xαα α
α

 = − − − > 
 

 (2)

where, α ∈ (0,1) is a parameter that plays a vital role in 
the behavior of the distribution. The expected value of the 
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MD with the single parameter is E(X) = 1. This is a strong 
constraint at the real data modeling stage. Jodra et al. [2] 
derived a new two-parameter form of MD called scaled 
Muth distribution (SMD) by adding a scale parameter to 
the distribution in their study. By this new form, a strong 
restriction on the expected value of the MD is removed. The 
pdf and cdf of the SMD are, respectively, 
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where β > 0 is the scale parameter of the SMD. We pres-
ent Figure 1 to illustrate the pdf behavior of the SMD for 
different values of the parameters α and β.

In the reliability and lifetime data analysis, it is well 
known that a complete dataset should be used to optimally 
analyze a phenomenon. However, sometimes the dataset 
may not be completely obtained or time cost constraints may 
be encountered. In such cases, the researcher may consider 
the censoring of the data. Censoring of the data will mostly 
enable significant cost savings in reliability engineering while 
time-saving in the modeling of  lifetimes. There are various 
censoring schemes in the literature and commonly used of 
these are Type-I and Type-II. The main opinion in the Type-I 
censoring scheme, the experiment continues till a predeter-
mined time T. The base idea in the Type-II censoring scheme, 
an experiment ends when records a predetermined number 
of data (failure times). So far, many researchers have made 
valuable studies on the solution of the statistical inference 
problem under the Type-II censoring scheme for specific 
probability distribution models, see [3–9]. This paper mainly 
motivated to examine different estimation procedures under 

the Type-II censoring scheme for the SMD. As far as we 
know, no attempt has yet been made to discuss different esti-
mation procedures under the Type-II censoring scheme of 
SMD. This is quite an important task for areas where cen-
sored data is encountered, such as reliability engineering and 
lifetime analyzing, since optimally estimating model param-
eters have significant effects on determining a suitable model 
to data and modeling performance. 

The rest of the paper is organized as follows. In the section 
Inference on SMD Parameters, we investigate the parameter 
estimators of the SMD under the Type -II censoring scheme 
by considering the different estimation methods, such as 
maximum likelihood (ML), least-squares (LS), and maxi-
mum spacing (MSP). The section Simulation Experiments 
includes a comprehensive Monte-Carlo simulation study in 
which compares the efficiencies of the estimators obtained 
in the section Inference on SMD Parameters according to 
bias and mean-squared error criteria. In the section Data 
Analysis, we present an illustrative data example to show the 
usefulness of SMD in modeling the Type-II censored data. 
Finally, the section Conclusion concludes the study.

INFERENCE ON THE SMD PARAMETERS

Assume that X1, X2, …Xn is a random sample from the 
SMD with parameters α and β, where X1, X2, …Xn random 
variables imply the failure times for the n independent unit. 
We also denote the order statistics of the random sample 
X1, X2, …Xn by X(1), X(2), …X(n). Note that we only observe 
the first r (before pre-decided r < n) order statistics of sam-
ple X1, X2, …Xn under the Type-II censoring scheme.

Now, we obtain the ML, LS, and MSP estimators of 
SMD parameters for Type-II censored data, which are com-
mononly used estimators in the literature.

ML Estimators
Let X1, X2, …Xn be a random sample from SMD, and 

the (n – r) of n observations be censored according to the 
Type-II censoring scheme. In this stuation, by considering 

Figure 1. Pdf of the SMD for different values of the parameters λ and β. 
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equations (7) and (8). Unfortunately, this nonlinear sys-
tem cannot be solved with respect to the parameters α 
and β analytically. But, we can use a numerical method to 
obtain ML estimates of the parameters. Newton-Raphson 
is an iterative approach to derive the root(s) of a real-val-
ued function using its derivative and is widely used in the 
literature to obtain the numerical solution of likelihood 
equations. The main iterative formula of the Newton-
Raphson is 

 ( ) ( )1
1
ˆ ˆ ˆ ˆ ,j j j jHθ θ θ θ−
+ = − ∇  (9)

where j shows the iteration number, θ̂j shows the esti-
mates of parameter vector at step j, ∇(.) and H(.) imply the 
first and second derivatives of the likelihood equations with 
respec to parameters, respectively. By using these notations, 
in here, we can easily write the statements needed to run the 
Newton-Raphson iterative formula as follows: 
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The elements of the gradient vector ∇(θ) are as given in 
equations (7)–(8). The elements of the matrix H(θ), say hij 
(i,j = 1,2), are obtained as below
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the pdf (3) and the cdf (4), the likelihood function of the 
SMD with parameters α and β is immediately written as 
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and the corresponding log-likelihood function is
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Derivating the log-likelihood function given by (6) with 
respect to the parameters α and β, we have the following 
score functions:
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The ML estimators of the parameters α and β are 
obtained from solution of the nonlinear system given by 

Q1
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LS Estimators
We assign this section of the paper to investigate the LS 

estimators of the SMD under the Type-II censored scheme. 
The LS estimation method was first introduced in 1988 by 
Swain et al. [10] for estimating the parameters of the Beta 
distribution at the complete data situations. Suppose X1, X2, 
…Xn be a random sample from any continuous distribution 
with cdf F(X,.), and also x(1), x(2), …x(n) be the ordered obser-
vations. In the complete data case, the LS estimators of the 
distributional parameters are obtained by minimizing the 
given below quadratic function with respect to distribution 
parameters. 

 ( )( )( )2
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,. ,
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i

Q F x P
=

= −∑  (16)

where, 
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=
+

 is the value of the empirical cumulative 
distribution function corresponding to i-th observation. 
Thus, considering the cdf of SMD given by the equation (4) 
the LS estimators of the parameters α and β are obtained 
numerically minimizing the quadratic function Qcomplete 
given in the equation (16) with respect to the parameters 
α and β.

Now, we investigate the LS estimations of the SMD 
parameters for the case of Type-II censored data. Let X(1), 
X(2), …X(n) be an ordered random sample from SMD, and 
the last (n – r) of n observations be censored, namely, X(1), 
X(2), …X(r) can be observed as X(1), X(2), …X(r) and X(r+1), X(r+2), 
…X(n) cannot be observed. By considering this assumption 
and Kaplan-Meier estimator of the emprical distribution 
function, we can obtain the LS estimates of the parame-
ters α and β of SMD under the Type-II censoring scheme 
by numericaly minimizing the quadratic function Qcensored 
given as below with respect to the α and β.
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where Pi* is the Kaplan-Meier estimator of the empir-
ical distribution function. For further information about 
Kaplan-Meier estimator, we refer the readers to [11]. Under 
the Type-II censoring scheme, Pi* can be easily calculate as 
follow: 
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MSP Estimators
In this subsection of the paper, we investigate the MSP 

estimator of the SMD parameters for Type-II censored data.
The MSP estimators were originally studied by [9]. It is a 
strong alternative to the ML estimators and has got useful 
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Thus, by starting with an initial estimation θ̂ 0 of the 
parameter vector θ, the method is repeated until the 
root(s) is obtained according to a predetermined conver-
gence criterion. Then, we have the ML estimates of the 
parameters α and β, say α̂ML and β̂ML, from the correspond-
ing elements of the θ̂ vector obtained at the last stage of 
the iteration.

(14)

(15)
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section for both complete and Type-II censored data situ-
ations. Throughout the Monte-Carlo simulation study, we 
set the values of the SMD parameters to α = (0.25, 0.50, 
0.75) and β = (0.5, 2.0). These randomly selected values of 
the α and β exemplify the various formal behaviors of SMD 
pdf. In each combination of the parameter values, we gen-
erate random samples of different sizes n = 30, 60, 100, 200 
considering various censoring proportions, p = 0, 0.1, 0.2, 

0.3, (where 1 ,  )rp r n
n

= − ≤ , from SMD distribution, and 
estimate the α and β parameters using the ML, LS and MSP 
estimators. In addition, the biases and the mean square 
error (MSE) values of these estimators are also calculated to 
clarify the estimation performances of them. The simulated 
results are given by Tables 1–6.

As can be seen from the simulated results given by 
Tables  1-6, all estimators produce quite gratifying estima-
tions in all the combinations of the parameter values, sam-
ple sizes, and censoring proportions. One can also see from 
Tables 1–6 that both the biases and MSE values of all estima-
tors gradually increase to an acceptable level as the censoring 
proportion p increases for all sample sizes n. Furthermore, 
we can conclude from the simulated results that all estima-
tors are asymptotically unbiased and consistent because of 
both biases and MSE values decrease when the sample of size 
n increases, and that the ML and MSP estimators outper-
form the LS estimators with smaller biases and MSE values.

DATA ANALYSIS

In this section, we give an illustrative application on a 
practical dataset called the Air-condition system dataset 
to show data modeling with SMD for both complete and 
Type-II censored data situations, considering various cen-
soring plans. The Air-condition system dataset contains 27 
observations deal with times between successive failures (in 
hours) of the air-conditioning system of an airplane (air-
plane number 7913) [16]. The sorted complete data are as 
follows: 1, 4, 11, 16, 18, 18, 18, 24, 31, 39, 46, 51, 54, 63, 68, 
77, 80, 82, 97, 106, 111, 141, 142, 163, 191, 206, 216.

Before analysis, we investigate the underlying distri-
bution of the data. We first draw the Total Time on Test 
(TTT) plot of data, see [17], to decide the suitable distribu-
tion families with consistent hazard rate function. Figure 2 
shows the TTT plot of the data.

From Figure 2, it is lucid that the underlying distribution 
of the Air-condition system dataset has an increasing haz-
ard rate function. Thus we can propose the SMD, Weibull, 
gamma and log-normal distributions for modeling the data.

Table 7 shows the calculated Kolmogorov-Smirnov 
(K-S) statistics and the corresponding p-values considering 
probability distribution models SMD, Weibull, gamma, and 
log-normal.

According to K-S test results given by Table 7, the pro-
posed distributions are suitable for fitting the dataset.

features such as consistency and asymptotically unbiased-
ness. For advanced information about MSP estimation 
method, we refer the readers to [12, 13, 14].

Let X(1), X(2), …X(n) be ordered sample from the SMD 
with parameters α and β. By considering the notations of 
the [13], in the case of complete data, the MSP estimators of 
the SMD can be easily obtained by maximizing the utility 
function S given as
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with respect to parameters α and β, where F(., α, β) is 
the cdf of SMD given by equation (4), F(X(0), α, β) ≡ 0, and 
F(X(n+1), α, β) ≡ 1.

Now, we consider the Type-II censored data case. Let 
X(1), X(2), …X(n) be ordered sample taken from the SMD with 
parameters α and β, and and the last (n – r) of n observations 
be censored according to Type-II censoring scheme. For 
obtaining the MSP estimators under censoring case, Ng et 
al. [15] modified the utility function S given in [13] as follow 
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Hence, by considering the Scensored utility function and 
cdf of the SMD, the MSP estimators of the SMD parameters 
for the Type-II censored data are easily obtained by maxi-
mizing the
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with respect to parameters α and β.

SIMULATION EXPERIMENTS

In this section, we conduct Monte-Carlo simulation 
studies to investigate the estimation performances of 
the ML, LS and MSP estimators obtained in the previous 
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Table 2. Simulated results for α = 0.25 and β = 2

p n Method α = 0.25   β = 2 p n Method α = 0.25   β = 2

Bias MSE Bias MSE Bias MSE Bias MSE

0 30 ML 0.0582 0.0268 –0.0198 0.0897 0.2 30 ML 0.0520 0.0478 0.0000 0.0889
LS 0.0234 0.0437 –0.1017 0.1030 LS –0.0184 0.0468 –0.0295 0.1034
MSP 0.0515 0.0304   –0.0193 0.0898 MSP –0.0160 0.0454   0.0931 0.1095

60 ML 0.0444 0.0163 –0.0049 0.0355 60 ML 0.0402 0.0298 0.0133 0.0616
LS 0.0230 0.0207 –0.0368 0.0458 LS 0.0000 0.0302 0.0098 0.0679
MSP 0.0417 0.0169   –0.0049 0.0358 MSP –0.0041 0.0301   0.0672 0.0726

100 ML 0.0172 0.0067 –0.0047 0.0295 100 ML 0.0214 0.0202 0.0052 0.0351
LS –0.0058 0.0118 –0.0224 0.0337 LS –0.0179 0.0245 0.0185 0.0395
MSP 0.0128 0.0070   –0.0037 0.0296 MSP –0.0083 0.0211   0.0389 0.0393

200 ML 0.0089 0.0061 –0.0154 0.0210 200 ML 0.0039 0.0164 –0.0205 0.0234
LS 0.0060 0.0136 –0.0318 0.0230 LS –0.0174 0.0193 –0.0159 0.0290

  MSP 0.0095 0.0064   –0.0158 0.0212   MSP –0.0163 0.0171   0.0020 0.0238

(continued)

Table 1. Simulated results for α = 0.25 and β = 0.5

p n Method α = 0.25 β = 0.5 p n Method α = 0.25 β = 0.5

Bias MSE Bias MSE Bias MSE Bias MSE

0 30 ML 0.0832 0.0401 0.0004 0.0051 0.2 30 ML 0.0709 0.0544 –0.0040 0.0081
LS 0.0410 0.0542 –0.0200 0.0057 LS 0.0036 0.0503 –0.0122 0.0084

MSP 0.0761 0.0429 0.0009 0.0052 MSP 0.0037 0.0491 0.0179 0.0091
60 ML 0.0252 0.0133 –0.0012 0.0027 60 ML 0.0240 0.0332 0.0002 0.0025

LS 0.0036 0.0286 –0.0108 0.0029 LS –0.0331 0.0405 0.0041 0.0030
MSP 0.0240 0.0155 –0.0013 0.0028 MSP –0.0202 0.0350 0.0137 0.0028

100 ML 0.0129 0.0091 –0.0040 0.0015 100 ML 0.0204 0.0195 –0.0024 0.0023
LS –0.0090 0.0183 –0.0072 0.0019 LS –0.0135 0.0234 –0.0010 0.0027

MSP 0.0117 0.0097 –0.0040 0.0015 MSP –0.0096 0.0205 0.0061 0.0025
200 ML 0.0094 0.0066 0.0001 0.0011 200 ML 0.0000 0.0159 0.0042 0.0013

LS 0.0033 0.0124 –0.0036 0.0013 LS –0.0214 0.0193 0.0046 0.0016
  MSP 0.0081 0.0072 0.0001 0.0011   MSP –0.0202 0.0167 0.0100 0.0015

0.1 30 ML 0.0641 0.0481 0.0047 0.0056 0.3 30 ML 0.0831 0.0690 –0.0081 0.0109
LS 0.0171 0.0590 –0.0099 0.0065 LS –0.0230 0.0675 0.0004 0.0130

MSP 0.0100 0.0457 0.0181 0.0063 MSP 0.0061 0.0652 0.0246 0.0135
60 ML 0.0484 0.0231 0.0045 0.0030 60 ML 0.0500 0.0405 –0.0024 0.0050

LS –0.0044 0.0300 0.0040 0.0033 LS –0.0369 0.0425 0.0110 0.0053
MSP 0.0121 0.0228 0.0123 0.0032 MSP –0.0008 0.0398 0.0165 0.0058

100 ML 0.0275 0.0164 –0.0044 0.0014 100 ML 0.0474 0.0276 –0.0042 0.0028
LS 0.0048 0.0204 –0.0071 0.0017 LS 0.0033 0.0325 0.0032 0.0037

MSP 0.0052 0.0161 0.0002 0.0014 MSP 0.0108 0.0281 0.0083 0.0032
200 ML 0.0065 0.0098 0.0002 0.0011 200 ML 0.0230 0.0212 0.0037 0.0019

LS –0.0135 0.0123 0.0005 0.0013 LS –0.0120 0.0240 0.0101 0.0024
    MSP –0.0106 0.0104 0.0036 0.0011     MSP –0.0020 0.0217 0.0123 0.0022
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Table 3. Simulated results for α = 0.5 and β = 0.5

p n Method α = 0.5   β = 0.5 p n Method α = 0.5   β = 0.5

Bias MSE Bias MSE Bias MSE Bias MSE

0 30 ML 0.0380 0.0233 –0.0034 0.0035 0.2 30 ML 0.0570 0.0458 –0.0032 0.0053
LS –0.0041 0.0361 –0.0147 0.0039 LS –0.0282 0.0630 –0.0017 0.0059
MSP 0.0376 0.0247 –0.0037 0.0035 MSP 0.0007 0.0552 0.0128 0.0060

60 ML 0.0099 0.0124 0.0003 0.0018 60 ML 0.0155 0.0240 –0.0039 0.0019
LS –0.0147 0.0200 –0.0055 0.0021 LS –0.0437 0.0391 –0.0010 0.0024
MSP 0.0082 0.0133 0.0004 0.0018 MSP –0.0171 0.0283 0.0042 0.0019

100 ML 0.0181 0.0114 –0.0003 0.0011 100 ML 0.0105 0.0113 0.0001 0.0011
LS 0.0062 0.0147 –0.0050 0.0012 LS –0.0160 0.0141 –0.0013 0.0012
MSP 0.0198 0.0112 –0.0004 0.0012 MSP –0.0089 0.0125 0.0047 0.0012

200 ML –0.0049 0.0051 –0.0023 0.0007 200 ML 0.0160 0.0096 –0.0010 0.0008
LS –0.0081 0.0073 –0.0060 0.0008 LS 0.0001 0.0120 –0.0007 0.0009
MSP –0.0058 0.0051 –0.0022 0.0007 MSP 0.0034 0.0102 0.0020 0.0008

0.1 30 ML 0.0169 0.0353 –0.0039 0.0034 0.3 30 ML 0.0547 0.0638 0.0012 0.0053
LS –0.0474 0.0561 –0.0090 0.0043 LS –0.0482 0.0805 0.0082 0.0057
MSP –0.0281 0.0418 0.0052 0.0035 MSP –0.0150 0.0839 0.0280 0.0075

60 ML 0.0251 0.0206 0.0053 0.0018 60 ML 0.0084 0.0324 0.0008 0.0024
LS –0.0114 0.0262 0.0022 0.0019 LS –0.0626 0.0490 0.0099 0.0031
MSP 0.0005 0.0219 0.0099 0.0019 MSP –0.0318 0.0400 0.0141 0.0028

100 ML 0.0232 0.0110 0.0015 0.0010 100 ML 0.0286 0.0190 0.0008 0.0014
LS 0.0090 0.0135 –0.0025 0.0011 LS –0.0212 0.0289 0.0092 0.0020
MSP 0.0080 0.0112 0.0041 0.0010 MSP 0.0057 0.0212 0.0080 0.0015

200 ML 0.0078 0.0083 0.0024 0.0009 200 ML 0.0012 0.0125 –0.0004 0.0010
LS –0.0053 0.0099 0.0014 0.0010 LS –0.0202 0.0163 0.0008 0.0011
MSP –0.0028 0.0087 0.0043 0.0009 MSP –0.0165 0.0149 0.0048 0.0011

Table 2. Simulated results for α = 0.25 and β = 2 (cont.)

p n Method α = 0.25   β = 2 p n Method α = 0.25   β = 2

Bias MSE Bias MSE Bias MSE Bias MSE
0.1 30 ML 0.0624 0.0405 0.0013 0.0903 0.3 30 ML 0.1136 0.0645 –0.0695 0.1499

LS –0.0174 0.0445 –0.0292 0.1142 LS 0.0074 0.0489 –0.0400 0.1655
MSP 0.0047 0.0378 0.0570 0.0971 MSP 0.0300 0.0547 0.0578 0.1794

60 ML 0.0361 0.0216 0.0003 0.0423 60 ML 0.0419 0.0353 –0.0393 0.0981
LS 0.0008 0.0265 –0.0159 0.0458 LS –0.0105 0.0346 –0.0315 0.1003
MSP –0.0008 0.0221 0.0317 0.0447 MSP –0.0106 0.0343 0.0365 0.1090

100 ML 0.0309 0.0167 0.0119 0.0260 100 ML 0.0007 0.0316 0.0157 0.0616
LS 0.0126 0.0192 –0.0015 0.0296 LS –0.0440 0.0327 0.0356 0.0610
MSP 0.0086 0.0162 0.0316 0.0266 MSP –0.0308 0.0322 0.0624 0.0692

200 ML 0.0039 0.0101 0.0007 0.0179 200 ML 0.0207 0.0209 0.0153 0.0366
LS –0.0208 0.0147 0.0043 0.0197 LS –0.0204 0.0258 0.0489 0.0496
MSP –0.0133 0.0108 0.0156 0.0177 MSP –0.0036 0.0211 0.0489 0.0409
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Table 4. Simulated results for α = 0.5 and β = 2

p n Method α = 0.5 β = 2 p n Method α = 0.5   β = 2

Bias MSE   Bias MSE Bias MSE Bias MSE

0 30 ML 0.0394 0.0309 0.0068 0.0419 0.2 30 ML 0.0571 0.0444 –0.0211 0.0390
LS 0.0054 0.0380 –0.0451 0.0448 LS –0.0306 0.0645 –0.0166 0.0468
MSP 0.0367 0.0327 0.0065 0.0425 MSP –0.0018 0.0556 0.0271 0.0410

60 ML 0.0210 0.0154 0.0249 0.0200 60 ML 0.0176 0.0222 –0.0197 0.0196
LS 0.0022 0.0233 0.0033 0.0207 LS –0.0323 0.0272 –0.0180 0.0223
MSP 0.0186 0.0162 0.0258 0.0205 MSP –0.0145 0.0266 0.0046 0.0200

100 ML 0.0148 0.0087 –0.0004 0.0105 100 ML 0.0105 0.0128 0.0012 0.0124
LS 0.0041 0.0127 –0.0119 0.0116 LS –0.0179 0.0156 0.0046 0.0140
MSP 0.0141 0.0094 0.0003 0.0108 MSP –0.0083 0.0150 0.0159 0.0131

200 ML 0.0053 0.0051 0.0026 0.0066 200 ML 0.0046 0.0107 0.0050 0.0074
LS –0.0040 0.0072 –0.0050 0.0075 LS –0.0102 0.0153 0.0050 0.0086
MSP 0.0047 0.0055 0.0031 0.0067 MSP –0.0077 0.0122 0.0151 0.0077

0.1 30 ML 0.0463 0.0379 –0.0165 0.0323 0.3 30 ML 0.0431 0.0530 –0.0043 0.0489
LS –0.0123 0.0423 –0.0453 0.0383 LS –0.0750 0.0698 0.0306 0.0650
MSP 0.0012 0.0414 0.0089 0.0323 MSP –0.0304 0.0683 0.0738 0.0624

60 ML 0.0098 0.0143 –0.0014 0.0186 60 ML 0.0414 0.0287 –0.0013 0.0259
LS –0.0158 0.0198 –0.0166 0.0214 LS –0.0173 0.0406 0.0176 0.0361
MSP –0.0155 0.0169 0.0128 0.0189 MSP 0.0032 0.0349 0.0372 0.0310

100 ML 0.0236 0.0104 –0.0051 0.0102 100 ML 0.0234 0.0155 –0.0261 0.0153
LS 0.0142 0.0124 –0.0171 0.0122 LS –0.0115 0.0232 –0.0105 0.0184
MSP 0.0086 0.0111 0.0035 0.0103 MSP 0.0002 0.0185 –0.0038 0.0153

200 ML 0.0088 0.0075 –0.0115 0.0072 200 ML 0.0129 0.0125 –0.0053 0.0074
LS –0.0029 0.0105 –0.0184 0.0080 LS –0.0139 0.0195 0.0054 0.0109
MSP –0.0019 0.0084 –0.0058 0.0072 MSP –0.0038 0.0153 0.0107 0.0078

Table 5. Simulated results for α = 0.75 and β = 0.5

p n Method α = 0.75   β = 0.5 p n Method α = 0.75   β = 0.5

Bias MSE Bias MSE Bias MSE Bias MSE

0 30 ML 0.0348 0.0239 0.0002 0.0023 0.2 30 ML 0.0432 0.0266 –0.0011 0.0029
LS 0.0014 0.0293 –0.0133 0.0027 LS –0.0123 0.0351 –0.0019 0.0033
MSP 0.0331 0.0243 –0.0001 0.0023 MSP 0.0137 0.0299 0.0084 0.0030

60 ML 0.0012 0.0133 0.0002 0.0013 60 ML 0.0130 0.0173 0.0006 0.0013
LS –0.0046 0.0151 –0.0056 0.0015 LS –0.0222 0.0230 0.0004 0.0014
MSP 0.0016 0.0133 0.0002 0.0013 MSP –0.0057 0.0182 0.0054 0.0013

100 ML 0.0091 0.0081 0.0013 0.0006 100 ML 0.0144 0.0083 0.0005 0.0008
LS 0.0033 0.0100 –0.0032 0.0007 LS –0.0005 0.0103 –0.0003 0.0009
MSP 0.0075 0.0080 0.0014 0.0006 MSP 0.0041 0.0085 0.0034 0.0008

200 ML 0.0097 0.0045 0.0010 0.0004 200 ML 0.0090 0.0059 0.0040 0.0006
LS 0.0099 0.0060 –0.0017 0.0005 LS 0.0015 0.0068 0.0029 0.0006
MSP 0.0102 0.0047 0.0010 0.0004 MSP 0.0025 0.0061 0.0060 0.0006

(continued)
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Table 6. Simulated results for α = 0.75 and β = 2

p n Method α = 0.75   β = 2 p n Method α = 0.75   β = 2

Bias MSE Bias MSE Bias MSE Bias MSE

0 30 ML 0.0313 0.0201 –0.0050 0.0360 0.2 30 ML 0.0007 0.0256 –0.0224 0.0439
LS 0.0052 0.0253 –0.0494 0.0456 LS –0.0650 0.0453 –0.0349 0.0480
MSP 0.0323 0.0223   –0.0030 0.0371 MSP –0.0323 0.0326   0.0177 0.0447

60 ML 0.0241 0.0120 0.0096 0.0224 60 ML 0.0067 0.0165 –0.0112 0.0244
LS 0.0027 0.0151 –0.0058 0.0257 LS –0.0236 0.0222 –0.0251 0.0274
MSP 0.0231 0.0123   0.0106 0.0225 MSP –0.0103 0.0186   0.0087 0.0245

100 ML 0.0181 0.0082 0.0044 0.0109 100 ML 0.0094 0.0093 –0.0081 0.0139
LS 0.0129 0.0108 –0.0127 0.0136 LS –0.0111 0.0118 –0.0119 0.0152
MSP 0.0194 0.0081   0.0041 0.0111 MSP –0.0014 0.0096   0.0035 0.0139

200 ML 0.0012 0.0044 –0.0057 0.0068 200 ML 0.0052 0.0057 –0.0063 0.0097
LS –0.0096 0.0058 –0.0157 0.0076 LS –0.0092 0.0077 –0.0084 0.0101

  MSP 0.0008 0.0045   –0.0054 0.0068   MSP –0.0020 0.0059   0.0015 0.0097
0.1 30 ML 0.0288 0.0295 –0.0121 0.0393 0.3 30 ML 0.0317 0.0344 0.0197 0.0631

LS –0.0186 0.0365 –0.0496 0.0465 LS –0.0566 0.0544 0.0326 0.0726
MSP 0.0016 0.0324   0.0118 0.0397 MSP –0.0089 0.0432   0.0786 0.0721

60 ML 0.0228 0.0168 0.0043 0.0209 60 ML 0.0177 0.0205 0.0189 0.0335
LS –0.0063 0.0208 –0.0134 0.0198 LS –0.0142 0.0228 0.0211 0.0355
MSP 0.0060 0.0168   0.0164 0.0211 MSP –0.0013 0.0229   0.0473 0.0360

100 ML 0.0172 0.0094 –0.0034 0.0097 100 ML 0.0085 0.0138 0.0058 0.0208
LS 0.0073 0.0112 –0.0119 0.0111 LS –0.0158 0.0153 0.0049 0.0215
MSP 0.0079 0.0095   0.0047 0.0097 MSP –0.0043 0.0146   0.0225 0.0216

200 ML 0.0114 0.0054 0.0014 0.0074 200 ML 0.0125 0.0086 0.0099 0.0105
LS 0.0027 0.0079 –0.0095 0.0081 LS 0.0006 0.0109 0.0104 0.0123

    MSP 0.0048 0.0055   0.0067 0.0075       MSP 0.0045 0.0089   0.0208 0.0109

Table 5. Simulated results for α = 0.75 and β = 0.5 (cont.)

p n Method α = 0.75   β = 0.5 p n Method α = 0.75   β = 0.5

Bias MSE Bias MSE Bias MSE Bias MSE
0.1 30 ML 0.0227 0.0292 –0.0034 0.0027 0.3 30 ML –0.0053 0.0315 –0.0067 0.0037

LS –0.0233 0.0362 –0.0119 0.0030 LS –0.0862 0.0542 –0.0041 0.0040
MSP –0.0015 0.0340   0.0030 0.0027 MSP –0.0481 0.0453   0.0093 0.0042

60 ML 0.0030 0.0142 –0.0012 0.0016 60 ML 0.0101 0.0217 0.0002 0.0014
LS –0.0213 0.0169 –0.0041 0.0018 LS –0.0213 0.0282 0.0001 0.0016
MSP –0.0120 0.0152   0.0021 0.0017 MSP –0.0091 0.0255   0.0076 0.0015

100 ML 0.0110 0.0086 0.0018 0.0007 100 ML 0.0050 0.0103 0.0015 0.0009
LS –0.0036 0.0108 0.0011 0.0008 LS –0.0148 0.0129 0.0024 0.0011
MSP 0.0019 0.0089   0.0038 0.0007 MSP –0.0068 0.0112   0.0057 0.0009

200 ML 0.0035 0.0061 0.0002 0.0005 200 ML 0.0008 0.0071 0.0000 0.0007
LS –0.0058 0.0071 –0.0020 0.0005 LS –0.0090 0.0086 0.0000 0.0007

    MSP –0.0030 0.0063   0.0015 0.0005       MSP –0.0074 0.0075   0.0028 0.0007
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Figure 2. TTT plot of the air-condition system data.

Table 7. K-S Test results for the air-conditioning  
system data

Model

SMD Weibull Gamma Log-Normal
K-S Test 0.0944 0.0883 0.0770 0.1264
p-value 0.9513 0.9721 0.9933 0.7350

Table 8. Model Comparisions for the air-conditioning system data

Model Number of Censored 
Observations (n – r)

AIC N.Log-lik. ML Estimates

SMD 0 290.89829 143.44914 α̂ = 0.26191 β̂ = 76.86239
Weibull 291.91248 143.95624 θ̂ = 79.92387 λ̂ = 1.12314
Gamma 292.18017 144.09008 κ̂ = 1.13257 η̂ = 67.82347
Log_Normal 299.24989 147.62494 μ̂ = 3.83887 σ̂ = 1.25646
SMD 2 273.95361 125.76762 α̂ = 2.832E–7 β̂ = 82.96066
Weibull 273.87707 125.57470 θ̂ = 83.58582 λ̂ = 1.02924
Gamma 273.91031 125.64802 κ̂ = 1.03455 η̂ = 80.02561
Log_Normal 278.42077 129.60015 μ̂ = 3.88775 σ̂ = 1.31213
SMD 4 252.46701 111.63635 α̂ = 1.016E–7 β̂ = 90.17912
Weibull 252.72729 111.96940 θ̂ = 89.31712 λ̂ = 0.94426
Gamma 252.61474 111.85511 κ̂ = 0.94115 η̂ = 96.57372
Log_Normal 256.07815 114.52497 μ̂ = 3.95097 σ̂ = 1.40410
SMD 8 211.16566 89.36563 α̂ = 2.262E–8 β̂ = 109.16357
Weibull 212.01071 89.63544 θ̂ = 110.88645 λ̂ = 0.80310
Gamma 211.85849 89.77056 κ̂ = 0.77727 η̂ = 151.76537
Log_Normal 212.76451 89.56906 μ̂ = 4.14427 σ̂ = 1.63551
SMD 10 190.59905 80.18482 α̂ = 9.619E–8 β̂ = 122.00044
Weibull 191.47973 79.82207 θ̂ = 130.37211 λ̂ = 0.74240
Gamma 191.45780 80.22046 κ̂ = 0.70684 η̂ = 199.75125
Log_Normal 191.32442 78.96027 μ̂ = 4.29017 σ̂ = 1.78316

values in all cases except one which the censored observa-
tion number is 2.

CONCLUSION 

In this paper, the problem of estimating the parame-
ters of the SMD under the Type II censoring scheme have 
been considered. We have obtained various estimators for 
the unknown parameters of the SMD based on the most 
frequently used estimation methodologies in the literature 
such as ML, LS, and MSE. We have also compared the esti-
mation efficiencies of these estimators via a comprehensive 
simulation study. The results of the simulation study carried 
out on the different sample-sizes small, medium and large 
have revealed that all estimators obtained with the study are 
able to quite satisfactorily estimate the unknown parame-
ters α and β, and that these estimators are asymptotically 

For evaluated models, Table 8 presents the Akaike infor-
mation criterion (AIC), negative log-likelihood (N.Log-lik) 
values, and ML estimates of the parameters for both complete 
and censored data cases, where we assume that the largest n – 
r, (n – r = 0, 2, 4, 8, 10) observations of the data are censored.

According to the analysis results provided by Table 8, 
the SMD is a more appropriate model than other models for 
modeling the dataset with minimum AIC and N.Log-lik. 
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and inference 2012; 142(1): 41–47.

[9] Okasha, H. M. E-Bayesian estimation for the Lomax
distribution based on type-II censored data. Journal
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eters in continuous univariate distributions with
a shifted origin. Journal of the Royal Statistical
Society: Series B (Methodological) 1983; 45(3):
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[13] Ranneby, B. The maximum spacing method. An
estimation method related to the maximum like-
lihood method. Scandinavian Journal of Statistics
1984; 11(2): 93–112.

[14] Ekström, M. Alternatives to maximum likelihood
estimation based on spacings and the Kullback–
Leibler divergence. Journal of Statistical Planning
and Inference 2008; 138(6): 1778–1791.
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estimation of three-parameter Weibull distribution
based on progressively type-II censored samples.
Journal of Statistical Computation and Simulation
2012; 82(11): 1661–1678.
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decreasing failure rate. Technometrics 1963; 5(3):
375–383.

[17] Aarset, M. V. How to identify a bathtub hazard rate.
IEEE Transactions on Reliability 1987; 36(1): 106–108.

unbiased and consistent. Furthermore, even if the cen-
soring proportion increases, the ML and MSP estimators 
satisfactorily estimate the model parameters. In addition 
to these results, we give an illustrative example performed 
on actual data to exemplify the data modeling with SMD 
under complete and Type-II censored data cases. The appli-
cation results have shown that SMD is a possible alternative 
to the famous lifetime models such as Weibull, Gamma, 
Log-Normal, etc. Hence, we can say that the SMD is a help-
ful probability model for modeling the lifetime datasets in 
both complete and censored data cases.
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