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Introduction 

As the COVID-19 virus poses a threat to people living 

around the world, it is very important to predict the weekly 

numbers of future cases/deaths to support disease 

prevention and help prepare health services. Although some 

restrictions, such as forcing people to stay at home from 

time to time due to the pandemic process, make life boring, 

it has also contributed to the cleanliness of many living 

spaces, especially the environment, and the easier 

movement of animals. The history of humanity has 

witnessed many epidemics that have affected the people of 

the world from the past to the present on a global basis. 

These types of epidemics have emerged in history under 

different names. [1]. Tyrrell and Bynoe first mentioned a 

Coronavirus family in their study in 1966 [2]. In the 

literature, corona viruses have generally been defined as 

viruses with large RNA with an envelope, positive single 

strand, affecting both humans and a wide variety of animals 

[3]–[6].  The COVID-19 virus, which is current on a global 

basis today, first appeared in Wuhan, China's Hubei 

province, provisionally called 2019-nCoV [7], with the 

spread of an unknown pneumonia epidemic in December 

2019 [8]–[13].  

On March 11, 2020, World Health Organization (WHO) 

declared the COVID-19 outbreak as an official pandemic 

due to the global spread and severity of the disease [14]. The 

COVID-19 outbreak is the most important global crisis 

since the Second World War. All countries of the world 

were affected by this crisis and continue to be affected [15]. 

The COVID-19 virus has a higher transmission rate than 

seasonal Influenza and many other diseases. In 

symptomatic patients, clinical signs of the disease, 

consisting of fever, cough, nasal congestion, fatigue and 

other signs of upper respiratory tract infection, usually 

begin less than a week later [12], [16]–[21]. COVID-19 

virus not only affects people physically, but also negatively 

affects people's quality of life and mental health. Many 

factors such as prolonged quarantine and social distancing 

can make people depressed and cause anxiety disorders 

[22]. In addition, people with suspected COVID-19 

transmission may experience stress, depression, 

nervousness, insomnia during their quarantine. People with 

mental health problems are affected by the emotional 

reactions brought about by the epidemic, and they can cause 

mental health to deteriorate due to higher sensitivity to 

stress and depression compared to other people [23]. As the 
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ABSTRACT 

 
The aim of this study is to contribute to the literature by estimating the 5-weeks number of 

cases/deaths for each continent by using statistical-based prediction models, which are quite 
effective on simple but small-scale datasets. While Auto.arima, Tbats, Naive, Holt, Thetaf and, Drift 

models were used for prediction processes root mean square error (RMSE), mean absolute error 

(MAE), and mean absolute percent error (MAPE) metrics were used for evaluating estimates. 
According to the confirmed cases MAPE metric values of the 5  continents analyzed, the best 

predictions for Asia, Africa, Europe, America, and Oceania were done by Thetaf, Naive, Thetaf, 

Auto.arima, and Auto.arima models, respectively. The use of very limited data for time series 
estimates such as 57-weeks in the estimation process was a disadvantage. Most models require at 

least two cycles, 104 weeks of data, to run. Therefore, we could not use models such as neural 

network autoregressive, multilayer perceptrons, extreme learning machines.  
The results obtained with the prediction models used in this study aim to make more accurate 

decisions for the authorized persons dealing with health to be more prepared for future conditions 

and health systems. 
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COVID-19 pandemic has various effects on people, it has 

also caused a great change in many areas such as industry, 

sports, economic, financial and education [24]. In addition, 

the current economic crisis and the stagnation at 

commercial points caused effects in different areas. Social 

distancing, self-isolation and travel restrictions have 

resulted in a decrease in the workforce and loss of many 

jobs in the general economic sectors. On the other hand, the 

need for medical supplies and food increased 

significantly[12],[24].  Artificial intelligence (AI)[25], 

machine learning (ML) [26], [27], engineering techniques 

[28],  and time-series methods [29]–[31] have recently 

made significant advances in healthcare. AI can use 

advanced algorithms to learn features from a vast amount 

of health data, and then use the information gained to assist 

clinical practice [32].  

To our knowledge, there are several studies [33]–[38] in the 

literature that use different models to predict COVID-19 

data, but this is the first study to use weekly continent-based 

confirmed data between the first week of January 2020 and 

the third week of January 2021. 

This article contributes to the literature on weekly time-

series forecasting the COVID-19 outbreak in several ways: 

(i) modeling weekly data mathematically in the form of 

time series; (ii) to analyze weekly continental data between 

the first week of January 2020 and the third week of January 

2021; (iii) to make separate estimates for cases and deaths 

by using six different statistical-based models for weekly 

time series on a continent basis; (iv) evaluating the forecast 

results with the help of RMSE, MAE, and MAPE metrics.  

Research Method 

Study Design 

 In this section, obtaining the data, modeling the data as a 

time series, used prediction models and performance 

metrics are given respectively. All of the weekly datasets 

used in this study, given based on the world countries 

COVID-19 data, were provided from the European Union 

open data portal site 

(https://data.europa.eu/euodp/data/dataset). The data used 

here consists of 57 weeks and starts from the first week of 

January 2020 and ends in the third week of January 2021. 

The weekly data used in the study were made available on 

the basis of country data in Asia, Africa, America (North 

America and South America), Europe and Oceania 

continents. Weekly data have been obtained separately by 

taking into account the numbers of confirmed cases and 

deaths in countries on five continents. The graphs of cases 

and deaths belonging to the Asia-Africa, European-

America and Oceania continents are shown in Figures 1, 2, 

and 3, respectively, as a 57-week time-series. In addition, 

statistical values such as min, median, mean and max 

belonging to five continents are given in Table 1. As seen 

in Table 1, on average, the highest numbers of confirmed 

cases/deaths are seen in the continents of America, Europe, 

Asia, Africa and Oceania respectively. 

As seen in Figure 1, weekly data consisting of 57 weeks on 

the time axis are formed between the first week of January 

2020 and the third week of January 2021. The highest 

number of confirmed cases and deaths in Asia continent 

was realized as 851577 and 12466, respectively, in the 

second week (38th week) of September 2020. The number 

of confirmed cases in the Asia continent has increased since 

the 1st week of 2020 and reached a peak in the 38th week. 

It then entered a downward trend. Although the deaths 

numbers of the same continent increased similar to the cases 

trend, there were occasional decreases. As can be seen in 

the lower part of the same graph, the highest number of 

cases and deaths in the African continent was realized as 

227221 and 6501, respectively, in the 1st and 3rd week of 

January 2021 (i.e., the 54th and 56th weeks). In the African 

continent, the number of cases reached the first peak in the 

29th week and the second peak in the 56th week. The 57-

week chart of deaths in the African continent is quite similar 

to the cases chart. As seen in Figure 2, the highest number 

of cases in Europe continent was realized as 2092934 in the 

1st week of November 2020 (i.e., at the 45th week), while 

the number of deaths was 39861 in the 3rd week of January 

2021 (i.e., at the 56th week). 

When the 57-week trend of the European continent is 

evaluated, it is seen that the first 3 weeks continue at the 0 

level, the following weeks have risen and reached the peak 

in the 45th week, and then declined. On the deaths chart of 

the European continent, it is seen that the first peak was 

reached in the 15th week, followed by a downward trend 

and then increased and peaked again in the 56th week. 

In the continent of America, located at the bottom of Figure 

2, the highest number of confirmed cases and deaths was 

realized as 2699838 and 48277, respectively, in the 1st and 

Table 1. Statistical distribution of 57 weeks of data used for Asia, Africa, Europe, America, and Oceania continents 

Continent Confirmed cases Confirmed deaths 

Min Median Mean Max Min Median Mean Max 

Asia 1 425608 350950 851577 0 6640 5930 12466 

Africa 0 55870 62804 227221 0 1518 1603 6501 

Europa 0 221408 588342 2092934 0 5159 12996 39861 

America 0 768081 811763 2699838 0 20057 18684 48277 

Ocenia 0 686 1010 3607 0 9 21.18 148 



DUJE (Dicle University Journal of Engineering) 12:4 (2021) Page 635-644 

 

637 
 

3rd week of January 2021 (i.e., the 54th and 56th weeks). 

In general, it is seen that the number of cases and deaths in 

the American continent increased, reaching a peak in the 

54th and 56th weeks, respectively. 

 

Figure 1. The confirmed cases/deaths values between the 

first week of 2020 and the third week of 2021 of the 57-

week time series of Asia and African continents 

As seen in Figure 3, the highest number of cases in Oceania 

continent was 3607 in the last week of July 2020 (i.e., in the 

31st week), while the number of deaths was 39861 in the 

first week of September 2020 (i.e. week 36). The numbers 

of COVID-19 confirmed cases/deaths in Oceania continent 

vary considerably. The death rate in the same continent is 

only 2.1% of the cases rate. 

 

Figure 2. The confirmed cases/deaths values between the 

first week of 2020 and the third week of 2021 of the 57-

week time series belonging to the European and American 

continents 

 

 

 

Figure 3. The confirmed cases/deaths values between the 

first week of 2020 and the third week of 2021 of the 57-

week time series belonging to the Oceania continent 

Modeling EU-ODP data as time series and prediction 

models 

Time series analysis is commonly used in many fields due 

to the significant relation between the past and the future. 

Time series models are useful for modeling data obtained 

and indexed by time [36]. Time series are used for future 

predictions in many areas such as health [39], [40], sensor 

data analysis [41], speech recognition [42], economics [43], 

radiation forecasting [44], [45], sunspots [46], [47].  

Data supplied from the EU-ODP portal can be modeled in 

time series format, by means of predictor variables, as 

follows: 

𝐸𝑈_𝑂𝐷𝑃 = 𝑓(confirmed_𝑐𝑎𝑠𝑒𝑠/

𝑑𝑒𝑎𝑡ℎ𝑠, 𝑡𝑖𝑚𝑒_𝑜𝑓_𝑤𝑒𝑒𝑘, 𝑒𝑟𝑟𝑜𝑟)                 (1) 

Note that on the right, the "error" word allows for random 

variation. Accordingly, the time series prediction equation 

will be: 

𝐸𝑈_𝑂𝐷𝑃𝑛+1 =

𝑓(𝐸𝑈𝑂𝐷𝑃𝑛
, 𝐸𝑈𝑂𝐷𝑃𝑛−1

, 𝐸𝑈𝑂𝐷𝑃𝑛−2
, 𝐸𝑈𝑂𝐷𝑃𝑛−3

, … , 𝜀)   (2) 

Where subscript n is the present week, subscript  n+1 is the 

next week, subscript n-1 is the previous week, subscript n-

2 is the two weeks ago, subscript n-3 is the three weeks ago, 

and so on.  represents the random variation and the effects 

of variables not included in the model. Here, future 

forecasting is based on a variable's previous values, but not 

on external factors that may influence the system.  In the 

models given hereafter, the numbers of cases / deaths 

obtained weekly at time n are shown with 𝑦𝑛. 

In this study, the Naive method, which makes predictions 

based on the last observation, Drift method for all changes 

that occur over time, Auto Regressive Integrated Moving 

Average (auto.arima) method, Exponential smoothing state 

space model with Box-Cox  (Tbats)   method, Holt-Winters 
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[48]  method and Theta method forecast (Thetaf) method in 

Forecast Package imported into the R programming 

environment were used in the prediction processes. [49]–

[51]. 

Performance evaluation 

The consistency of EU_ODP confirmed cases/deaths data 

will significantly influence the prediction results in terms of 

calculation precision, missed values, corrupted data, and 

data entry errors. In time series forecasting, where the 

sample size is limited, data accuracy is particularly 

important. Preprocessing the data is one of the crucial steps 

of data analysis, one of the preliminary steps in that includes 

feature scaling. The number of weekly EU_ODP 

cases/deaths, y, was normalized by unit length 

normalization (ULN), as defined by equation (3). ULN 

transforms x to x′ by dividing each value of the feature 

vector by Euclidean length of the vector. 

x′ =
x

‖x‖
=

𝑥

√∑ 𝑥2
                                (3) 

Where x′, x, and ||x|| is normalised value, original value and 

Ecludian distance vector respectively.  In time series 

forecasting, as in the case of cross-sectional results, we first 

split the data into a training cycle and a test period in order 

to prevent overfitting and be able to measure the model's 

predictive output on new data.  

Various statistical tests, including root mean square error 

(RMSE), mean absolute error (MAE), and mean absolute 

percent error (MAPE) were determined to analyze the 

performance of models using numerical time-series values. 

In equations 4, 5 and 6, respectively, equations for RMSE, 

MAE, and MAPE metrics are given. 

 𝑹𝑴𝑺𝑬 = √
𝟏

𝑵
∑ (𝒆𝒏+𝒉)𝟐𝑵

𝒏=𝟏                      (4) 

 𝑴𝑨𝑬 =
𝟏

𝑵
∑ |𝒆𝒏+𝒉|𝑵

𝒏=𝟏                                        (5) 

 𝑴𝑨𝑷𝑬 =
𝟏

𝑵
∑ |

𝑒𝒏

𝑦𝒏
|

𝑁

𝑛=1
𝑥100                        (6) 

The n, N, 𝑒𝒏, 𝑦𝑛, and h given in the equations show time, 

number of observations, prediction error, actual value and 

future forecast horizon, respectively.The forecast error  for 

time period n, denoted 𝑒𝒏, is defined as the difference 

between the actual value, 𝒚𝒏 and the forecast value, 𝒚̂𝒏 at 

time n. 

𝑒𝒏 = 𝒚𝒏 − 𝒚̂𝒏                 (7) 

Here, 𝑒𝒏 does not mean a misunderstanding, it means an 

unforeseeable aspect of the observation. It can be written 

down as 

𝑒𝑻+𝒉 = 𝒚𝑵+𝒉 − 𝒚̂𝑵+𝒉|𝑁,                   (8) 

where the training data is given by {𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑁,} and 

the test data is given by {𝑦𝑁+1, 𝑦𝑁+2, 𝑦𝑁+3, … }. Note that 

prediction errors vary in two ways from residuals. Firstly, 

the residues are measured on the training set while the 

predicted errors are calculated on the test set. Secondly, 

residues rely on one-step predictions, while forecast errors 

will require multi-stage predictions. 

Results and Discussion 

In this study, time series were created using 57-week 

COVID-19 confirmed cases and deaths data from Asia, 

Africa, Europe, America and Ocean continents. Separate 

time series are used for the estimation of the numbers of 

cases and deaths of the continents. Six different models, 

namely Thetaf, Drift, Auto.arima, Tbats, Naïve and Holt, 

were used in the estimation process of the time series. The 

time series for training and testing of each model is divided 

by 91% and 9%, respectively. 

57-week COVID-19 cases and deaths prediction charts of 

Asia, Africa, Europe, America and Ocean continents are 

given between Figure 4 and Figure 13 with support for six 

different models. In addition, the 5-week COVID-19 

confirmed cases / deaths prediction test values of Asia, 

Africa, Europe, America and Ocean continents are given as 

RMSE, MAE and MAPE metric values in Table 2. When 

the metric values given in Table 2 for the Asia continent are 

evaluated together with Figures 4 and 5, it is seen that the 

best estimation process for both cases and deaths time series 

is made by Thetaf model when MAPE metric is taken as 

reference in 5-week estimation processes. Here, the MAPE 

metric value of 4.166 means that the same model made an 

error of 4.166% on the test data. On the other hand, the 

performance percentage of the model for the test data is 

95.834%. As seen in Table 2, model achievements on the 5-

week time series used for cases for Asia continent are 

Thetaf, Drift, Auto.arima, Tbats, Naïve and Holt. This 

ranking occurs as Tbats, Auto.arima, Naïve, Holt, Thetaf, 

and Drift for deaths time series. The Thetaf model made 

11.93% less error in the prediction operations of the Asia 

continent based on the MAPE value on the cases data, 

compared to the predicted values obtained for deaths of the 

same continent. In other words, the performance of the 

predictions made on the cases data is 11.93% better than the 

performance on deaths data. As seen in Figures 4 and 5, blue 

lines display predictions for the next 5-weeks. The dark 

shaded area displays 80% predicted intervals. In other 

words, each potential value is predicted to lie in the dark 

shaded area with a probability of 80%.  

Prediction graphs of COVID-19 cases and deaths belonging 

to the African continent are given in Figures 6 and 7, 

respectively. We see that the Drift method shows the best 

performance in the prediction of cases, whereas the Tbats 

model performs better in predicting deaths.  Forecast 

differences in time series depend on both the model, dataset  
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length, and trend/seasonality effects in the data. Therefore, 

it is possible that different models make better predictions 

on different datasets. The  absence of cases in the African 

continent in the first 8 weeks of 2020 and the absence of 

deaths in the first 9 weeks caused a decrease in performance 

in estimation procedures. Therefore, it is seen in Table 2 

that the predicted values of the African continent are less 

accurate than the Asian continent, considering the MAPE 

metric.  

The estimation charts of COVID-19 cases and deaths 

belonging to the European continent are given in Figures 8 

and 9, respectively, for 5-weeks, and the estimation metric 

values are given in Table 2.  

Accordingly, we see that the Thetaf model stands out with 

16.545% MAPE value in the cases estimates and the Drift 

model with 4.073% MAPE value in deaths estimates. 5-

week COVID-19 cases and deaths prediction charts for the 

Americas are given in Figures 10 and 11, respectively, and 

metric values are given in Table 2. In the Cases estimates, 

we see that Drift, Auto.arima and Holt models have 10.480, 

10.480 and 10.486 MAPE values, respectively. The rates of 

error and correct prediction of these models are quite close 

to each other. However, in the deaths predictions, we see 

that the Holt model predicts with an error margin of 

17.906%, that is, it makes 82.094% correct predictions.  

For the Ocenia continent, 5-week COVID-19 cases and 

deaths prediction charts are given in Figures 12 and 13, 

respectively, and metric values are given in Table 2. For the 

Ocenia continent cases predictions, the auto.arima model 

provided the best performance with 54.625% error, while 

the deaths predictions provided holt with 117.734% error.  

Due to the irregular number of cases and deaths in Ocenia 

continent, the performance of the models in the prediction 

process was very low. For the five continents whose 

Table 2. Five-week confirmed cases /deaths RMSE, MAE, and MAPE metric values for the continents using six 

prediction models 

Continent Models COVID confirmed cases test metrics COVID confirmed deaths test 

metrics 

RMSE MAE MAPE RMSE MAE MAPE 

Asia Thetaf 0.006 0.005 4.166 0.019 0.019 16.096 

Drift 0.006 0.005 4.198 0.020 0.019 16.732 

Auto.arima 0.021 0.019 13.849 0.013 0.012 10.370 

Tbats 0.025 0.023 16.455 0.010 0.009 7.562 

Naive 0.034 0.031 22.584 0.013 0.012 10.371 

Holt 0.034 0.031 22.611 0.016 0.013 11.020 

Africa Thetaf 0.057 0.049 17.098 0.010 0.100 28.572 

Drift 0.056 0.047 17.051 0.102 0.092 26.221 

Auto.arima 0.078 0.062 25.873 0.068 0.061 17.558 

Tbats 0.182 0.136 56.807 0.041 0.036 10.641 

Naive 0.057 0.045 16.930 0.116 0.105 30.060 

Holt 0.057 0.048 17.076 0.100 0.090 25.853 

Europe Thetaf 0.040 0.035 16.546 0.016 0.015 6.014 

Drift 0.047 0.040 19.116 0.012 0.010 4.073 

Auto.arima 0.044 0.038 18.035 0.016 0.015 6.049 

Tbats 0.041 0.036 17.031 0.013 0.012 4.871 

Naive 0.046 0.040 18.865 0.021 0.020 7.853 

Holt 0.047 0.040 19.320 0.021 0.020 7.854 

America Thetaf 0.055 0.046 16.214 0.087 0.081 30.768 

Drift 0.052 0.044 10.480 0.082 0.076 28.869 

Auto.arima 0.052 0.044 10.480 0.092 0.086 32.601 

Tbats 0.059 0.051 18.163 0.099 0.093 35.335 

Naive 0.052 0.044 15.672 0.092 0.086 32.600 

Holt 0.052 0.044 10.486 0.053 0.048 17.906 

Ocenia Thetaf 0.021 0.013 67.227 0.012 0.010 155.190 

Drift 0.019 0.012 61.629 0.010 0.009 130.748 

Auto.arima 0.017 0.010 54.625 0.010 0.009 122.333 

Tbats 0.020 0.012 62.310 0.010 0.009 118.540 

Naive 0.018 0.010 55.805 0.014 0.011 181.966 

Holt 0.019 0.011 60.344 0.010 0.009 117.734 
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performances were evaluated, the lowest performance was 

obtained in the cases and deaths estimation processes of 

Ocenia continent. The irregularity of the data in the time 

series negatively affected the performance of the model. 

 

Figure 4. Representation of 5-week estimates with 80% 

and 95% prediction intervals using six different statistical 

models of cases in the Asian continent. 
 

 

Figure 5. Representation of 5-week estimates with 80% 

and 95% prediction intervals using six different statistical 

models of deaths in the Asian continent. 

 

 

Figure 6. Representation of 5-week estimates with 80% 

and 95% prediction intervals using six different statistical 

models of cases in the Africa continent. 

 

 

Figure 7. Representation of 5-week estimates with 80% 

and 95% prediction intervals using six different statistical 

models of deaths in the Asian continent. 
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Figure 8. Representation of 5-week estimates with 80% 

and 95% prediction intervals using six different statistical 

models of cases in the European continent. 

 

 

Figure 9. Representation of 5-week estimates with 80% 

and 95% prediction intervals using six different statistical 

models of deaths  in the European continent. 

 

Figure 10. Representation of 5-week estimates with 80% 

and 95% prediction intervals using six different statistical 

models of cases in the American continent. 

 

 

Figure 11. Representation of 5-week estimates with 80% 

and 95% prediction intervals using six different statistical 

models of deaths in the American continent. 
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Figure 12. Representation of 5-week estimates with 80% 

and 95% prediction intervals using six different statistical 

models of cases in the Oceania continent. 

 

 

Figure 13. Representation of 5-week estimates with 80% 

and 95% prediction intervals using six different statistical 

models of deaths in the Oceania continent. 

Conclusion 

In this study, R-based statistical models, some of which 

have not been used in the forecasting of limited time series 

until now, are used and their performances are evaluated. In 

other words, the authors evaluated the usability of weekly 

future predictions of COVID-19, which continues to be 

effective globally, with time series models. Six different 

models such as Naive, Drift, auto.arima, Tbats, Holt-

Winters, and Thetaf method were used for prediction 

operations. RMSE, MAE, and MAPE metrics were used to 

evaluate the performance of the models used for 5-week 

predictions. The results obtained were evaluated on the 

basis of continents.  

The accuracy of traditional estimation largely depends on 

the availability of the data [52]. The fact that the data used 

in the estimates are limited affects the estimation accuracy 

very negatively.  

According to the confirmed cases MAPE metric values of 

the five continents analyzed, the best predictions for Asia, 

Africa, Europe, America, and Oceania were done by Thetaf, 

Naive, Thetaf, Auto.arima, and Auto.arima models, 

respectively. The use of very limited data for time series 

estimates such as 57-weeks in the estimation process was a 

disadvantage. Most models require at least two cycles, 104-

weeks of data, to run. Therefore, we could not use models 

such as Neural network autoregressive, Multilayer 

Perceptrons, Extreme learning machines. Especially since 

we had to make predictions using a limited data set such as 

57-weeks, we could not reach the desired levels in model 

performances. In a sense, more data means better 

predictions for time series. 

The socio-economic, demographic, and environmental 

conditions of the countries in the continents where data are 

collected differ. In addition, there is a serious shortage of 

nurses in low and medium-developing countries. In 

comparison, the number of hospital beds per thousand 

people and access to health care services in these less 

developed countries is still very limited. However, 

wealthier and relatively more developed countries have 

more overweight people relative to lower GDP countries 

and are thus more vulnerable to COVID-19 [26]. 
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