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1. INTRODUCTION 

 

Hamilton defined a quaternion as the division of two vectors orientated in a three-dimensional space, or the 

division of two equivalent vectors in 1843 [1]. It is possible to see the effects of Hamilton's discovery today 

in astronautics, robotics, navigation, computer visualization, animation and special effects in movies, and 

many other areas. Quaternions are also vital to the control systems that guide airplanes and rockets. 

Quaternions have generated a growing interest in algebra. Now, many studies have emerged by combining 

quaternions with algebra. Horadam defined Fibonacci quaternions in 1963 and gave a generalization of 

these numbers [2].  Halıcı examined the basic properties of Fibonacci quaternions as number sequences [3]. 

In [4-10], some applications about quaternions were made with the Fibonacci and Lucas numbers. 

Now let's give some basic properties about quaternions. 

 

Quaternions are defined in the following form. Let p be a quaternion.  p is written as: 

 

𝑝 = 𝑝0 + 𝑝1𝕚 + 𝑝2𝕛 + 𝑝3𝕜 

 

where 𝑝0, 𝑝1, 𝑝2 and 𝑝3 are real numbers, and 𝕚, 𝕛, 𝕜 are  the main quaternions which are satisfy rules in 

Table 1. 
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Table 1. The main multiplications 

. 𝕚 𝕛 𝕜 

𝕚 −1 𝕜 −𝕛 
𝕛 −𝕜 −1 𝕚 

𝕜 𝕛 −𝕚 −1 

 

We can write   𝑝 = 𝑝0 + 𝑢 where 𝑢 = 𝑝1𝕚 + 𝑝2𝕛 + 𝑝3𝕜. 

 

Let 𝑝∗ and ‖𝑝‖ show conjugate and norm of the quaternion 𝑝, respectively. Then we give them 

 

𝑝∗ = 𝑝0  − 𝑢 and ‖𝑝‖ = √𝑝0
2 + 𝑝1

2 + 𝑝2
2 + 𝑝3

2. 

 

Note that, ‖𝑝‖2 = 𝑝𝑝∗. 

 

Many scientists have been interested in number sequences for many years, as they find application in nature 

and in many sciences [11-15]. Many generalizations of number sequences were then described and studied 

[15-18]. One of the most well-known number sequences is the Jacobsthal numbers [19-23]. Now, let’s give 

them now. 

 

The Jacobsthal numbers 𝐽𝑛 are defined by 

 

𝐽𝑛+2 = 𝐽𝑛+1 + 2𝐽𝑛,  𝑛 ≥ 0 

 

with 𝐽0 = 0 and 𝐽1 = 1 [23]. 

 

Similarly, the Jacobsthal-Lucas numbers 𝑗𝑛 are defined by 

 

𝑗𝑛+2 = 𝑗𝑛+1 + 2𝑗𝑛, 𝑛 ≥ 0 

 

with 𝑗0 = 2 and 𝑗1 = 1 [23]. 

 

Binet formulas for 𝐽𝑛 and 𝑗𝑛 are given by, respectively: 

 

𝐽𝑛 =
𝑎𝑛−𝑏𝑛

𝑎−𝑏
   

                                                                    

and  

 

𝑗𝑛 = 𝑎𝑛 + 𝑏𝑛                                                                     (1) 

 

where 𝑎 = 2 and 𝑏 = −1 are roots of the equation 𝑥2 − 𝑥 − 2 = 0 . 

 

In [24], Jacobsthal and Jacobsthal-Lucas quaternions are presented and given many principal identities 

about the quaternions. 

 

The Jacobsthal quaternions 𝐽𝑄𝑛 and the Jacobsthal-Lucas quaternions 𝐽𝐿𝑄𝑛 are defined as 

 

𝐽𝑄𝑛 = 𝐽𝑛 + 𝕚𝐽𝑛+1 + 𝕛𝐽𝑛+2 + 𝕜𝐽𝑛+3 

 

𝐽𝐿𝑄𝑛 = 𝑗𝑛 + 𝕚𝑗𝑛+1 + 𝕛𝑗𝑛+2 + 𝕜𝑗𝑛+3 

 

respectively [25]. 

 

Recently, many generalizations of quaternions have been studied [24-29]. 
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One of the recent studies in this field is [5] where higher order Fibonacci quaternions are introduced and 

given their basic properties. 

 

In this paper, we introduce higher order Jacobsthal numbers. Then we define higher order Jacobsthal 

quaternions by using higher order Jacobsthal numbers. We present the concept of the norm and conjugate 

for these quaternions. We give some propositions related to these quaternions. In addition, we find the 

recurrence relation, the Binet formula and the generating function which are basic concepts in number 

sequences for these quaternions. Finally, we calculate Cassini, Catalan, Vajda and d’Ocagne identities 

which are the main identities in the literature for higher order Jacobsthal quaternions. 

 

2. MAIN RESULTS 

 

2.1. Higher Order Jacobsthal Numbers 

 

Definition 2.1.1 The higher order Jacobsthal numbers described by 

 

𝐽𝑛
(𝑠)

=
𝐽𝑛𝑠

𝐽𝑠
=

𝑎𝑛𝑠−𝑏𝑛𝑠

𝑎−𝑏
𝑎𝑠−𝑏𝑠

𝑎−𝑏

=
𝑎𝑛𝑠−𝑏𝑛𝑠

𝑎−𝑏

𝑎−𝑏

𝑎𝑠−𝑏𝑠 =
(𝑎𝑠)𝑛−(𝑏𝑠)𝑛

𝑎𝑠−𝑏𝑠 .                                        (2) 

 

Since 𝐽𝑛𝑠 is divisible by 𝐽𝑠 , the ratio 
𝐽𝑛𝑠

𝐽𝑠
 is an integer. So, all higher order Jacobsthal numbers are integer. 

Note that for  𝑠 = 1,  higher order Jacobsthal number 𝐽𝑛
(1)

 is the ordinary Jacobsthal numbers. 

 

Proposition 2.1.2. The higher order Jacobsthal numbers provide the following identity. 

 

𝐽𝑛+1
(𝑠)

= 𝑗𝑠𝐽𝑛
(𝑠)

− (−2)𝑠𝐽𝑛−1
(𝑠)

. 

 

Proof.  𝑗𝑠𝐽𝑛
(𝑠)

− (−2)𝑠𝐽𝑛−1
(𝑠)

= (𝑎𝑠 + 𝑏𝑠) (
𝑎𝑠𝑛−𝑏𝑠𝑛

𝑎𝑠−𝑏𝑠 ) − (−2)𝑠 (
𝑎𝑠𝑛−𝑠−𝑏𝑠𝑛−𝑠

𝑎𝑠−𝑏𝑠 ). 

Since  (−2)𝑠 = (𝑎𝑏)𝑠, 

𝑗𝑠𝐽𝑛
(𝑠)

− (−2)𝑠𝐽𝑛−1
(𝑠)

= (𝑎𝑠 + 𝑏𝑠) (
𝑎𝑠𝑛 − 𝑏𝑠𝑛

𝑎𝑠 − 𝑏𝑠 ) − (𝑎𝑏)𝑠 (
𝑎𝑠𝑛−𝑠 − 𝑏𝑠𝑛−𝑠

𝑎𝑠 − 𝑏𝑠 ) 

= (
𝑎𝑠𝑛+𝑠 − 𝑎𝑠𝑏𝑠𝑛 + 𝑏𝑠𝑎𝑠𝑛 − 𝑏𝑠𝑛+𝑠 − 𝑎𝑠𝑛𝑏𝑠 + 𝑎𝑠𝑏𝑠𝑛

𝑎𝑠 − 𝑏𝑠 ) 

                                            = (
𝑎𝑠𝑛+𝑠−𝑏𝑠𝑛+𝑠

𝑎𝑠−𝑏𝑠 ) = (
𝑎𝑠(𝑛+1)−𝑏𝑠(𝑛+1)

𝑎𝑠−𝑏𝑠 ) = 𝐽𝑛+1
(𝑠)

. 

Thus, the proof is completed. 

 

2.2. Higher Order Jacobsthal Quaternions 

 

Definition 2.2.1. The higher order Jacobsthal quaternions is denoted by 𝑂𝐽𝑛
(𝑠)

 and defined by 

 

𝑂𝐽𝑛
(𝑠)

= 𝐽𝑛
(𝑠)

+ 𝐽𝑛+1
(𝑠)

𝕚 + 𝐽𝑛+2
(𝑠)

𝕛 + 𝐽𝑛+3
(𝑠)

𝕜                                           (3) 

 

where 𝕚, 𝕛 and 𝕜 are quaternions unit and 𝐽𝑛
(𝑠)

 is higher order Jacobsthal numbers. 

If we take 𝑠 = 1 in (3) then we get the Jacobsthal quaternions. The real and imaginary parts of the higher 

order Jacobsthal quaternions in (3) are as follows 
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𝑅𝑒(𝑂𝐽𝑛
(𝑠)

) = 𝐽𝑛
(𝑠)

 

 

and 

𝐼𝑚 (𝑂𝐽𝑛
(𝑠)

) = 𝑣 = 𝐽𝑛+1
(𝑠)

𝕚 + 𝐽𝑛+2
(𝑠)

𝕛 + 𝐽𝑛+3
(𝑠)

𝕜 . 

 

Thus, we have 

𝑂𝐽𝑛
(𝑠)

= 𝐽𝑛
(𝑠)

+ 𝑣. 

 

The conjugate of 𝑂𝐽𝑛
(𝑠)

 is denoted by 𝑂𝐽𝑛
(𝑠)∗

and given as follows 

 

𝑂𝐽𝑛
(𝑠)∗

= 𝐽𝑛
(𝑠)

− 𝐽𝑛+1
(𝑠)

𝕚 − 𝐽𝑛+2
(𝑠)

𝕛 − 𝐽𝑛+3
(𝑠)

𝕜 = 𝐽𝑛
(𝑠)

− 𝑣.                            (4) 

 

Norm of the higher order Jacobsthal quaternions is denoted by 𝑁(𝑂𝐽𝑛
(𝑠)

) and given as follows 

 

(𝑁(𝑂𝐽𝑛
(𝑠)

))
2

= 𝑂𝐽𝑛
(𝑠)

𝑂𝐽𝑛
(𝑠)∗

= (𝐽𝑛
(𝑠)

)
2

+ (𝐽𝑛+1
(𝑠)

)
2

+ (𝐽𝑛+2
(𝑠)

)
2

+ (𝐽𝑛+3
(𝑠)

)
2

.                                                   (5) 

 

Proposition 2.2.2. We have 

 

𝑂𝐽𝑛
(𝑠)

+ 𝑂𝐽𝑛
(𝑠)∗

= 2𝐽𝑛
(𝑠)

. 

 

Proof. By using (3) and (4), the result is easily seen. 

 

Proposition 2.2.3. We have the following identity 

 

(𝑂𝐽𝑛
(𝑠)

)
2

= −𝑂𝐽𝑛
(𝑠)

𝑂𝐽𝑛
(𝑠)∗

+ 2𝐽𝑛
(𝑠)

𝑂𝐽𝑛
(𝑠)

. 

 

Proof. By using (3) and (4), we obtain that 

 

(𝑂𝐽𝑛
(𝑠)

)
2

= (𝐽𝑛
(𝑠)

+ 𝐽𝑛+1
(𝑠)

𝕚 + 𝐽𝑛+2
(𝑠)

𝕛 + 𝐽𝑛+3
(𝑠)

𝕜) (𝐽𝑛
(𝑠)

+ 𝐽𝑛+1
(𝑠)

𝕚 + 𝐽𝑛+2
(𝑠)

𝕛 + 𝐽𝑛+3
(𝑠)

𝕜) 

 

                = − ((𝐽𝑛
(𝑠)

)
2

+ (𝐽𝑛+1
(𝑠)

)
2

+ (𝐽𝑛+2
(𝑠)

)
2

+ (𝐽𝑛+3
(𝑠)

)
2

) + 2𝐽𝑛
(𝑠)

(𝐽𝑛
(𝑠)

+ 𝐽𝑛+1
(𝑠)

𝕚 + 𝐽𝑛+2
(𝑠)

𝕛 + 𝐽𝑛+2
(𝑠)

𝕜). 

 

From (8), we get 

 

(𝑂𝐽𝑛
(𝑠)

)
2

= −𝑂𝐽𝑛
(𝑠)

𝑂𝐽𝑛
(𝑠)∗

+ 2𝐽𝑛
(𝑠)

𝑂𝐽𝑛
(𝑠)

. 

 

Theorem 2.2.4. The Binet formula of the higher order Jacobsthal quaternions as follow 

 

𝑂𝐽𝑛
(𝑠)

=
(𝑎𝑠)𝑛�̂�−(𝑏𝑠)𝑛�̂�

𝑎𝑠−𝑏𝑠                     (6) 

 

where �̂� = (1 + 𝑎𝑠𝕚 + 𝑎2𝑠𝕛 + 𝑎3𝑠𝕜) and �̂� = (1 + 𝑏𝑠𝕚 + 𝑏2𝑠𝕛 + 𝑏3𝑠𝕜). 

 

Proof.  Using (2) and (3), we have 

 

𝑂𝐽𝑛
(𝑠)

= 𝐽𝑛
(𝑠)

+ 𝐽𝑛+1
(𝑠)

𝕚 + 𝐽𝑛+2
(𝑠)

𝕛 + 𝐽𝑛+3
(𝑠)

𝕜  

 

=
(𝑎𝑠)𝑛

𝑎𝑠 − 𝑏𝑠
[1 + 𝑎𝑠𝕚 + 𝑎2𝑠𝕛 + 𝑎3𝑠𝕜] −

(𝑏𝑠)𝑛

𝑎𝑠 − 𝑏𝑠
[1 + 𝑏𝑠𝕚 + 𝑏2𝑠𝕛 + 𝑏3𝑠𝕜] 
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=
(𝑎𝑠)𝑛�̂�

𝑎𝑠−𝑏𝑠 −
(𝑏𝑠)𝑛�̂�

𝑎𝑠−𝑏𝑠 =
(𝑎𝑠)𝑛�̂�−(𝑏𝑠)𝑛�̂�

𝑎𝑠−𝑏𝑠  . 

 

Thus, the proof ends. 

 

Theorem 2.2.5. The higher order Jacobsthal quaternions is given by 

 

𝑂𝐽𝑛+1
(𝑠)

= 𝑗𝑠𝑂𝐽𝑛
(𝑠)

− (−2)𝑠𝑂𝐽𝑛−1
(𝑠)

. 

 

Proof.   From (1) and (6), we find that 

 

𝑂𝐽𝑛+1
(𝑠)

=
(𝑎𝑠)𝑛+1�̂� − (𝑏𝑠)𝑛+1�̂�

𝑎𝑠 − 𝑏𝑠
=

1

𝑎𝑠 − 𝑏𝑠 (𝑎𝑠(𝑎𝑠)𝑛�̂� − 𝑏𝑠(𝑏𝑠)𝑛�̂�) 

 

=
1

𝑎𝑠 − 𝑏𝑠 (𝑎𝑠(𝑎𝑠)𝑛�̂� − 𝑎𝑠(𝑏𝑠)𝑛�̂� + 𝑎𝑠(𝑏𝑠)𝑛�̂� − 𝑏𝑠(𝑏𝑠)𝑛�̂�) 

 

=
1

𝑎𝑠 − 𝑏𝑠
𝑎𝑠  ( (𝑎𝑠)𝑛�̂� − (𝑏𝑠)𝑛�̂�) +

1

𝑎𝑠 − 𝑏𝑠
𝑎𝑠((𝑏𝑠)𝑛�̂� − 𝑏𝑠(𝑏𝑠)𝑛�̂�) 

 

= (𝑎𝑠 + 𝑏𝑠)𝑂𝐽𝑛
(𝑠)

− 𝑏𝑠𝑂𝐽𝑛
(𝑠)

+
1

𝑎𝑠 − 𝑏𝑠 (𝑎𝑠(𝑏𝑠)𝑛�̂� − 𝑏𝑠(𝑏𝑠)𝑛�̂�) 

 

= 𝑗𝑠𝑂𝐽𝑛
(𝑠)

−
𝑎𝑠𝑏𝑠

𝑎𝑠−𝑏𝑠 ((𝑎𝑠)𝑛−1�̂� − (𝑏𝑠)𝑛−1�̂�) = 𝑗𝑠𝑂𝐽𝑛
(𝑠)

− (−2)𝑠𝑂𝐽𝑛−1
(𝑠)

. 

 

Thus, the proof is obtained. 

 

Theorem 2.2.6. If we take 𝑛 and 𝑠 negative integer numbers for 𝑂𝐽𝑛
(𝑠)

 then we get the following properties: 

 

𝒊) 𝑂𝐽−𝑛
(𝑠)

= (−2)−𝑠𝑛 (𝑏𝑠)𝑛�̂�−(𝑎𝑠)𝑛�̂�

𝑎𝑠−𝑏𝑠 , 

 

𝒊𝒊)  𝑂𝐽−𝑛
(−𝑠)

= −(−2)𝑠𝑂𝐽𝑛
(𝑠)

, 

 

𝒊𝒊𝒊)  𝑂𝐽𝑛
(−𝑠)

= −(−2)𝑠𝑂𝐽−𝑛
(𝑠)

. 

 

Proof. By using (6), we have 

𝒊)  𝑂𝐽−𝑛
(𝑠)

=
(𝑎𝑠)−𝑛�̂� − (𝑏𝑠)−𝑛�̂�

𝑎𝑠 − 𝑏𝑠
=

�̂�

(𝑎𝑠)𝑛 −
�̂�

(𝑏𝑠)𝑛

𝑎𝑠 − 𝑏𝑠
=

(𝑏𝑠)𝑛�̂� − (𝑎𝑠)𝑛�̂�

(𝑎𝑠)𝑛(𝑏𝑠)𝑛

1

𝑎𝑠 − 𝑏𝑠
 

= (−2)−𝑠𝑛 (𝑏𝑠)𝑛�̂�−(𝑎𝑠)𝑛�̂�

𝑎𝑠−𝑏𝑠 , 

 

𝒊𝒊)  𝑂𝐽−𝑛
(−𝑠)

=
(𝑎−𝑠)−𝑛�̂� − (𝑏−𝑠)−𝑛�̂�

𝑎−𝑠 − 𝑏−𝑠
=

(𝑎𝑠)𝑛�̂� − (𝑏𝑠)𝑛�̂�
𝑏𝑠−𝑎𝑠

𝑎𝑠𝑏𝑠

= (−2)𝑠
(𝑎𝑠)𝑛�̂� − (𝑏𝑠)𝑛�̂�

𝑏𝑠 − 𝑎𝑠
 

= −(−2)𝑠𝑂𝐽𝑛
(𝑠)

, 

 

𝒊𝒊𝒊)  𝑂𝐽𝑛
(−𝑠)

=
(𝑎−𝑠)𝑛�̂� − (𝑏−𝑠)𝑛�̂�

𝑎−𝑠 − 𝑏−𝑠
=

(𝑎𝑠)−𝑛�̂� − (𝑏𝑠)−𝑛�̂�
𝑏𝑠−𝑎𝑠

𝑎𝑠𝑏𝑠

= −(−2)𝑠
(𝑎𝑠)−𝑛�̂� − (𝑏𝑠)−𝑛�̂�

𝑎𝑠 − 𝑏𝑠
 

= −(−2)𝑠𝑂𝐽−𝑛
(𝑠)

. 
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So, the desired is achieved. 

 

Now let's give the following lemma which we need to obtain the generating function and the sum formula. 

 

Lemma 2.2.7. The following equations are provided 

 

𝒊) �̂� − �̂� = (𝑎𝑠 − 𝑏𝑠)(𝕚 + 𝑗𝑠𝕛 + (𝑗2𝑠 + (−2)𝑠)𝕜), 

 

𝒊𝒊) �̂�𝑏𝑠 − �̂�𝑎𝑠 = (𝑎𝑠 − 𝑏𝑠)(−1 + (−2)𝑠𝕛 + (−2)𝑠𝑗𝑠𝕜), 

 

𝒊𝒊𝒊) �̂�𝑎𝑠 − �̂�𝑏𝑠 = (𝑎𝑠 − 𝑏𝑠)(1 + 𝑗𝑠𝕚 + (𝑗𝑠 + (−2)𝑠)𝕛 + (𝑗𝑠
3 + (−2)𝑠+1𝑗𝑠)𝕜). 

 

Proof.  

 

𝒊) �̂� − �̂� = (1 + 𝑎𝑠𝕚 + 𝑎2𝑠𝕛 + 𝑎3𝑠𝕜) − (1 + 𝑏𝑠𝕚 + 𝑏2𝑠𝕛 + 𝑏3𝑠𝕜) 

 

= (𝑎𝑠 − 𝑏𝑠)𝕚 + (𝑎2𝑠 − 𝑏2𝑠)𝕛 + (𝑎3𝑠 − 𝑏3𝑠)𝕜 

 

= (𝑎𝑠 − 𝑏𝑠)(𝕚 + 𝑗𝑠𝕛 + (𝑗2𝑠 + (−2)𝑠)𝕜). 

 

𝒊𝒊) �̂�𝑏𝑠 − �̂�𝑎𝑠 = (1 + 𝑎𝑠𝕚 + 𝑎2𝑠𝕛 + 𝑎3𝑠𝕜)𝑏𝑠 − (1 + 𝑏𝑠𝕚 + 𝑏2𝑠𝕛 + 𝑏3𝑠𝕜)𝑎𝑠 

 

= −(𝑎𝑠 − 𝑏𝑠) + (𝑎2𝑠𝑏𝑠 − 𝑏2𝑠𝑎𝑠)𝕛 + (𝑎3𝑠𝑏𝑠 − 𝑏3𝑠𝑎𝑠)𝕜 

 

= (𝑎𝑠 − 𝑏𝑠)(−1 + (−2)𝑠𝕛 + (−2)𝑠(𝑎𝑠 + 𝑏𝑠)𝕜) 

 

= (𝑎𝑠 − 𝑏𝑠)(−1 + (−2)𝑠𝕛 + (−2)𝑠𝑗𝑠𝕜). 

 

𝒊𝒊𝒊) �̂�𝑎𝑠 − �̂�𝑏𝑠 = (1 + 𝑎𝑠𝕚 + 𝑎2𝑠𝕛 + 𝑎3𝑠𝕜)𝑎𝑠 − (1 + 𝑏𝑠𝕚 + 𝑏2𝑠𝕛 + 𝑏3𝑠𝕜)𝑏𝑠 

 

= (𝑎𝑠 − 𝑏𝑠) + (𝑎2𝑠 − 𝑏2𝑠)𝕚 + (𝑎3𝑠 − 𝑏3𝑠)𝕛 + (𝑎4𝑠 − 𝑏4𝑠)𝕜 

 

= (𝑎𝑠 − 𝑏𝑠)(1 + 𝑗𝑠𝕚 + (𝑗𝑠 + (−2)𝑠)𝕛 + (𝑗𝑠
3 + (−2)𝑠+1𝑗𝑠)𝕜). 

 

Theorem 2.2.8. The generating function of  𝑂𝐽𝑛
(𝑠)

 is given as follow 

 

𝐺(𝑠)(𝑥) = ∑ 𝑂𝐽𝑛
(𝑠)

𝑥𝑛

∞

𝑛=0

=
(𝕚 + 𝑗𝑠𝕛 + (𝑗2𝑠 + (−2)𝑠)𝕜) − (1 + (−2)𝑠𝕛 + (−2)𝑠𝑗𝑠𝕜)𝑥

(1 − 𝑗𝑠𝑥 + (−2)𝑠𝑥2)
. 

 

Proof.  

𝐺(𝑠)(𝑥) = ∑ 𝑂𝐽𝑛
(𝑠)

𝑥𝑛

∞

𝑛=0

= ∑ (𝐽𝑛
(𝑠)

+ 𝐽𝑛+1
(𝑠)

𝕚 + 𝐽𝑛+2
(𝑠)

𝕛 + 𝐽𝑛+3
(𝑠)

𝕜) 𝑥𝑛

∞

𝑛=0

 

 

= ∑ [
(𝑎𝑛)𝑠 − (𝑏𝑛)𝑠

𝑎𝑠 − 𝑏𝑠
+

(𝑎𝑛+1)𝑠 − (𝑏𝑛+1)𝑠

𝑎𝑠 − 𝑏𝑠
𝕚 +

(𝑎𝑛+2)𝑠 − (𝑏𝑛+2)𝑠

𝑎𝑠 − 𝑏𝑠
𝕛 +

(𝑎𝑛+3)𝑠 − (𝑏𝑛+3)𝑠

𝑎𝑠 − 𝑏𝑠
𝕜] 𝑥𝑛

∞

𝑛=0

 

 

=
1

𝑎𝑠 − 𝑏𝑠
∑(𝑎𝑛)𝑠𝑥𝑛(1 + 𝑎𝑠𝕚 + 𝑎2𝑠𝕛 + 𝑎3𝑠𝕜) −

1

𝑎𝑠 − 𝑏𝑠
∑(𝑏𝑛)𝑠𝑥𝑛(1 + 𝑏𝑠𝕚 + 𝑏2𝑠𝕛 + 𝑏3𝑠𝕜)

∞

𝑛=0

∞

𝑛=0
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=
1

𝑎𝑠 − 𝑏𝑠
∑(𝑎𝑛)𝑠𝑥𝑛�̂� −

1

𝑎𝑠 − 𝑏𝑠
∑(𝑏𝑛)𝑠𝑥𝑛�̂�

∞

𝑛=0

∞

𝑛=0

 

 

= (
�̂�

𝑎𝑠 − 𝑏𝑠
) (

1

1 − 𝑎𝑠𝑥
) − (

�̂�

𝑎𝑠 − 𝑏𝑠) (
1

1 − 𝑏𝑠𝑥
) 

 

=
�̂� − �̂�𝑏𝑠𝑥 − �̂� + �̂�𝑎𝑠𝑥

(𝑎𝑠 − 𝑏𝑠)(1 − 𝑎𝑠𝑥)(1 − 𝑏𝑠𝑥)
 

 

=
�̂� − �̂� − (�̂�𝑏𝑠 − �̂�𝑎𝑠)𝑥

(𝑎𝑠 − 𝑏𝑠)(1 − (𝑎𝑠 + 𝑏𝑠)𝑥 + (−2)𝑠𝑥2)
 

 

=
(𝑎𝑠 − 𝑏𝑠)(𝕚 + 𝑗𝑠𝕛 + (𝑗2𝑠 + (−2)𝑠)𝕜) − ((𝑎𝑠 − 𝑏𝑠)(−1 + (−2)𝑠𝕛 + (−2)𝑠𝑗𝑠𝕜))𝑥

(𝑎𝑠 − 𝑏𝑠)(1 − (𝑎𝑠 + 𝑏𝑠)𝑥 + (−2)𝑠𝑥2)
 

 

=
(𝕚+𝑗𝑠𝕛+(𝑗2𝑠+(−2)𝑠)𝕜)−(1+(−2)𝑠𝕛+(−2)𝑠𝑗𝑠𝕜)𝑥

(1−𝑗𝑠𝑥+(−2)𝑠𝑥2)
. 

 

Thus, the desired is obtained. 

 

Theorem 2.2.9. Sum of the higher order Jacobsthal quaternions 𝑂𝐽𝑛
(𝑠)

 is 

 

𝑆𝑂𝐽𝑛
(𝑠)

= ∑ 𝑂𝐽𝑛
(𝑠)∞

𝑛=0 =
(𝕚+𝑗𝑠𝕛+(𝑗2𝑠+(−2)𝑠)𝕜)−(1+(−2)𝑠𝕛+(−2)𝑠𝑗𝑠𝕜)

(1−𝑗𝑠+(−2)𝑠)
. 

 

Proof. If we write 𝑥 = 1 in Theorem 2.2.8, the proof is clear. 

 

Theorem 2.2.10. For 𝑛, 𝑚 ∈ ℤ, we have 

 

∑ 𝑂𝐽𝑛+𝑚
(𝑠)

𝑥𝑛 =
𝑂𝐽𝑛

(𝑠)
−(−2)𝑠𝑂𝐽𝑚−1

(𝑠)
𝑥

1+𝑗𝑠𝑥+(−2)𝑠𝑥2
∞
𝑛=0 . 

 

Proof.  

∑ 𝑂𝐽𝑛+𝑚
(𝑠)

𝑥𝑛 =

∞

𝑛=0

∑
(𝑎𝑠)𝑛+𝑚�̂� − (𝑏𝑠)𝑛+𝑚�̂�

𝑎𝑠 − 𝑏𝑠

∞

𝑛=0

𝑥𝑛 

 

= ∑
(𝑎𝑠)𝑛+𝑚�̂�

𝑎𝑠 − 𝑏𝑠
𝑥𝑛 − ∑

(𝑏𝑠)𝑛+𝑚�̂�

𝑎𝑠 − 𝑏𝑠

∞

𝑛=0

∞

𝑛=0

𝑥𝑛 =
�̂�𝑎𝑠𝑚

𝑎𝑠 − 𝑏𝑠
∑ 𝑎𝑠𝑛𝑥𝑛 −

�̂�𝑏𝑠𝑚

𝑎𝑠 − 𝑏𝑠
∑ 𝑏𝑠𝑛𝑥𝑛

∞

𝑛=0

∞

𝑛=0

 

 

= (
�̂�𝑎𝑠𝑚

𝑎𝑠 − 𝑏𝑠) (
1

1 − 𝑎𝑠𝑥
) − (

�̂�𝑏𝑠𝑚

𝑎𝑠 − 𝑏𝑠) (
1

1 − 𝑏𝑠𝑥
) 

 

= (
1

𝑎𝑠 − 𝑏𝑠
) [

�̂�𝑎𝑠𝑚 − �̂�𝑎𝑠𝑚𝑏𝑠𝑥 − �̂�𝑏𝑠𝑚 + �̂�𝑏𝑠𝑚𝑎𝑠𝑥

1 − 𝑏𝑠𝑥 − 𝑎𝑠𝑥 + (𝑎𝑏)𝑠𝑥2
] 

 

= (
1

𝑎𝑠 − 𝑏𝑠
) [

�̂�(𝑎𝑠)𝑚 − �̂�(𝑏𝑠)𝑚

1 − 𝑗𝑠𝑥 + (−2)𝑠𝑥2
−

𝑎𝑠𝑏𝑠(�̂�(𝑎𝑠)𝑚−1 − �̂�(𝑏𝑠)𝑚−1)𝑥

1 − 𝑗𝑠𝑥 + (−2)𝑠𝑥2
] 
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= [
𝑂𝐽𝑚

(𝑠)

1 − 𝑗𝑠𝑥 + (−2)𝑠𝑥2
−

(−2)𝑠𝑂𝐽𝑚−1
(𝑠)𝑥

1 − 𝑗𝑠𝑥 + (−2)𝑠𝑥2
] 

 

=
𝑂𝐽𝑛

(𝑠)
−(−2)𝑠𝑂𝐽𝑚−1

(𝑠)
𝑥

1+𝑗𝑠𝑥+(−2)𝑠𝑥2 . 

 

So, the proof is done. 

 

Theorem 2.2.11. Exponential generating function of 𝑂𝐽𝑛
(𝑠)

 is given by 

 

∑ 𝑂𝐽𝑛+𝑚
(𝑠) 𝑥𝑛

𝑛!
=

�̂�𝑒𝑎𝑠𝑥−�̂�𝑒𝑏𝑠𝑥

𝑎𝑠−𝑏𝑠
∞
𝑛=0 . 

 

Proof.   Let 𝑈𝑥
(𝑠) = ∑ 𝑂𝐽𝑛

(𝑠) 𝑥𝑛

𝑛!
∞
𝑛=0  be the exponential generating function of  𝑂𝐽𝑛

(𝑠)
. 

From (6), the following is obtained. 

 

𝑈𝑥
(𝑠) = ∑ 𝑂𝐽𝑛

(𝑠) 𝑥𝑛

𝑛!

∞

𝑛=0

= ∑ (
(𝑎𝑠)𝑛�̂� − (𝑏𝑠)𝑛�̂�

𝑎𝑠 − 𝑏𝑠 )
𝑥𝑛

𝑛!

∞

𝑛=0

 

 

=
�̂�

𝑎𝑠 − 𝑏𝑠
∑

(𝑎𝑠𝑥)𝑛

𝑛!

∞

𝑛=0

−
�̂�

𝑎𝑠 − 𝑏𝑠
∑

(𝑏𝑠𝑥)𝑛

𝑛!

∞

𝑛=0

 

 

=
�̂�𝑒𝑎𝑠𝑥

𝑎𝑠−𝑏𝑠 −
�̂�𝑒𝑏𝑠𝑥

𝑎𝑠−𝑏𝑠 =
�̂�𝑒𝑎𝑠𝑥−�̂�𝑒𝑏𝑠𝑥

𝑎𝑠−𝑏𝑠 . 

 

Thus, the proof is obtained. 

 

2.3. Some Identities for Higher Order Jacobsthal Quaternions 

 

Lemma 2.3.1. There are the following equations 

 

�̂��̂� = 𝛼 − ∇𝛽                    (7) 

 

and 

 

�̂��̂� = 𝛼 + ∇𝛽                   (8) 

 

where 𝛼 = (1 − (−2)𝑠 − (−2)2𝑠 − (−2)3𝑠 + 𝑗𝑠𝕚 + 𝑗2𝑠𝕛 + 𝑗3𝑠𝕜), 

 

𝛽 = (−2)2𝑠𝐽1
(𝑠)

𝕚−(−2)𝑠𝐽2
(𝑠)

𝕛 + (−2)𝑠𝐽1
(𝑠)

𝕜 and ∇= (𝑎𝑠 − 𝑏𝑠). 

 

Proof. 

�̂��̂� = (1 + 𝑎𝑠𝕚 + 𝑎2𝑠𝕛 + 𝑎3𝑠𝕜)(1 + 𝑏𝑠𝕚 + 𝑏2𝑠𝕛 + 𝑏3𝑠𝕜) 

 

= 1 + 𝑏𝑠𝕚 + 𝑏2𝑠𝕛 + 𝑏3𝑠𝕜 + 𝑎𝑠𝕚 − 𝑎𝑠𝑏𝑠 + 𝑎𝑠𝑏2𝑠𝕜 − 𝑎𝑠𝑏3𝑠𝕛 + 𝑎2𝑠𝕛 − 𝑎2𝑠𝑏𝑠𝕜 − 𝑎2𝑠𝑏2𝑠 

 

+𝑎2𝑠𝑏3𝑠𝕚 + 𝑎3𝑠𝕜 + 𝑎3𝑠𝑏𝑠𝕛 − 𝑎3𝑠𝑏2𝑠𝕚 − 𝑎3𝑠𝑏3𝑠 

 

= 1 + 𝑏𝑠𝕚 + 𝑏2𝑠𝕛 + 𝑏3𝑠𝕜 + 𝑎𝑠𝕚 − (−2)𝑠 + 𝑎𝑠𝑏2𝑠𝕜 − 𝑎𝑠𝑏3𝑠𝕛 + 𝑎2𝑠𝕛 − 𝑎2𝑠𝑏𝑠𝕜 − (−2)2𝑠 

 

+𝑎2𝑠𝑏3𝑠𝕚 + 𝑎3𝑠𝕜 + 𝑎3𝑠𝑏𝑠𝕛 − 𝑎3𝑠𝑏2𝑠𝕚 − (−2)3𝑠 
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= (1 − (−2)𝑠 − (−2)2𝑠 − (−2)3𝑠) + (𝑎𝑠 + 𝑏𝑠 + 𝑎2𝑠𝑏3𝑠 − 𝑎3𝑠𝑏2𝑠)𝕚 
 

+(𝑎2𝑠 + 𝑏2𝑠 + 𝑎3𝑠𝑏𝑠 − 𝑎𝑠𝑏3𝑠)𝕛 + (𝑎3𝑠 + 𝑏3𝑠 + 𝑎𝑠𝑏2𝑠 − 𝑎2𝑠𝑏𝑠)𝕜 

 

= (1 − (−2)𝑠 − (−2)2𝑠 − (−2)3𝑠 + 𝑗𝑠𝕚 + 𝑗2𝑠𝕛 + 𝑗3𝑠𝕜) − (−2)2𝑠(𝑎𝑠 − 𝑏𝑠)𝕚 

 

+(−2)𝑠(𝑎2𝑠 − 𝑏2𝑠)𝕛 − (−2)𝑠(𝑎𝑠 − 𝑏𝑠)𝕜 

 

= (1 − (−2)𝑠 − (−2)2𝑠 − (−2)3𝑠 + 𝑗𝑠𝕚 + 𝑗2𝑠𝕛 + 𝑗3𝑠𝕜) − (−2)2𝑠∇𝐽1
(𝑠)

𝕚 

 

+(−2)𝑠∇𝐽2
(𝑠)

𝕛 − (−2)𝑠∇𝐽1
(𝑠)

𝕜 

 

= (1 − (−2)𝑠 − (−2)2𝑠 − (−2)3𝑠 + 𝑗𝑠𝕚 + 𝑗2𝑠𝕛 + 𝑗3𝑠𝕜) − ∇ ((−2)2𝑠𝐽1
(𝑠)

𝕚−(−2)𝑠𝐽2
(𝑠)

𝕛 + (−2)𝑠𝐽1
(𝑠)

𝕜) 

 

= 𝛼 − ∇𝛽. 

 

Equation (8) can be similarly proved. 

 

Theorem 2.3.2. (Vajda Identity) For 𝑛, 𝑚, 𝑟 ∈ ℤ, we get 

 

𝑂𝐽𝑛+𝑚
(𝑠)

𝑂𝐽𝑛+𝑟
(𝑠)

− 𝑂𝐽𝑛
(𝑠)

𝑂𝐽𝑛+𝑚+𝑟
(𝑠)

= (−2)𝑠𝑛𝐽𝑚
(𝑠)

[𝛼𝐽𝑟
(𝑠)

+ 𝛽𝑗𝑠𝑟]. 

 

Proof.   By using (6), we find that 

 

𝑂𝐽𝑛+𝑚
(𝑠)

𝑂𝐽𝑛+𝑟
(𝑠)

− 𝑂𝐽𝑛
(𝑠)

𝑂𝐽𝑛+𝑚+𝑟
(𝑠)

= (
(𝑎𝑠)𝑛+𝑚�̂� − (𝑏𝑠)𝑛+𝑚�̂�

𝑎𝑠 − 𝑏𝑠 ) (
(𝑎𝑠)𝑛+𝑟�̂� − (𝑏𝑠)𝑛+𝑟�̂�

𝑎𝑠 − 𝑏𝑠 ) 

− (
(𝑎𝑠)𝑛�̂� − (𝑏𝑠)𝑛�̂�

𝑎𝑠 − 𝑏𝑠 ) (
(𝑎𝑠)𝑛+𝑚+𝑟�̂� − (𝑏𝑠)𝑛+𝑚+𝑟�̂�

𝑎𝑠 − 𝑏𝑠 ) 

 

= (
1

(𝑎𝑠 − 𝑏𝑠)2
) (−(𝑎𝑠)𝑛+𝑚�̂�(𝑏𝑠)𝑛+𝑟�̂� − (𝑏𝑠)𝑛+𝑚�̂�(𝑎𝑠)𝑛+𝑟�̂� + (𝑎𝑠)𝑛�̂�(𝑏𝑠)𝑛+𝑚+𝑟�̂�

+ (𝑏𝑠)𝑛�̂�(𝑎𝑠)𝑛+𝑚+𝑟�̂�) 

 

=
1

∇2 (−�̂��̂�(𝑎𝑠)𝑛(𝑏𝑠)𝑛+𝑟((𝑎𝑠)𝑚 − (𝑏𝑠)𝑚) + �̂��̂�(𝑏𝑠)𝑛(𝑎𝑠)𝑛+𝑟((𝑎𝑠)𝑚 − (𝑏𝑠)𝑚)) 

 

=
1

∇2
(𝑎𝑠)𝑛(𝑏𝑠)𝑛((−�̂��̂�(𝑏𝑠)𝑟 + �̂��̂�(𝑎𝑠)𝑟))((𝑎𝑠)𝑚 − (𝑏𝑠)𝑚)) 

 

=
(−2)𝑠𝑛

∇2
(−�̂��̂�(𝑏𝑠)𝑟 + �̂��̂�(𝑎𝑠)𝑟)((𝑎𝑠)𝑚 − (𝑏𝑠)𝑚) 

 

=
(−2)𝑠𝑛

∇
(−(𝛼 − ∇𝛽 )(𝑏𝑠)𝑟 + (𝛼 + ∇𝛽 )(𝑎𝑠)𝑟)𝐽𝑚

(𝑠)
 

 

=
(−2)𝑠𝑛

∇
𝐽𝑚

(𝑠)(𝛼((𝑎𝑠)𝑟 − (𝑏𝑠)𝑟) + ∇β((𝑎𝑠)𝑟 + (𝑏𝑠)𝑟)) 

 

= (−2)𝑠𝑛𝐽𝑚
(𝑠)

(𝛼𝐽𝑟
(𝑠)

+ 𝛽𝑗𝑠𝑟). 

 

Thus, the equality is proved. 
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Theorem 2.3.3. (Catalan Identity) For 𝑛, 𝑚, 𝑟 ∈ ℤ, we get 

 

𝑂𝐽𝑛−𝑟
(𝑠)

𝑂𝐽𝑛+𝑟
(𝑠)

− (𝑂𝐽𝑛
(𝑠)

)
2

= (−2)𝑠𝑛𝐽−𝑟
(𝑠)

[𝛼𝐽𝑟
(𝑠)

+ 𝛽𝑗𝑠𝑟]. 

 

Proof. The proof is derived from the special case of Vajda identity.  

 

𝑂𝐽𝑛+𝑚
(𝑠)

𝑂𝐽𝑛+𝑟
(𝑠)

− 𝑂𝐽𝑛
(𝑠)

𝑂𝐽𝑛+𝑚+𝑟
(𝑠)

= (−2)𝑠𝑛𝐽𝑚
(𝑠)

[𝛼𝐽𝑟
(𝑠)

+ 𝛽𝑗𝑠𝑟]. 

 

For  𝑚 = −𝑟, we get 

 

𝑂𝐽𝑛−𝑟
(𝑠)

𝑂𝐽𝑛+𝑟
(𝑠)

− (𝑂𝐽𝑛
(𝑠)

)
2

= (−2)𝑠𝑛𝐽−𝑟
(𝑠)

[𝛼𝐽𝑟
(𝑠)

+ 𝛽𝑗𝑠𝑟]. 

 

Theorem 2.3.4. (Cassini Identity) We have 

 

𝑂𝐽𝑛−1
(𝑠)

𝑂𝐽𝑛+1
(𝑠)

− (𝑂𝐽𝑛
(𝑠)

)
2

= −(−2)𝑠(𝑛−1)[𝛼 + 𝛽𝑗𝑠]. 

 

Proof. If we take   𝑚 = −1 and 𝑟 = 1 in Catalan identity, the following is obtained. 

 

𝑂𝐽𝑛−1
(𝑠)

𝑂𝐽𝑛+1
(𝑠)

− (𝑂𝐽𝑛
(𝑠)

)
2

= (−2)𝑠𝑛𝐽−1
(𝑠)

[𝛼𝐽1
(𝑠)

+ 𝛽𝑗𝑠]. 

 

= (−2)𝑠𝑛 − (−2)−𝑠[𝛼 + 𝛽𝑗𝑠] 
 

= −(−2)𝑠(𝑛−1)[𝛼 + 𝛽𝑗𝑠]. 
 

Theorem 2.3.5. (d’ Ocagne Identity) We have 

 

𝑂𝐽𝑘
(𝑠)

𝑂𝐽𝑛+1
(𝑠)

− 𝑂𝐽𝑛
(𝑠)

𝑂𝐽𝑘+1
(𝑠)

= (−2)𝑠𝑛𝐽𝑘−𝑛
(𝑠) [𝛼 + 𝛽𝑗𝑠]. 

 

Proof. If we take for  𝑚 + 𝑛 = 𝑘 and 𝑟 = 1 in Vajda identity, the following is obtained. 

 

𝑂𝐽𝑛+𝑚
(𝑠)

𝑂𝐽𝑛+𝑟
(𝑠)

− 𝑂𝐽𝑛
(𝑠)

𝑂𝐽𝑛+𝑚+𝑟
(𝑠)

= (−2)𝑠𝑛𝐽𝑚
(𝑠)

[𝛼𝐽𝑟
(𝑠)

+ 𝛽𝑗𝑠𝑟] 

 

𝑂𝐽𝑘
(𝑠)

𝑂𝐽𝑛+1
(𝑠)

− 𝑂𝐽𝑛
(𝑠)

𝑂𝐽𝑘+1
(𝑠)

= (−2)𝑠𝑛𝐽𝑘−𝑛
(𝑠) [𝛼 + 𝛽𝑗𝑠]. 

 

3. CONCLUSION  

 

In this work, we introduced higher order Jacobsthal numbers with recurrence relations. We defined higher 

order Jacobsthal quaternions by using these numbers. We gave the concept of the norm and conjugate for 

higher order Jacobsthal quaternions. We proved some propositions for these quaternions. Also, we obtained 

the recurrence relation, the Binet formula and the generating function which are basic concepts in number 

sequences for these quaternions. Finally, we gave Cassini, Catalan, Vajda and d’Ocagne identities which 

are the main identities in the literature for higher order Jacobsthal quaternions. 

This work can be extended to higher order Jacobsthal-Lucas quaternions. 
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