

Fundamental Journal of Mathematics and Applications

Journal Homepage: www.dergipark.org.tr/en/pub/fujma ISSN: 2645-8845 doi: https://dx.doi.org/10.33401/fujma.1002715

Exact Sequences of BCK-Modules

Alper Ülker

Department of Mathematics and Computer Science, Istanbul Kültür University, 34256, Istanbul, Turkey

Article Info

Keywords: BCK-algebra, BCK-module, Exact sequence, Hom functor 2010 AMS: 06F35, 06F25 Received: 30 September 2021

Accepted: 15 February 2022 Available online: 23 February 2022

Abstract

BCK-modules were introduced as an action of a BCK-algebra over an Abelian group. Homomorphisms of BCK-modules form an exact sequence which is called BCK-sequence. In this paper, we study homomorphisms of BCK-modules. We show that this homomorphisms have a module structure. Moreover, we show that sequences of Hom functors are BCK-sequences.

1. Introduction

BCK/BCI-algebras were introduced by Imai and Iseki [1, 2]. BCK/BCI-algebras have been studied by many authors, extensively. In 1994, the BCK-module structure of BCK-algebras was introduced as an action on an Abelian group [3]. In [4], exact sequences of BCK-modules were studied. Further, in [5], the authors studied the homomorphisms between BCK-modules and they showed that the set of homomorphisms of BCK-modules form a BCK-module. Later, in [6], homology theory of BCK-modules was investigated. In [7], the authors studied BCK-sequences and finitely presented BCK-modules. The paper organized as follows; in section 2, we give general theory of BCK-algebras and BCK-modules. In section 3, we study the exactness of modules of homomorphisms between BCK-modules.

2. Preliminaries

In this section we introduce the background informations about BCK-algebras, BCK-modules and X-homomorphisms.

Definition 2.1. [8] A BCK-algebra is an algebra (X; *, 0) of type (2,0) which satisfies the following axioms: for all $p,q,r \in X$,

- 1. ((p*q)*(p*r))*(r*q) = 0,
- 2. (p*(p*q))*q=0,
- 3. (p*p) = 0,
- 4. p*q = 0 = q*p implies p = q.
- 5. 0*p = 0.

Moreover, the relation \leq can be defined as $p \leq q$ if and only if p * q = 0, for any $p, q \in X$, is a partial-order on X which is called *BCK-ordering* of X.

Definition 2.2. [6] Let (X; *, 0) be a BCK-algebra and M be an Abelian group under addition +, then M is said to be an (left) X-module, if there is a mapping $(x,m) \mapsto xm$ from $X \times M \to M$ such that it satisfies the following conditions for all $x, x_1, x_2 \in X$ and $m, m_1, m_2 \in M$:

1.
$$(x_1 \wedge x_2)m = x_1(x_2m)$$
,

2.
$$x(m_1+m_2)=xm_1+xm_2$$
,

3. 0m = 0

where, $x_1 \wedge x_2 = x_2 * (x_2 * x_1)$. If X is bounded with maximal element 1, then

4.
$$1m = m$$
.

The right X-module can be defined similarly. This X-module M is an BCK-module. If a subgroup N of the X-module M is also an X-module, then N is called a submodule.

Let M and N be X-modules. A mapping $\phi: M \to N$ is said to be an X-homomorphism, if for any $x \in X$ and $m_1, m_2 \in M$ the followings hold:

- 1. $\phi(m_1+m_2) = \phi(m_1) + \phi(m_2)$,
- 2. $\phi(xm_1) = x\phi(m_1)$.

If ϕ is both injective and surjective, then ϕ is an *X*-isomorphism. We say *M* is isomorphic to *N* if ϕ is an *X*-isomorphism and denote it by $M \cong N$.

The bounded implicative BCK-algebras form a BCK-module over itself (Abujabal et al., 1994). This section devoted to the examples of BCK-modules.

Example 2.3. Let (X; *, 0) be a bounded implicative BCK-algebra with $X = \{0, x, y, 1\}$. Let $M = \{0, x\}$ be a subset of X. If we define addition operation + as $x + y = (x * y) \lor (y * x)$ and $xm = x \land m$ for all $x \in X$, $m \in M$, then M is an X-module. Cayley table of these operations are as follows:

*	0	x	у	1
0	0	0	0	0
х	х	0	х	0
У	у	у	0	0
1	1	у	x	0

+	0	x
0	0	x
х	х	0

Λ	0	x
0	0	0
x	0	x
у	0	0
1	0	х

3. Exact BCK-sequences

Definition 3.1. [7] The sequence of X-module homomorphisms $M_1 \xrightarrow{f} M_2 \xrightarrow{g} M_3$ is said to be exact at M_2 , if Im(f) = Ker(g). A sequence of X-module homomorphisms, $M_1 \xrightarrow{f_1} M_2 \xrightarrow{f_2} \dots \xrightarrow{f_{n-1}} M_n$ is called exact sequence of X-modules, if $Im(f_i) = Ker(f_{i+1})$ for all $i \in \{1, 2, ..., n\}$.

Theorem 3.2. Let X be a BCK-algebra and K, L and M be X-modules. If A is an X-module and $0 \to K \xrightarrow{\psi} L \xrightarrow{\phi} M$ is exact, then

$$0 \to \operatorname{Hom}(A,K) \xrightarrow{\psi_*} \operatorname{Hom}(A,L) \xrightarrow{\phi_*} \operatorname{Hom}(A,M)$$

is an exact sequence of X-modules.

Proof. First we show that ψ_* is a monomorphism. Let $\theta: A \to K$ be a X-homomorphism with $\psi_*\theta = 0$. Since ψ is a monomorphism, then for any $a \in A$, the identity $\psi_*\theta(a) = 0$ implies that $\theta(a) = 0$. Thus $\theta = 0$. Hence ψ_* is a monomorphism. Let $b \in \operatorname{Im}(\psi_*) \subseteq \operatorname{Hom}(A, L)$. Then there exists $a \in \operatorname{Hom}(A, K)$ such that $\psi_*(a) = b = \psi a$. Since $\phi_*(b) = \phi_*(\psi a) = \phi \psi a = 0$, we have $b \in \operatorname{Ker}(\phi_*)$. Hence $\operatorname{Im}(\psi_*) \subseteq \operatorname{Ker}(\phi_*)$. Let $u \in \operatorname{Ker}(\phi_*) \subseteq \operatorname{Hom}(A, L)$. Then $\phi_*(u) = 0$ and $\phi u(a) = 0$ for any $a \in A$. The exactness of the sequence gives that $\operatorname{Ker}(\phi) = \psi(K)$. Thus there exists an $x \in K$ which satisfies $\psi(x) = u(a)$. Then v(a) = x defines a homomorphism $v: A \to K$ with $\psi_*(v) = u$. Thus $\operatorname{Ker}(\phi_*) \subseteq \operatorname{Im}(\psi_*)$. Therefore $\operatorname{Ker}(\phi_*) = \operatorname{Im}(\psi_*)$.

Theorem 3.3. Let X be a BCK-algebra and K, L and M be X-modules. If A is an X-module and $K \xrightarrow{\psi} L \xrightarrow{\phi} M \to 0$ is exact, then

$$0 \to \operatorname{Hom}(M,A) \xrightarrow{\phi_*} \operatorname{Hom}(L,A) \xrightarrow{\psi_*} \operatorname{Hom}(K,A)$$

is an exact sequence of X-modules.

Proof. First we show that ϕ_* is a monomorphism. Let $\theta: M \to A$ be an X-homomorphism and $\theta \in \text{Ker}(\phi_*)$. Since $0 = \phi_* \theta = \theta \phi$, this implies that $\theta(\phi(l)) = 0$ for all $l \in L$. Thus $\theta(m) = 0$ for all $m \in \text{Im}(\phi)$. The fact that ϕ is epimorphism implies that $\text{Im}(\phi) = M$ and $\theta = 0$. Hence ϕ_* is a monomorphism.

Let $b \in \text{Im}(\phi_*) \subseteq \text{Hom}(L,A)$. Then there exists $a \in \text{Hom}(M,A)$ such that $\phi_*(a) = b = a\phi$. Since $\psi_*(b) = \psi_*(a\phi)$ and $\psi_*(a\phi) = a\phi \psi = a0 = 0$, this implies that $b \in \text{Ker}(\psi_*)$. Hence $\text{Im}(\phi_*) \subseteq \text{Ker}(\psi_*)$. Let $u \in \text{Ker}(\psi_*) \subseteq \text{Hom}(L,A)$. Then $\psi_*(u) = 0 = u\psi$. Following the diagram,

$$K \xrightarrow{\psi} L \xrightarrow{\phi} M \to 0$$

$$u \downarrow \swarrow p$$

$$A$$

There exists $p \in \text{Hom}(M,A)$ such that $u = p\phi = \phi_*(p)$. This implies that $u \in \text{Im}(\phi_*)$. Thus $\text{Ker}(\psi_*) \subseteq \text{Im}(\phi_*)$. Therefore $\text{Ker}(\psi_*) = \text{Im}(\phi_*)$.

Definition 3.4. Let X be a BCK-algebra and M,N and K be X-modules. If the following sequence of X-modules is exact. Then

$$0 \to M \to N \to K \to 0$$

is called short exact sequence.

Theorem 3.5. Let X be a BCK-algebra and M,N and K be X-modules. If the short sequence of X-homomorphisms is exact;

$$0 \to M \overset{\psi}{\underset{\eta}{\rightleftarrows}} N \overset{\phi}{\underset{\theta}{\rightleftarrows}} K \to 0$$

then followings are equivalent;

- 1. There exists an X-homomorphism $\eta: N \to M$ such that $\eta \psi = 1_M$.
- 2. Submodule $Im(\psi)$ is a direct summand of N.
- 3. There exists an X-homomorphism $\theta: K \to N$ suct that $\phi \theta = 1_K$.

Moreover, we have $N \cong M \oplus K$.

Proof. $1 \Rightarrow 2$ Let $x \in N$ be any element. Since $\eta(x - \psi \eta(x)) = \eta(x) - ((\eta \psi)\eta(x)) = \eta(x) - \eta(x) = 0$, then we have $x - \psi \eta(x) \in \text{Ker}(\eta)$. This implies that $x = \psi(\eta(x)) + (x - \psi \eta(x)) \in \text{Im}(\psi) + \text{Ker}(\eta)$.

Let $\psi(m) \in \text{Im}(\psi) \cap \text{Ker}(\eta)$. Since $m = \eta \psi(m) = \eta(\psi(m)) = 0$, one can conclude that $\text{Im}(\psi) \cap \text{Ker}(\eta) = 0$. Hence $N = \text{Im}(\psi) \oplus \text{Ker}(\eta)$.

 $2\Rightarrow 3$ Let N' be a submodule of N and $N=\operatorname{Im}(\psi)\oplus N'$. Now since $N'\cap\operatorname{Ker}(\phi)=N'\cap\operatorname{Im}(\psi)=0$, the $\phi|_{N'}$ is a monomorphism. The fact that ϕ is a epimorphism implies that there exists x in N for every $y\in K$ such that $\phi(x)=y$. If we set $x=\psi(a)+b$ for $a\in M,b\in N'$. Then $y=\phi(x)=\phi(\psi(a)+b)=\phi\psi(a)+\phi(b)=\phi(b)$. This implies that $\phi|_{N'}$ is an epimorphism. Thus $\phi|_{N'}$ is an isomorphism. Since $\phi|_{N'}$ is an isomorphism, we can conclude that $\phi|_{N'}$ has an inverse $(\phi|_{N'})^{-1}:K\to N$ for $\theta:=(\phi|_{N'})^{-1}:K\to N$ then we have $\phi\theta=1_K$.

 $3 \Rightarrow 1$ Since $\phi(n - \theta\phi(n)) = \phi(n) - \phi(\theta\phi(n)) = 0$, we have $n - \theta\phi(n) \in \text{Ker}(\phi) = \text{Im}(\psi)$. Then there exists $m \in M$ such that $\psi(m) = n - \theta\phi(n)$. This m is unique, since ψ is a monomorphism. Set $\eta: N \to M$ and $\eta(n) = m$ with η is a homomorphism. The equality,

$$\psi(m) - \theta \phi(\psi(m)) = \psi(m) - \theta(\phi \psi(m)) = \psi(m) - \theta(0) = \psi(m)$$
, for every m in M .

holds, since $\phi \psi(n) = 0$. It follows that $\psi(m) = \psi(m) - \theta \phi(\psi(m))$, and combining this equality with $\psi(m) = n - \theta \phi(n)$, we can deduce that $\psi(m) = n$. Thus $\eta(\psi(m)) = m$, so we have $\eta \psi = 1_M$. Since ψ is a monomorphism, then $\text{Im}(\psi) \cong M$. Therefore, $N \cong M \oplus K$.

Acknowledgements

The authors would like to express their sincere thanks to the editor and the anonymous reviewers for their helpful comments and suggestions.

П

Funding

There is no funding for this work.

Availability of data and materials

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author's contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

References

- Y. Imai, K. Iseki, On axiom system of prepositional calculus, XIV, Pro Jap. Aced., 42 (1966), 19-22.
 K. Iseki, S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japonica, 21 (1978), 351-366.
 H. A. S. Abujabal, M. Aslam, A. B. Thaheem, On actions of BCK-algebras on groups, 4 (1994), 43-48.
 Z. Perveen, M. Aslam, A. B. Thaheem, On BCK-modules, Southeast Asian Bull. Math., 30 (2006), 317-329.
 I. Baig, M. Aslam, On certain BCK-modules, Southeast Asian Bull. Math., 34 (2010), 1-10.
 A. Kashif, M. Aslam, Homology theory of BCK-modules, Southeast Asian Bull. Math., 38 (2014), 61-72.
 S. M. Seyedjoula, A. Gilani, E. Arfa, Exact sequece in BCK-algebra, J. Inf. Optim. Sci., 41(4) (2020), 1153-1162.
 I. Meng, Y. B. Jun, BCK-Algebras, Kyugmoon Sa Co, Korea, 1994.
- [8] J. Meng, Y. B. Jun, BCK-Algebras, Kyugmoon Sa Co, Korea, 1994.