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Abstract. We introduce two new types of multifunctions, namely upper (lower) θp−continuous multifunc-
tions, between topological spaces. Besides characterising these multifunctions, we study some properties of upper
θp−continuous multifunctions.
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1. Introduction and Preliminaries

Throughout this paper, (∆, τ), (Λ, σ), and (Υ, ϕ) (or simply ∆, Λ, and Υ) always mean topological spaces on which
no separation axioms are assumed unless explicitly stated. By a multifunction M : ∆ −→ Λ, we mean a point-to-set
correspondence from ∆ into Λ, and we always assume that M(u) , ∅ for all u ∈ ∆. For a multifunction M : ∆ −→ Λ,
following [1,2] we shall denote the upper and lower inverse of a set W of Λ by M+(W) and M − (W), respectively, that
is, M+(W) = {u ∈ ∆ : M(u) ⊂ W} and M − (W) = {u ∈ ∆ : M(u) ∩ W , ∅}. For each U ⊂ ∆,M(U) =

⋃
u∈U M(u).

Then, M is said to be a surjection if M(∆) = Λ, or equivalently if for each v ∈ Λ there exists an u ∈ ∆ such that
v ∈ M(u). Moreover,M : ∆ −→ Λ is called upper semi continuous (resp. lower semi continuous) if M+(V) (resp.
M − (V)) is open in ∆ for every open set W of Λ. Let U be a subset of a space ∆. We denote the interior and the
closure of a set U by i(U) and c(U), respectively. A subset U is said to be preopen [6] (resp. α-open [9]) if U ⊂ i(c(U))
(resp. U ⊂ i(c(i(U)))). The complement of a preopen set is called preclosed [6]. The intersection of all preclosed sets
containing U is called the preclosure [5] of U and is denoted by pc(U). The preinterior of U is defined by the union
of all preopen sets contained in U and is denoted by pi(U). The family of all preopen sets of ∆ is denoted by po(∆).
We set po(∆, u) = {V : u ∈ V and V ∈ po(∆)}. A point u of U is called a θ-cluster [13] point of A if c(V) ∩ U , ∅ for
every open set V of ∆ containing u. The set of all θ-cluster points of U is called the θ-closure [13] of U and is denoted
by cθ(U). A subset U is said to be
θ-closed [13] if U = cθ(U). The complement of a θ-closed set is said to be θ-open. A point u of ∆ is called a

pre-θ-cluster [10] point of A if pcl(V) ∩ U , ∅ for every preopen set V of ∆ containing u. The set of all pre-θ-cluster
points of U is called the pre-θ-closure [ [10] of U and is denoted by pcθ(U). A subset U is said to be pre-θ-closed [10]
if U = pcθ(U). The complement of a pre-θ-closed set is said to be pre-θ-open. Alternatively, a set U of (∆, τ) is called
pre-θ-open [3] iff for each u ∈ U, there exists a preopen set W with u ∈ W such that pc(W) ⊂ U. The family of all
pre-θ-open sets of ∆ is denoted by pθo(X). We set pθo(∆, u) = {V : u ∈ V and V ∈ pθo(∆)}.
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Definition 1.1. A multifunction M : ∆ −→ Λ is said to be lower (upper) θ∗-continuous [8] at a point u0 ∈ ∆ if for each
open set W in Λ with W ∩ M(u0) , ∅ (resp. M(u0) ⊆ W ), i.e. u0 ∈ M−(W) (resp. u0 ∈ M+(W)), there exists an open
neighbourhood U of u0 such that u ∈ cl(U) =⇒ M(u) ∩W , ∅ (resp. u ∈ cl(U) =⇒ M(u) ⊆ W). The multifunction M
is said to be lower or upper θ∗-continuous on ∆ if M is respectively so at each point of ∆ .

Definition 1.2. A multifunction M : ∆ −→ Λ is said to be upper (lower) precontinuous [12] if for each u ∈ ∆ and
each open set W of Λ such that M(u) ⊂ W (resp. M(u) ∩W , ∅), there exists a preopen set U containing u such that
U ⊂ M+(W) (resp. U ⊂ M−(W)).

2. Upper and Lower θp−continuousMultifunctions

Definition 2.1. A multifunction M : ∆ −→ Λ is said to be:
(a) Upper θp−continuous at a point u ∈ ∆ if for each open set W of Λ such that M(u) ⊂ W, there exists U ∈ po(∆, u)

such that M(v) ⊂ W for every v ∈ pc(U);
(b) Lower θp−continuous at a point x ∈ ∆ if for each open set W of Λ such that M(u) ∩ W , ∅, there exists

U ∈ po(∆, u) such that M(v) ∩W , ∅ for every v ∈ pc(U);
(c) Upper (Lower) θp−continuous if M has this property at each point of ∆.

Theorem 2.2. For a multifunction M : ∆ −→ Λ, the following are equivalent:
(a) M is upper θp−continuous on ∆;
(b) for each point u in ∆ and each open set W in Λ containing M(u), there exists a pre-θ-open set U in ∆ containing

u such that M(U) ⊂ W;
(c) M+(W) is pre-θ-open in ∆ for any open set W of Λ;
(d) M−(K) is pre-θ-closed in ∆ for any closed set K of Λ;
(e) pcθ(M−(T )) ⊂ M−(c(T )) for any subset T of Λ.

Proof. (a)⇒(c): Let W be any open set of Λ and x ∈ M+(W). There exists U ∈ po(∆, u) such that M(v) ⊂ W for every
v ∈ pc(U). Therefore, u ∈ pc(U) ⊂ M+(W). This shows that M+(W) is pre-θ-open in ∆.

(c)⇒(d): It is clear from the fact that M+(Λ −W) = ∆-M−(W) for any subset W of Λ.
(d)⇒(e): Let W be any subset of Λ. Then c(U) is closed in Λ and hence M−(c(U)) is pre-θ-closed in ∆. Therefore,

we have pcθ(M−(U)) ⊂ M−(c(U)).
(e)⇒(a): Let u ∈ ∆ and W be any open subset of Λ such that M(u) ⊂ W. Since Λ − W is closed in Λ, we have

pcθ(M−(Λ-W)) ⊂ M−(Λ-W). Then M−(Λ-W) is pre-θ-closed in ∆. Since M−(Λ-W) = ∆ − M+(W), M+(W) is pre-θ-
open in ∆ and hence there exists U ∈ po(∆, u) such that pcl(U) ⊂ M+(W). This shows that M is upper θp−continuous.

(b)⇒(c): Let W be any open set of Λ and u ∈ M+(V) (i.e, M(u) ⊂ W). Then there exists U ∈ pθo(∆, u) such that
u ∈ U ⊂ M+(W). Since U is pre-θ-open in ∆, there exists G ∈ po(θo(∆, u) such that u ∈ pcl(G) ⊂ U ⊂ M+(W). Hence
M+(W) is pre-θ-open in ∆.

(c)⇒(b): Let u ∈ ∆ and W be any open set ofΛ such that M(u) ⊂ W. Then M+(W) is pre-θ-open in ∆ and u ∈ M+(W).
Let U = M+(W). Then M(U) ⊂ W. □

Theorem 2.3. For a multifunction M : ∆ −→ Λ, the following are equivalent:
(a) M is lower θp−continuous on ∆;
(b) for each point u in ∆ and each open set W in Λ with u ∈ M−(W), there exists a pre-θ-open set U in ∆ containing

u such that U ⊂ M−(W);
(c) M−(W) is pre-θ-open in ∆ for any open set W of Λ;
(d) M+(K) is pre-θ-closed in X for any closed set K of Λ;
(e) pclθ(M+(T )) ⊂ M+(cl(T )) for any subset T of Λ.

Remark 2.4. For a multifunction M : ∆ −→ Λ, the following implications hold:
upper θ∗-continuity =⇒ upper θp−continuity =⇒ upper precontinuity
None of these implications is reversible as shown by the following examples.

Example 2.5. Let τc be the cofinite topology on R and σ = {{1, 2}, {3}, {1, 2, 3},Λ,∅} be a topology on Λ = {1, 2, 3, 4}.
Define a multifunction M : (R, τc) −→ (Λ, σ) as follows:

M(u) =
{
{1, 2, 3} if u ∈ Q
{4} if u ∈ R − Q.
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We have M+({1, 2}) = ∅,+ (M{3}) = ∅ and M+({1, 2, 3}) = Q. Then, M is upper θp−continuous but not upper
θ∗-continuous, since Q is pre-θ-open and is not θ-open in (R, τc).

Example 2.6. Let ∆ = {a, b, c},Λ = {1, 2, 3}, τ = {{a}, {a, b}, {a, c},∆,∅} and σ = {{1}, {2}, {1, 2},Λ,∅}.Define a
multifunction M : (∆, τ) −→ (Λ, σ) as follows:

M(u) =


{1, 2} if u=a,
{3} if u=b,
{2, 3} if u=c.

Then M+({1}) = ∅, M+({2}) = ∅ and M+({1, 2}) = {a}. M is upper precontinuous but not upper θp−continuous, since
{a} is preopen in (∆, τ) while not pre-θ-open in (∆, τ).

Lemma 2.7 ( [7]). Let U and V be subsets of a space (∆, τ).
(1) If U ∈ po(∆) and V is semi-open in X, then (A ∩ V) ∈ po(V).
(2) If A ∈ po(V) and V ∈ po(∆), then A ∈ po(∆).

Lemma 2.8 ( [4]). Let U and V be subsets of a space ∆ such that U ⊂ V ⊂ ∆. Let pcV (U) denote the preclosure of U
in the subspace V.

(1) If is V semi-open in ∆, then pcV (U) ⊂ pc(U).
(2) If A ∈ po(V) and V ∈ po(∆), then pc(U) ⊂ pcV (U).

Theorem 2.9. Let {Uλ : λ ∈ Ω } be an α-open cover of a space ∆. Then, a multifunction M : (∆, τ) −→ (Λ, σ) is upper
(lower) θp−continuous if and only if the restriction M | Uλ : Uλ −→ Y is upper (lower) θp−continuous for each λ ∈ Ω.

Proof. We prove only the case for M upper θp−continuous.
(Necessity) Let λ ∈ Ω, u ∈ Uλ , W is an open set in Λ such that (M | Uλ)(u) ⊂ W. Since M is upper θp−continuous

and M(u) = (M | Uλ)(u), there exists a preopen set G in ∆ containing x such that pc(G) ⊂ M+(W). Set U = Uλ ∩ G.
Then, U ∈ po(Uλ, u) and pcUλ (U) ⊂ pc(U). Therefore, we have (M | Uλ)(pcUλ (U)) = M(pcUλ (U)) ⊂ M(pc(U)) ⊂ W.
Hence M | Uλ : Uλ −→ Λ is upper θp−continuous for each λ ∈ Ω.

(Sufficiency) Let u ∈ ∆ and W be any open set in Λ such that M(u) ⊂ W. Then, there exists some λ ∈ Ω such
that u ∈ Uλ. Since M | Uλ is upper θp−continuous, and (M | Uλ)(u) = M(u), there exists U ∈ po(Uλ, u) such that
pcUλ (U) ⊂ (M | Uλ)+(E). By Lemma 2 , we have U ∈ po(∆) and pc(U) ⊂ pcUλ (U) such that M(pc(U)) ⊂ W. Thus, M
is upper θp−continuous. □

Theorem 2.10. Let (X, τ), (Y, σ) and (Z, φ) be topological spaces. Let F1 : X −→ Y and F2 : Y −→ Z be multifunctions.
If F1 : X −→ Y is an upper (lower) θp− continuous multifunction and F2 : Y −→ Z is an upper (lower) semi-continuous
multifunction, then F = F2 ◦ F1 : X −→ Z is an upper (lower) θp−continuous multifunction.

Proof. We prove only the case for F upper θp−continuous.
Let G ⊂ Z be any open set. From the definition of F2 ◦ F1, we have F+(G) = (F2 ◦ F1)+(G) = F+1 (F+2 (G)). Since

F2 is an upper semi-continuous multifunction, F+2 (G) is open in Y . Since F1 is an upper θp−continuous multifunction,
F+1 (F+2 (G)) is a pre-θ-open set in X. This shows that, F = F2 ◦ F1 is an upper θp−continuous multifunction. □

Theorem 2.11. If M : ∆ −→ Λ is an upper θp−continuous multifunction such that M(x) compact for each x ∈ ∆ and
Λ is Hausdorff, then a set A = {(x, y) ∈ ∆ × ∆ : M(x) ∩ M(y) , ∅} is a pre-θ-closed set in ∆ × ∆.

Proof. Let (x, y) ∈ (∆ × ∆) − A. Then, M(x) ∩ M(y) = ∅. Since M(x) and M(y) are compact and Λ is Hausdorff,
there exist disjoint open sets V1 and V2 of Λ such that M(x) ⊂ V1 and M(y) ⊂ V2. Since M is upper θp−continuous,
there exist U1 ∈ PO(∆, x), U2 ∈ PO(∆, y) such that x ∈ pCl(U1) ⊂ M+(V1) and y ∈ pCl(U2) ⊂ M+(V2). Since
pCl(U1 × U2) ∩ A ⊂ (pCl(U1) × pCl(U2)) ∩ A and (pCl(U1) × pCl(U2)) ∩ A = ∅, we have

pCl(U1 × U2) ∩ A = ∅.

Since U1 × U2 is preopen in ∆ × ∆ and (x, y) ∈ pCl(U1 × U2) ⊂ ∆ − A, it follows that A is pre-θ-closed in ∆ × ∆. □

Let A be a subset of a space (∆, τ). Then, M : (∆, τ) −→ (A, τA) is called a retracting multifunction [14] if x ∈ M(x)
for each x ∈ A.

Theorem 2.12. Let M be an upper θp−continuous multifunction of a Hausdorff space (∆, τ) into itself. If M(x) is
compact for each x ∈ ∆, then the set A = {x : x ∈ M(x)} is a pre-θ-closed subset.
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Proof. Let x0 ∈ pClθ(A). Suppose that x0 < A, i.e. x0 < M(x0). Since (∆, τ) is Hausdorff and M(x) is compact, there
exist disjoint open sets U and V such that x0 ∈ U and M(x0) ⊆ V.Since U,V are open, we also have pCl(U) ∩ V = ∅.
Let W ∈ PO(∆, x0) such that pCl(W) ⊂ M+(V).We have pCl(U ∩W) ∩ A , ∅. Let z∈ pCl(U ∩W) ∩ A. Since z ∈ A,
z ∈ M(z). Also, z ∈ pCl(W) and z ∈ pCl(U). This shows that pCl(W) ⊈ M+(V), which is a contradiction. Thus, x0 ∈ A
and A is pre-θ-closed. □

Corollary 2.13. Let A be a subset of (∆, τ) and M : (∆, τ) −→ (A, τA) an upper θp−continuous retracting multifunction
such that M(x) is compact for each x ∈ A. If (∆, τ) is Hausdorff, then A is pre-θ-closed.

Definition 2.14. A space X is said to be pre-Urysohn [11] if for each pair of distinct points x and y in X, there exist
U ∈ PO(X, x) and V ∈ PO(X, y) such that pCl(U) ∩ pCl(V) = ∅.

Theorem 2.15. Let M : ∆ −→ Λ be an upper θp−continuous multifunction such that M(x) is compact for each x ∈ ∆
and let M(x) ∩ M(y) = ∅ for each pair of distinct points x, y ∈ ∆. If Λ is Hausdorff, then ∆ is pre-Urysohn.

Proof. Let x and y be any two distinct points in ∆. Then, M(x) ∩ M(y) = ∅. Since Λ is Hausdorff and M(x) and M(y)
are compact, there exist disjoint open sets V1,V2 such that M(x) ⊂ V1 and M(y) ⊂ V2. Since M is upper θp−continuous,
there exist U1 ∈ PO(∆, x) and U2 ∈ PO(∆, y) such that x ∈ pCl(U1) ⊂ M+(V1), y ∈ pCl(U2) ⊂ M+(V2). Then, we have
pCl(U1) ∩ pCl(U2) = ∅. This shows that, ∆ is pre-Urysohn. □

Definition 2.16. A space X is said to be p-closed [4] if every cover of X by preopen sets has a finite subcover whose
preclosures cover X.

Theorem 2.17. Let M : ∆ −→ Λ be an upper θp−continuous surjective multifunction such that M(x) is compact for
each x ∈ ∆. If ∆ is p-closed, then Λ is compact.

Proof. Let {Vi : i ∈ I} be an open cover of Λ. Since M(x) is compact for each x ∈ ∆, there exist a finite subset I(x) of I
such that

M(x) ⊂
⋃
{Vi : i ∈ I(x)}.

Put
V(x) =

⋃
{Vi : i ∈ I(x)}.

Since M is an upper θp−continuous multifunction, there exists a preopen set U(x) of∆ containing x such that pCl(U(x)) ⊂
M+(V(x)). Then, the family {U(x) : x ∈ ∆} is a preopen cover of ∆ and since ∆ is p-closed, there exist a finite number
of points, say, x1, ..., xn in ∆ such that ∆ =

⋃
{pCl(U(xi)) : i = 1, ..., n}. Hence, we have

M(X) = Λ = M(
n⋃

i=1

pCl(U(xi))) =
n⋃

i=1

F(pCl(U(xi))) ⊂
n⋃

i=1

V(xi) =
n⋃

i=1

⋃
i∈I(xi)

Vi.

This shows that Λ is compact. □
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[13] Velićko, N.V., H-closed topological spaces, Amer. Math. Soc. Transl., 78(1968), 103–118.
[14] Whyburn, G.T., Retracting multifunctions, Proc. Nat. Acad. Sci. U.S.A., 59(1968), 343–348.


	Upper and Lower p-continuous Multifunctions. By 

