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Abstract 

 

In this paper, we study to approximate fixed points of Suzuki generalized multivalued nonexpansive 

mappings by using a three-step iterative scheme (1.1) introduced in [17]. We establish some weak and 

strong convergence results for mappings satisfying condition (𝐶) with the newly proposed iterative 

scheme in the framework of uniformly convex real Banach spaces. 
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1. Introduction and preliminaries 
 

The study of fixed points for multivalued contractive and nonexpansive mappings using the 

Hausdorff metric was initiated by Markin [2] and Nadler [1]. Since classical fixed point 

theorems for single-valued nonexpansive mappings are extended to multivalued nonexpansive 

mappings, fixed point theory for multivalued nonexpansive mappings developed rapidly. The 

theory of multivalued mappings has applications in control theory, convex optimization, 

differential equations and economics. 

 

Suzuki [15] established generalized nonexpansive mappings, which satisfy a conditon on 

mapping called condition (𝐶). Suzuki showed that this condition (𝐶) is weaker than 

nonexpansiveness and stronger than quasi-nonexpansiveness. Suzuki's generalized 

nonexpansive mappings have been studied some researchers ([3], [4], [5], [8], [9], [10], [11], 

[12], [13], [16]). 
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Let 𝐷 be a nonempty subset of a Banach space 𝐸. We denote 𝐶𝐵(𝐷) and 𝐶(𝐷) the collection 

of all nonempty closed bounded subsets and nonempty compact subsets of 𝐷, respectively. The 

Hausdorff distance 𝐻 on 𝐶𝐵( 𝐸) is defined by 

 

𝐻(𝐴, 𝐶):= 𝑚𝑎𝑥{𝑠𝑢𝑝𝑑𝑖𝑠𝑡
𝑎∈𝐴

(𝑎, 𝐶) , 𝑠𝑢𝑝𝑑𝑖𝑠𝑡
𝑦∈𝐶

(𝑐, 𝐴)}    𝑓𝑜𝑟 𝐴, 𝐶 ∈ 𝐶𝐵(𝐸) 

 

where 𝑑𝑖𝑠𝑡(𝑎, 𝐶) = 𝑖𝑛𝑓{‖𝑎 − 𝑐‖: 𝑐 ∈ 𝐶}. 
 

A multivalued mapping 𝑇:𝐷 → 𝐶𝐵(𝐷) is said to be nonexpansive if 

 

𝐻(𝑇𝑥, 𝑇𝑦) ≤ ‖𝑥 − 𝑦‖,            ∀𝑥, 𝑦 ∈ 𝐷 

 

A point 𝑥 ∈ 𝐷 is called a fixed point of 𝑇 if 𝑥 ∈ 𝑇(𝑥). In this paper, 𝐹(𝑇) shows that the set of 

fixed points of 𝑇. 

 

Let 𝐶 ≠ ∅ ⊂  𝐸 and let {𝑦𝑛} be a bounded sequence in 𝐸. For each 𝑦 ∈  𝐸, the asymptotic radius 

of {𝑦𝑛} at 𝑦 is defined by 

 

𝑟(𝑦, {𝑦𝑛}) = 𝑙𝑖𝑚𝑠𝑢𝑝𝑛→∞‖𝑦𝑛  − 𝑦‖; 
 

the asymptotic radius of {𝑦𝑛}  relative to 𝐶 is a 𝑟 > 0 such that 

 

𝑟 = 𝑟(𝐶, {𝑦𝑛}) = 𝑖𝑛𝑓{𝑟(𝑦, {𝑦𝑛}): 𝑦 ∈ 𝐶}; 
 

and the asymptotic center of {𝑦𝑛} relative to 𝐶 is defined by set 𝐴, where 

 

𝐴 = 𝐴(𝐶, {𝑦𝑛}) = {𝑦 ∈ 𝐶: 𝑟(𝑦, {𝑦𝑛}) = 𝑟}. 
 

If 𝐸 is a uniformly convex Banach space, 𝐴(𝐶, {𝑦𝑛}) consists of exactly one point. Unless 

otherwise stated, in the definitions we will use, 𝐸 denotes a uniformly convex Banach space 

and 𝐷 denotes a nonempty subset of 𝐸.  

 

Abkar and Eslamian [3] modified Suzuki’s condition to incorporate multivalued mappings.  

They called these mappings generalized multivalued nonexpansive mappings in the sense of 

Suzuki or multivalued mappings satisfying the condition (𝐶). Some another generalizations for 

multivalued mappings are available in literature ([3], [18]). Sadhu and et al. [18] introduced a 

new class of nonexpansive multivalued mappings, called generalized 𝛼-nonexpansive 

mappings, which properly contains the class of Suzuki-type mapping. 
 

Over the years many researchers have developed several iterative processes for solving fixed 

point problems for different operators but the researches are still on going in order to develop 

a faster and more efficient iterative algorithms. Some researchers introduced some different 

iteration methods for finding the fixed points of a multivalued nonexpansive mappings ([3], [4], 

[5], [7], [9], [11], [13], [16], [17], [20]). Kaplan and Kopuzlu [17] introduced a new three-step 

iterative scheme (1.1) to approximate a common fixed point of multivalued nonexpansive 

mappings in a uniformly convex real Banach space. Mann, Ishikawa, Noor, S- iteration, SP, 

Abbas, Thakur New and M-iteration processes are few of the most popular methods defined to 

approximating fixed points of multivalued mappings. Thakur proved in [5] that the Thakur-

New iterative process is fast in terms of convergence when compared to Picard, Mann, 
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Ishikawa, Noor, Agarwal and Abbas iteration processes for Suzuki generalized nonexpansive 

mappings. In 2018, Ullah and Arshad [19] proved that, compared to all the above mentioned 

iteration processes, M-iteration process have high speeds of convergence for Suzuki generalized 

nonexpansive mappings.  

 

We now state Suzuki’s condition for multivalued mappings as follows. 

 

Definition 1.1 [7] A multivalued mapping 𝑇: 𝐸 → 𝐶𝐵(𝐸) satisfies the condition (𝐶) provided   
1

2
𝑑𝑖𝑠𝑡(𝑥, 𝑇𝑥) ≤ ‖𝑥 − 𝑦‖ ⇒ 𝐻(𝑇𝑥, 𝑇𝑦) ≤ ‖𝑥 − 𝑦‖   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦 ∈ 𝐸. 

 

Lemma 1.2 [9] Let 𝑇: 𝐸 → 𝐶𝐵(𝐸) be a multivalued nonexpansive mapping, then 𝑇 satisfies 

the condition (𝐶). 

 

Lemma 1.3 [9] Let 𝑇: 𝐸 → 𝐶𝐵(𝐸) be a multivalued mapping which satisfies the condition (𝐶) 

and has a fixed point. Then 𝑇 is a quasi-nonexpansive mapping. 

 

Lemma 1.4 [7] If 𝑇:𝐷 → 𝑃(𝐷) satisfies the condition (𝐶), then  

𝐻(𝑇𝑥, 𝑇𝑦) ≤ 3𝑑𝑖𝑠𝑡(𝑥, 𝑇𝑥) + ‖𝑥 − 𝑦‖,    ∀𝑥, 𝑦 ∈ 𝐷. 
 

Lemma 1.5 [15] Let 𝐷 be a weakly compact convex subset of 𝐸. Let 𝑇 be a mapping on 𝐷. If 

𝑇 satisfies condition (𝐶), so 𝑇 has a fixed point.  

 

Lemma 1.6 [15] Let 𝑇 be a mapping on a subset 𝐷 of a Banach space 𝐸 with the Opial property. 

Assume that 𝑇 satisfies condition (𝐶). If {𝜘𝑛} ⇀ 𝑧 and 𝑙𝑖𝑚𝑛→∞‖𝜘𝑛 − 𝑇𝜘𝑛‖ = 0, then 𝑇(𝑧) =
𝑧. 

 

We study with the iteration process (1.1) introduced in [17] as an alternative to all the above 

mentioned iteration processes to approximate the fixed points of Suzuki generalized 

multivalued nonexpansive mappings. We prove some weak and strong convergence results 

using iterative scheme (1.1) for Suzuki-generalized multivalued nonexpansive mappings in 

uniformly convex Banach space 𝐸. 

 

Let 𝐷 be a nonempty closed convex subset of 𝐸 and let 𝑇:𝐷 → 𝐶𝐵(𝐷) be a multivalued 

mapping, 

 

{
 
 

 
 

𝜘1 ∈ 𝐸,

 𝜘𝑛+1 = (1 − 𝑎𝑛)𝑣𝑛 + 𝑎𝑛𝑤𝑛
𝑦𝑛 = (1 − 𝑏𝑛)𝑢𝑛 + 𝑏𝑛𝑣𝑛
𝑧𝑛 = (1 − 𝑐𝑛)𝜘𝑛 + 𝑐𝑛𝑢𝑛

                                 

                                                               (1.1) 

 

for all 𝑛 ≥ 1, where {𝑎𝑛}, {𝑏𝑛} and {𝑐𝑛} are real sequences in (0,1) and 𝑣𝑛 ∈ 𝑇(𝑧𝑛), 𝑢𝑛 ∈
𝑇(𝜘𝑛) and 𝑤𝑛 ∈ 𝑇(𝑦𝑛). 
 

Lemma 1.7 [14] Let 𝐸 be a uniformly convex Banach space and 0 < 𝑎 ≤ 𝑘𝑛 ≤ 𝑏 < 1 for all 

𝑛 ∈ 𝑁. Assume that {𝜘𝑛} and {𝑦𝑛} are sequences of 𝐸 such that 𝑙𝑖𝑚𝑠𝑢𝑝𝑛→∞‖𝜘𝑛‖ ≤ 𝑙, 
𝑙𝑖𝑚𝑠𝑢𝑝𝑛→∞‖𝑦𝑛‖ ≤ 𝑙 and 𝑙𝑖𝑚𝑛→∞‖𝑘𝑛𝜘𝑛 + (1 − 𝑘𝑛)𝑦𝑛‖ = 𝑙 for some 𝑙 ≥ 0, then 

𝑙𝑖𝑚𝑛→∞‖𝜘𝑛 − 𝑦𝑛‖ = 0. 
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2. Main results 
 

We start with the following lemmas. 

 

Lemma 2.1 Let 𝐷 be nonempty closed convex subset of a uniformly convex Banach space 𝐸. 

Let 𝑇: 𝐷 → 𝐶𝐵( 𝐷) be a mapping satisfying the condition (𝐶) with 𝐹(𝑇) ≠ ∅. Let the sequence 
{𝜘𝑛} be generated by (1.1). Then 𝑙𝑖𝑚𝑛→∞‖𝜘𝑛 − 𝜘

∗‖ exists for all  𝜘∗ ∈ 𝐹(𝑇). 
 

Proof: Let 𝜘∗ ∈ 𝐹(𝑇) and 𝑧 ∈  𝐷, as 𝑇 satisfies condition (𝐶), 

 
1

2
‖𝜘∗ − 𝑇(𝜘∗)‖ = 0 ≤ ‖𝜘∗ − 𝑧‖implies that 𝐻(𝑇(𝜘∗), 𝑇(𝑧)) ≤ ‖𝜘∗ − 𝑧‖. 

 

From (1.1), we have 

‖𝑧𝑛 − 𝜘
∗‖ =  ‖(1 − 𝑐𝑛)𝜘𝑛 + 𝑐𝑛𝑢𝑛 − 𝜘

∗‖ 

                                                            ≤ (1 − 𝑐𝑛)‖𝜘𝑛 − 𝜘
∗‖ + 𝑐𝑛‖𝑢𝑛 − 𝜘

∗‖  
                                                            ≤ (1 − 𝑐𝑛)‖𝜘𝑛 − 𝜘

∗‖ + 𝑐𝑛𝑑𝑖𝑠𝑡(𝑢𝑛, 𝑇𝜘
∗) 

                                                            ≤ (1 − 𝑐𝑛)‖𝜘𝑛 − 𝜘
∗‖ + 𝑐𝑛𝐻(𝑇(𝑥𝑛), 𝑇(𝜘

∗)) 

                                                            ≤ (1 − 𝑐𝑛)‖𝜘𝑛 − 𝜘
∗‖ + 𝑐𝑛‖𝜘𝑛 − 𝜘

∗‖          

                                                            = ‖𝜘𝑛 − 𝜘
∗‖                                                     (2.1)                      

   and  

‖𝑦𝑛 − 𝜘
∗‖ =  ‖(1 − 𝑏𝑛)𝑢𝑛 + 𝑏𝑛𝑣𝑛 − 𝜘

∗‖ 

                                                            ≤ (1 − 𝑏𝑛)‖𝑢𝑛 − 𝜘
∗‖ + 𝑐𝑛‖𝑣𝑛 − 𝜘

∗‖  
                                                            ≤ (1 − 𝑏𝑛)𝑑𝑖𝑠𝑡(𝑢𝑛, 𝑇(𝜘

∗)) + 𝑐𝑛𝑑𝑖𝑠𝑡(𝑣𝑛, 𝑇(𝜘
∗)) 

                                                            ≤ (1 − 𝑏𝑛)𝐻(𝑇(𝑥𝑛), 𝑇(𝜘
∗)) + 𝑏𝑛𝐻(𝑇(𝑧𝑛), 𝑇(𝜘

∗)) 

                                                             ≤ (1 − 𝑏𝑛)‖𝜘𝑛 − 𝜘
∗‖ + 𝑏𝑛‖𝑧𝑛 − 𝜘

∗‖                   

                                                             ≤ (1 − 𝑏𝑛)‖𝜘𝑛 − 𝜘
∗‖ + 𝑏𝑛‖𝜘𝑛 − 𝜘

∗‖    

                                                              = ‖𝜘𝑛 − 𝜘
∗‖                                                    (2.2)                      

and 

‖𝑥𝑛+1 − 𝜘
∗‖ =  ‖(1 − 𝑎𝑛)𝑣𝑛 + 𝑎𝑛𝑤𝑛 − 𝜘

∗‖ 

                                                            ≤ (1 − 𝑎𝑛)‖𝑣𝑛 − 𝜘
∗‖ + 𝑐𝑛‖𝑤𝑛 − 𝜘

∗‖  
                                                            ≤ (1 − 𝑎𝑛)𝑑𝑖𝑠𝑡(𝑣𝑛, 𝑇(𝜘

∗)) + 𝑎𝑛𝑑𝑖𝑠𝑡(𝑤𝑛, 𝑇(𝜘
∗)) 

                                                            ≤ (1 − 𝑎𝑛)𝐻(𝑇(𝑧𝑛), 𝑇(𝜘
∗)) + 𝑎𝑛𝐻(𝑇(𝑦𝑛), 𝑇(𝜘

∗)) 

                                                             ≤ (1 − 𝑎𝑛)‖𝑧𝑛 − 𝜘
∗‖ + 𝑎𝑛‖𝑦𝑛 − 𝜘

∗‖                  

                                                             = ‖𝜘𝑛 − 𝜘
∗‖.                                                              (2.3) 

 

Using (2.1), (2.2) and (2.3), we have 

 
‖𝑥𝑛+1 − 𝜘

∗‖ ≤  (1 − 𝑎𝑛)‖𝑧𝑛 − 𝜘
∗‖ + 𝑎𝑛‖𝑦𝑛 − 𝜘

∗‖ = ‖𝜘𝑛 − 𝜘
∗‖. 

 

Thus {‖𝜘𝑛 − 𝜘
∗‖} is bounded and nonincreasing sequence, which implies 𝑙𝑖𝑚𝑛→∞‖𝜘𝑛 − 𝜘

∗‖ 

exists for any 𝜘∗ ∈ 𝐹(𝑇). 
 

Lemma 2.2 Let 𝐷 be nonempty closed convex subset of a uniformly convex real Banach space 

𝐸. Let 𝑇: 𝐷 → 𝐶𝐵( 𝐷) be a mapping satisfying the condition (𝐶). Let the sequence {𝜘𝑛} be 

generated by (1.1). Assume that {𝑎𝑛}, {𝑏𝑛} and {𝑐𝑛} are real sequences in [𝑎, 𝑏] ⊂ (0,1) with 

0 < 𝑎 ≤ 𝑏 < 1. Then 𝐹(𝑇) ≠ ∅ if and only if {𝜘𝑛} is bounded and  

𝑙𝑖𝑚𝑛→∞𝑑𝑖𝑠𝑡 (𝜘𝑛 , 𝑇(𝜘𝑛 )) = 0. 
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Proof: Let 𝜘∗ ∈  𝐹(𝑇). By Lemma 2.1, 𝑙𝑖𝑚𝑛→∞‖𝜘𝑛 − 𝜘
∗‖ exists and {𝜘𝑛} is bounded. Put for 

some 𝑐 ≥ 0. Let 

 

𝑙𝑖𝑚𝑛→∞‖𝜘𝑛 − 𝜘
∗‖ = 𝑐.                                                         (2.4) 

 

From (2.1) and (2.4), we get  

 

                             𝑙𝑖𝑚𝑠𝑢𝑝𝑛→∞‖𝑧𝑛 − 𝜘
∗‖ ≤ 𝑙𝑖𝑚𝑠𝑢𝑝𝑛→∞‖𝜘𝑛 − 𝜘

∗‖ = 𝑐.                            (2.5) 

 

Similarly, from (2.2) and (2.4), we obtain 

 

                            𝑙𝑖𝑚𝑠𝑢𝑝𝑛→∞‖𝑦𝑛 − 𝜘
∗‖ ≤ 𝑙𝑖𝑚𝑠𝑢𝑝𝑛→∞‖𝜘𝑛 − 𝜘

∗‖ = 𝑐.                             (2.6) 

 

Also, 

 

𝑙𝑖𝑚𝑠𝑢𝑝𝑛→∞‖𝑢𝑛 − 𝜘
∗‖ ≤ 𝑙𝑖𝑚𝑠𝑢𝑝𝑛→∞‖𝑢𝑛 − 𝑇(𝜘

∗)‖ 

≤ 𝑙𝑖𝑚𝑠𝑢𝑝𝑛→∞𝐻(𝑇(𝜘𝑛), 𝑇(𝜘
∗)) 

                                                                     ≤ 𝑙𝑖𝑚𝑠𝑢𝑝𝑛→∞‖𝜘𝑛 − 𝜘
∗‖ = 𝑐                         (2.7) 

 

so 𝑙𝑖𝑚𝑠𝑢𝑝𝑛→∞‖𝑢𝑛 − 𝜘
∗‖ ≤ 𝑐. By Lemma 1.2, we have 

 

                         𝑙𝑖𝑚𝑠𝑢𝑝𝑛→∞‖𝑇(𝜘𝑛) − 𝜘
∗‖ ≤ 𝑙𝑖𝑚𝑠𝑢𝑝𝑛→∞‖𝜘𝑛 − 𝜘

∗‖ = 𝑐.                          (2.8)  

 

On the other hand, 

 

‖𝑦𝑛 − 𝜘
∗‖ = ‖(1 − 𝑏𝑛)𝑢𝑛 + 𝑏𝑛𝑣𝑛 − 𝜘

∗‖ 

≤ (1 − 𝑏𝑛)‖𝜘𝑛 − 𝜘
∗‖ + 𝑏𝑛‖𝑧𝑛 − 𝜘

∗‖ 

 

which implies that 

 
‖𝑦𝑛 − 𝜘

∗‖ − ‖𝜘𝑛 − 𝜘
∗‖

𝑏𝑛
≤ ‖𝑧𝑛 − 𝜘

∗‖ − ‖𝜘𝑛 − 𝜘
∗‖. 

 

Then 

 

‖𝑦𝑛 − 𝜘
∗‖ − ‖𝜘𝑛 − 𝜘

∗‖ ≤
‖𝑦𝑛 − 𝜘

∗‖ − ‖𝜘𝑛 − 𝜘
∗‖

𝑏𝑛
≤ ‖𝑧𝑛 − 𝜘

∗‖ − ‖𝜘𝑛 − 𝜘
∗‖. 

 

So, we obtain  

 

                                           ‖𝑦𝑛 − 𝜘
∗‖ ≤ ‖𝑧𝑛 − 𝜘

∗‖.                                                     (2.9) 

 

If we apply liminf to inequality (2.9), we get 

 

                                                   𝑐 ≤ 𝑙𝑖𝑚𝑖𝑛𝑓𝑛→∞‖𝑧𝑛 − 𝜘
∗‖.                                               (2.10) 

 

By (2.5) and (2.10), we get 

 

𝑙𝑖𝑚𝑛→∞‖(1 − 𝑐𝑛)(𝜘𝑛 − 𝜘
∗) + 𝑐𝑛(𝑢𝑛 − 𝜘

∗)‖ = 𝑙𝑖𝑚𝑛→∞‖𝑧𝑛 − 𝜘
∗‖ = 𝑐.                         (2.11) 
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From (2.4), (2.7), (2.11) and Lemma 1.7, we obtain that  

 

𝑙𝑖𝑚𝑛→∞‖𝜘𝑛−𝑢𝑛‖ = 𝑙𝑖𝑚𝑛→∞𝑑𝑖𝑠𝑡(𝜘𝑛, 𝑇(𝜘𝑛)) = 0.  

 

Inversely, assume that {𝜘𝑛} is bounded and 𝑙𝑖𝑚𝑛→∞𝑑𝑖𝑠𝑡(𝜘𝑛, 𝑇(𝜘𝑛)) = 0. Let 𝜘∗ ∈

𝐴(𝐶, {𝜘𝑛}). By Lemma 1.4, we have 

 

𝑟(𝑇(𝜘∗), {𝜘𝑛}) = 𝑙𝑖𝑚𝑠𝑢𝑝𝑛→∞‖𝜘𝑛 − 𝑇(𝜘
∗)‖   

≤  𝑙𝑖𝑚𝑠𝑢𝑝𝑛→∞3𝑑𝑖𝑠𝑡(𝑇(𝜘𝑛), 𝜘𝑛)) + ‖𝜘𝑛 − 𝜘
∗‖) 

= 𝑙𝑖𝑚𝑠𝑢𝑝𝑛→∞‖𝜘𝑛 − 𝜘
∗‖ 

=  𝑟(𝜘∗, {𝜘𝑛}). 
 

It follows that 𝑇(𝜘∗) ∈ 𝐴(𝐶, {𝜘𝑛}). Due to the uniformly and convex properties of Banach 

space 𝐸, therefore 𝐴(𝐶, {𝜘𝑛}) is singleton. That is, 𝑇(𝜘∗) = 𝜘∗. It means 𝐹(𝑇) ≠ ∅. 

 

Definiton 2.3 A Banach space 𝐸 satisfies Opial property [6] if for each sequence {𝜘𝑛} in 𝐸 

which weakly converges to 𝜘 ∈ 𝐸 

 

                                𝑙𝑖𝑚𝑠𝑢𝑝𝑛→∞‖𝜘𝑛 − 𝜘‖ ≤ 𝑙𝑖𝑚𝑠𝑢𝑝𝑛→∞‖𝜘𝑛 − 𝑦‖           

 

holds, for all 𝑦 ∈ 𝐸 with 𝑦 ≠ 𝜘. 

 

Theorem 2.4 Let be a uniformly convex Banach space 𝐸 with Opial property. Let 𝐷, 𝑇 and 

{𝜘𝑛} be as in Lemma 2.2. Then {𝜘𝑛} converges weakly to a fixed point of 𝑇. 

 

Proof: Lemma 2.2 guarantees that {𝜘𝑛}  is bounded and 𝑙𝑖𝑚𝑛→∞𝑑𝑖𝑠𝑡(𝜘𝑛, 𝑇(𝜘𝑛)) = 0. Since 𝐸 

uniformly convex Banach space, we can assume that 𝜘𝑛 → 𝑎 weakly as n→∞ for some 𝑎 ∈ 𝐷. 

We prove that 𝑎 ∈ 𝐹(𝑇). Since 𝑇(𝑎) is compact, for every 𝑛 ≥ 1, we can select 𝑦𝑛 ∈ 𝑇(𝑎) such 

that ‖𝜘𝑛 − 𝑦𝑛‖ = 𝑑𝑖𝑠𝑡(𝜘𝑛, 𝑇(𝑎)). As 𝑇(𝑎) is compact, {𝑦𝑛} has a convergent subsequence 

{𝑦𝑛𝑘} with  𝑙𝑖𝑚𝑘→∞𝑦𝑛𝑘 = 𝑤 ∈ 𝑇(𝑎). By Lemma 1.4, we have 

 

𝑑𝑖𝑠𝑡(𝜘𝑛𝑘 , 𝑇(𝑎))  ≤  𝑑𝑖𝑠𝑡(𝜘𝑛𝑘 , 𝑇(𝜘𝑛𝑘)) + 𝐻(𝑇(𝜘𝑛𝑘), 𝑇(𝑎)) 

≤  3𝑑𝑖𝑠𝑡(𝜘𝑛𝑘 , 𝑇(𝜘𝑛𝑘)) + ‖𝜘𝑛𝑘 − 𝑎‖. 

 

Note that 

 

‖𝜘𝑛𝑘 − 𝑤‖  ≤  ‖𝜘𝑛𝑘 − 𝑦𝑛𝑘‖ + ‖𝑦𝑛𝑘 − 𝑤‖ 

≤  3𝑑𝑖𝑠𝑡(𝜘𝑛𝑘 , 𝑇(𝜘𝑛𝑘)) + ‖𝜘𝑛𝑘 − 𝑎‖ + ‖𝑦𝑛𝑘 − 𝑤‖, 

 

which implies that 

 

𝑙𝑖𝑚𝑠𝑢𝑝𝑛→∞‖𝜘𝑛𝑘 − 𝑤‖ ≤ 𝑙𝑖𝑚𝑠𝑢𝑝𝑛→∞‖𝜘𝑛𝑘 − 𝑎‖. 

 

As 𝐸 has Opial property, we can write that 𝑤 = 𝑎 ∈ 𝑇(𝑎). Consequently 𝑎 ∈ 𝐹(𝑇). Now, we 

prove that {𝜘𝑛} has a unique weak subsequentail limit in 𝐹(𝑇). To prove this, let 𝑤 and 𝑣 weak 

limits of the subsequence{𝜘𝑛𝑘} and{𝜘𝑛𝑚} of {𝜘𝑛}, respectively and 𝑣 ≠ 𝑤. Firstly, we claim 

that 𝑤 = 𝑣. On the contrary, we suppose that 𝑣 ≠ 𝑤, then from Lemma 2.2 and using Opial's 

property, we obtain 
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𝑙𝑖𝑚𝑛→∞‖𝜘𝑛 − 𝑤‖  = 𝑙𝑖𝑚𝑛𝑘→∞‖𝜘𝑛𝑘 −𝑤‖ 

                             < 𝑙𝑖𝑚𝑛𝑘→∞‖𝜘𝑛𝑘 − 𝑣‖ 

                          = 𝑙𝑖𝑚𝑛→∞‖𝜘𝑛 − 𝑣‖ 

                              < 𝑙𝑖𝑚𝑛𝑚→∞‖𝜘𝑛𝑚 − 𝑣‖ 

                                < 𝑙𝑖𝑚𝑛𝑚→∞‖𝜘𝑛𝑚 − 𝑤‖ 

                            = 𝑙𝑖𝑚𝑛→∞‖𝜘𝑛 − 𝑤‖ 

which is a contradiction. Hence, 𝑤 = 𝑣. Therefore, {𝜘𝑛} converges weakly to a fixed point of  

𝑇. 

 

Theorem 2.5 Let 𝐷 be a nonempty compact convex subset of  𝐸. Let 𝐸, 𝑇 and {𝜘𝑛} the same 

as in the Lemma 2.2. Then {𝜘𝑛} converges strongly to a fixed point of 𝑇 if and only if  

𝑙𝑖𝑚𝑖𝑛𝑓𝑛→∞𝑑𝑖𝑠𝑡(𝜘𝑛, 𝐹(𝑇)) = 0. 

 

Proof: By Lemma 1.5, 𝐹(𝑇) ≠ ∅, so by Lemma 2.2, we get 𝑙𝑖𝑚𝑛→∞𝑑𝑖𝑠𝑡(𝜘𝑛, 𝑇(𝜘𝑛)) = 0. 

Since 𝐷 is compact, there exists a subsequence {𝜘𝑛𝑘} of {𝜘𝑛} such that {𝜘𝑛𝑘} converges strongly 

to 𝜘 ∈ 𝐷. By Lemma 1.4, we have 

 

 ‖𝜘𝑛𝑘 − 𝑇(𝜘)‖ ≤  3𝑑𝑖𝑠𝑡(𝜘𝑛𝑘 , 𝑇(𝜘𝑛𝑘)) + ‖𝜘𝑛𝑘 − 𝜘‖ 

 

letting 𝑘 → ∞, we get that {𝜘𝑛𝑘} converges strongly to 𝑇(𝜘). This implies that 𝑇(𝜘) = 𝜘. That 

is, 𝜘 ∈ 𝐹(𝑇). By Lemma 1.4,  𝑙𝑖𝑚𝑛→∞‖𝜘𝑛 − 𝜘‖ exists and hence 𝜘 is the limit of {𝜘𝑛}. 
 

Definition 2.6 [9] Let 𝐷 be a subset of a Banach space 𝐸. A mapping 𝑇:𝐷 → 𝐶𝐵(𝐷) satisfies 

condition (𝐼) if there exists a nondecreasing function 𝑓: (0,∞) → 0,∞) with 𝑓(0) = 0,  

𝑓(𝑘) > 0 for all 𝑘 ∈ (0,∞) such that 𝑑(𝜘, 𝑇𝜘) ≥ 𝑓(𝑑(𝜘, 𝐹(𝑇)) for all 𝜘 ∈ 𝐷. 

 

Theorem 2.7 Let 𝐷 be nonempty closed convex subset of a uniformly convex Banach space 𝐸. 

Let 𝑇: 𝐷 → 𝐶𝐵( 𝐷) be a mapping satisfying the condition (𝐶) with 𝐹(𝑇) ≠ ∅. Let the sequence 
{𝜘𝑛} be generated by (1.1). Then {𝜘𝑛} converges strongly to a fixed point of 𝑇 if and only if  

𝑙𝑖𝑚𝑖𝑛𝑓𝑛→∞𝑑(𝜘𝑛, 𝐹(𝑇)) = 0. 

 

Proof: The necessity is obvious. Inversely, suppose that 𝑙𝑖𝑚𝑖𝑛𝑓𝑛→∞𝑑(𝜘𝑛, 𝐹(𝑇)) = 0. From 

Lemma 2.1, 𝑙𝑖𝑚𝑛→∞‖𝜘𝑛 − 𝜘‖ exists for all 𝜘 ∈ 𝐹(𝑇) and by hypothesis 

𝑙𝑖𝑚𝑖𝑛𝑓𝑛→∞𝑑(𝜘𝑛, 𝐹(𝑇)) = 0, so 𝑙𝑖𝑚𝑛→∞𝑑(𝜘𝑛, 𝐹(𝑇)) = 0. Seeing that 𝑙𝑖𝑚𝑛→∞𝑑(𝜘𝑛, 𝐹(𝑇)) =
0, for given 𝜉 > 0, assume that for all 𝑛 ≥ 𝑛₀ 

𝑑(𝜘𝑛, 𝐹(𝑇)) <  𝜉/2 
⇒  𝑖𝑛𝑓{‖𝜘𝑛 − 𝜘‖: 𝜘 ∈ 𝐹(𝑇)} < 𝜉/2. 

In especially, 𝑖𝑛𝑓{‖𝜘𝑛0 − 𝜘‖: 𝜘 ∈ Ϝ(𝑇)} < 𝜉/2; hence there exists a 𝜘∗ ∈ 𝐹(𝑇) such that 

‖𝜘𝑛0 − 𝜘
∗‖ < 𝜉/2. 

For 𝑚, 𝑛 ≥ 𝑛₀, 
‖𝜘𝑛+𝑚 − 𝜘𝑛‖  ≤  ‖𝜘𝑛+𝑚 − 𝜘

∗‖ + ‖𝜘𝑛 − 𝜘
∗‖ 

≤  2‖𝜘𝑛0 − 𝜘
∗‖ 

<  2(𝜉/2) = 𝜉. 
Therefore, {𝜘𝑛} is a Cauchy sequence in 𝐷. Hence, there exists a point 𝑞∗ ∈ 𝐷 such that 

 𝑙𝑖𝑚𝑛→∞𝜘𝑛 = 𝑞
∗. Also, 𝑙𝑖𝑚𝑛→∞𝑑(𝜘𝑛, 𝐹(𝑇)) = 0 gives that 

𝑑𝑖𝑠𝑡(𝑞∗, 𝑇(𝑞∗))  ≤  ‖𝜘𝑛 − 𝑞
∗‖ + 𝑑𝑖𝑠𝑡(𝜘𝑛, 𝑇(𝜘𝑛)) + 𝐻(𝑇(𝜘𝑛), 𝑇(𝑞

∗)) 
≤ ‖𝜘𝑛 − 𝑞

∗‖ + ‖𝜘𝑛} − 𝑢𝑛‖ + ‖𝜘𝑛 − 𝑞
∗‖ 

→  0 𝑎𝑠 𝑛 → ∞. 
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Theorem 2.8 Let 𝐸,𝐷, 𝑇 and {𝜘𝑛} be as in Theorem 2.7. If 𝑇 satisfy conditon (𝐼), then 

{𝜘𝑛} converges strongly to a fixed point of 𝑇. 

 

Proof: By Lemma 2.1 𝑙𝑖𝑚𝑛→∞‖𝜘𝑛 − 𝜘‖‖ exists for each 𝜘 ∈ 𝐹(𝑇), so 𝑙𝑖𝑚𝑛→∞𝑑(𝜘𝑛, 𝐹(𝑇)) 
exists. Assume that 𝑙𝑖𝑚𝑛→∞‖𝜘𝑛 − 𝜘‖ = 𝑐 for some 𝑐 ≥ 0. If 𝑐 = 0, there is nothing to prove. 

Suppose 𝑐 > 0, from the hypothesis and condition (𝐼), we have 

 𝑓(𝑑(𝜘𝑛, 𝐹(𝑇))) ≤ 𝑑(𝜘𝑛, 𝑇(𝜘𝑛)).                                                    (2.12) 

Since 𝐹(𝑇) ≠ ∅, so by Lemma 2.2, we have 𝑙𝑖𝑚𝑛→∞𝑑(𝜘𝑛, 𝐹(𝑇)) = 0. So (2.12) implies that  

 𝑙𝑖𝑚𝑛→∞𝑓(𝑑(𝜘𝑛, 𝐹(𝑇))) = 0.                                                           (2.13) 

Since 𝑓  is a decreasing function and 𝑓(0) = 0, so from (2.13) we obtain 

 𝑙𝑖𝑚𝑛→∞𝑑(𝜘𝑛, 𝐹(𝑇)) = 0.   

Since all the conditions of Theorem 2.7 are satisfied, the conclusion follows from the proof of 

Theorem 2.7. 
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