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Abstract

This study serves for analysing algebraic and topological characteristics of the sequence

spaces X(
̂̂B(r,s)) constituted by using non-zero real number r and s, where X denotes arbi-

trary of the classical sequence spaces `∞,c,c0 and `p (1 < p < ∞) of bounded, convergent,

null and absolutely p-summable sequences, respectively and X(
̂̂B) also is the domain of the

matrix ̂̂B(r,s) in the sequence space X . Briefly, the β - and γ-duals of the space X(
̂̂B) are

computed, and Schauder bases for the spaces c(̂̂B), c0(
̂̂B) and `p(

̂̂B) are determined, and

some algebraic and topological properties of the spaces c0(
̂̂B), `1(

̂̂B) and `p(
̂̂B) are studied.

Additionally, it is observed that all these spaces have some remarkable features, including

the classes (X1(
̂̂B): X2) and (X1(

̂̂B) : X2(
̂̂B)) of infinite matrices which are characterized, in

which X1 ∈ {`∞,c,c0, `p, `1} and X2 ∈ {`∞,c,c0, `1}.

1. Background and historical developments

One of the non-classical approaches when building new sequence space used recently in summability is that of working with
any infinite matrix. Although this technique is not easy, it provides a quick technique in obtaining certain results if the inverse
of an infinite matrix is present. In addition to the different aspects of this technique used in the listed references at the end of the
article, much more detailed information can be found in the five books of Başar [1], Başar and Dutta [2], Mursaleen and Başar
[3], Mursaleen [4] and Malafosse et al. [5] published recently. We now remind some basic definitions and conclusions, which
we will mainly use in the following sections. Any x sequence in X is a transformation x : N→ X , where X is a non-empty set.
The collection of all real or complex number sequences forms a vector space which we denote by w, under the operations
of coordinate-wise addition and well-known scalar multiplication. The subspaces of w are important in such applications
because each of them is called a sequence space. We denote `∞,c,c0 and `p for the classical sequence spaces of all bounded,
convergent, null and absolutely p−summable sequences, respectively. bv is the space consisting of all sequences (xk) such that
(xk− xk+1) in `1 and bv0 is the intersection of the spaces bv and c0 where k ∈ N. Unless otherwise stated, all other chapters
shall also be applicable to p,q > 1 with p−1 +q−1 = 1 and utilize the fact that each term having negative subscript equals to
zero.
Let us remember the definition of another concept we need. Given an infinite matrix A = (ank) of complex numbers ank, where
n,k ∈ N, for any sequence x, we write

(Ax)n := ∑ankxk; (n ∈ N,x ∈ D00(A)), (1.1)

where D00(A) denotes the subspace of ω consisting of x ∈ ω for which the sum exists as a finite sum. For simplicity in
illustration, here and wherever after that, the summation without limits runs from 0 to ∞.
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Now, let us continue by giving the definition of a matrix transformation between arbitrary sequence spaces X , Y that will be
required in the following sections. Having supposed that Y is a normed sequence space, it is natural to consider the question
of whether or not the sum in (1.1) is converges in the norm Y for x ∈ X , for this situation we write DY (A). In this meaning,
(X : Y ) := {A : X ⊆ DY (A)} is written for the space of all matrices that satisfy the condition mentioned in the previous row,
which send the all of X into Y .
We need a definition and some of its results, which provide some advantage in our paper. A matrix T = (tnk) is said to be a
triangle if tnk = 0 for k > n and tnn 6= 0 for all n ∈ N. As the immediate consequences of this concept, we have the following
useful results. Let U and V two triangle matrix and x any sequence then U(V x) = (UV )x is valid. Moreover, the inverse of
such a matrix is always uniquely exist and at the same time has a triangle matrix as well. In a practical way, we can obtain, if
the inverse of matrix U is V, then x =U(V x) =V (Ux) is always valid for all x ∈ ω .
Now, we shall be concerned with certain properties of difference sequences. First of all, we define and discuss briefly
the meaning of the concept of difference sequence spaces. In 1981 Kızmaz [6] defined new sequence spaces using the
sequence (xk− xk+1) instead of working directly by a sequence x = (xk). Let X denote an arbitrary well-known classical
sequence spaces `∞,c or c0. Kızmaz [6] defined the sequence spaces X(∆) = {x = (xk) ∈ w : ∆x ∈ X} where ∆x = (xk− xk+1)
and also showed that these are the Banach spaces with the norm ‖x‖∆ = |x1|+ ‖∆x‖∞; x = (xk) ∈ X . These spaces are
called difference sequence spaces. His new method is an expansion of the classical sequence spaces, which are probably
more familiar to most readers. In other words, the inclusion relation X ⊂ X(∆) is strictly valid. Shows that many facts
about difference sequence spaces. Kızmaz [6] obtained almost basic algebraic and topological properties in his work,
including the α−, β− and γ−duals of the difference sequence spaces and (X(∆) : Y ) and (Y : X(∆)) of infinite matrices,
where X ,Y ∈ {`∞,c}. Following Kızmaz’s Technique, Et [7] defined the sequence spaces X(∆2) = {x = (xk) ∈ w : ∆2x ∈ X}
where ∆2x = (∆2xk) = (∆xk−∆xk+1) and X ∈ {`∞,c,c0}. In 1987 Sarıgöl [8] introduced a new difference sequence spaces
X(∆t) := {x = (xk) ∈ w : (∆tx) = [kt(xk− xk+1)] ∈ X f or t < 1} which more complicated than the spaces of Kızmaz [6] and
he observed its some algebraic and topological properties, where X ∈ {`∞,c,c0}. It is the fact that it is easy to get both of
the following inclusion relationships are valid: X(∆t)⊂ X(∆), if 0 < t < 1 and X(∆)⊂ X(∆t), if t < 0. Simultaneously, the
sequence spaces X(p,∆) which are expanded from the previous ones defined by Ahmad and Mursaleen [9] and they studied
various problems. Almost two years later, Malkowsky [10] introduced the sequence spaces `∞(p,∆), c0(p,∆) and specified the
Köthe-Toeplitz duals of them and proved characterization of the matrix transformations discussed in [9]. Later on, Choudhary
and Mishra [11] examined certain characteristic of the sequence space c0(∆t), for t ≥ 1. In the same year, a characterization of
BK-spaces involving a subspace which is isomorphic to sc0(∆) with respect to matrix maps obtained by Mishra [12] and a
sufficient situation of a map from s`∞(∆) into a BK-space for being compact operator. He proved that arbitrary matrix from
s`∞(∆) is compact, where sX(∆) = {x = (xk) ∈ w : (∆xk) ∈ X ,x1 = 0 f or X = `∞ or c0}. In the year 1996, Mursaleen et al.
[13] interested in introducing and examining the sequence space `∞(p,∆r) = {x = (xk) ∈ w : ∆rx ∈ `∞(p)}, (r > 0).
Gnanaseelan and Srivastava [14] introduced and investigated the spaces X(z,∆) for a non-complex numbers z = (zk) satisfying
the following three conditions

(i) |zk|
|zk+1|

= 1+O(1/k) for each k ∈ N1 = {1,2,3, . . .}.
(ii) k−1|zk|∑k

i=0 |zi|−1 = O(1).
(iii) (k|z−1

k |) is a sequence of positive numbers increasing monotonically to infinity.

Malkowsky [15] described the spaces X(z,∆) for any fixed sequence z = (zk) not having restriction upon z in the same year.
The author has also gave the proof of the fact that the sequence spaces X(u,∆) are BK- spaces having the norm given by
‖x‖ = supk∈N |uk−1(xk−1− xk)| with u0 = x0 = 1. Subsequently, Gaur and Mursaleen [16] defined a more general space
Sr(p,∆) using the space Sr(∆), where Sr(∆) = {x = (xk) ∈ w : (kr|∆xk|) ∈ c0(p)}, (r ≥ 1) and they characterized both the
matrix classes (Sr(p,∆) : `∞) and (Sr(p,∆) : `1). Almost simultaneously and independently of each other; Malkowsky et al.
[17], and Asma and Çolak [18] defined the sequence spaces X(p,u,∆) which is a generalization of the sequence spaces X(u,∆)
and examined some of their properties for X ∈ {`∞,c,c0}. In 2001, the matrix classes (∆X : Y ) and (∆X : ∆Y ) are characterized
by Malkowsky and Mursaleen [19], where X ∈ {c0(p),c(p), `∞(p)} and Y ∈ {c0(p),c(p), `∞(p)}.
What is very important for us and the framework of this study is the matrix domain. For this reason, in this paragraph is
presented the definition of it. The connection between any sequence space X and any limitation matrix A as below lets us the
concept known as a matrix domain XA to describe;

XA := {x = (xk) ∈ ω : Ax ∈ X}, (1.2)

which gives a sequence space. If X is a sequence space, then the continuous dual X∗A of the space XA is defined by X∗A := { f :
f = g◦A,g ∈ X∗}
Now, the matrix domain concept is briefly analyzed. There may be a relationship between the new sequence space XA made
up of using the limitable matrix A and the original sequence spaces X . This relationship can come across us in different
ways, depending on the choice of X and A. Let us explain what we have said with examples. In fact, we find the relation if
X ∈ {`∞,c,c0} then we obtain that the inclusion we seek XS ⊂ X is strictly valid where S = (snk) is the summation matrix

described by snk =

{
1 , (0≤ k ≤ n),
0 , (k > n). But, if X is an element of the set X ∈ {`∞,c,c0, `p} then one can easily see that
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the inclusion X ⊂ X
∆(1) is strictly valid, where ∆

(1)
nk =

{
(−1)n−k , (n−1≤ k ≤ n),

0 , 0≤ k < n−1 or (k > n).
However, when we describe

X := c0⊕ spant together with t = ((−1)k) namely; x ∈ X only when x := z+λx for some z ∈ c0 and some λ ∈ C, and take
into consideration the given matrix A together with the rows An given by An := (−1)ne(n) for all n ∈ N, then we are going to
obtain Ae = t ∈ X but At = e 6∈ X , resulting in the conclusion that t ∈ X\XA and e ∈ XA\X in which e = (1,1,1, . . .) and e(n)

is a given sequence of which its unique term different from zero is a 1 found in the nth position for every n ∈ N. In view of
this explanation, both of the sequence spaces XA and X overlap each other; however, neither of them contains the other. The
tendency to built a new sequence spaces from the old ones is a widely used method. One of the most popular of these methods
is obtain new sequence spaces using the matrix domain of a certain limitation method.
Today, the tendency for building a new sequence spaces via matrix domain and its extensions in summability theory is really
reaching a wide range. It is recommended to look at the references to see what a profusion of problems it solves and what a
wide range of fields now it uses in the different mathematical models that bring understanding about it.
In analogy with the difference sequence spaces that you have seen in the paper of Kızmaz [6], the sequence spaces defined by
Kirişçi and Başar [20] are a generalization of the previously defined spaces. With the r and s being non-zero real numbers,
Kirişçi and Başar [20] constructed the respective spaces using the matrix B̂ defined as below

b̂nk(r,s) =

 r , (k = n),
s , (k = n−1),
0 , (0≤ k < n−1 or k > n),

for all k,n ∈ N. We would like to multiply the matrix B̂ by itself and we want to use it. This old approach is nothing new. Here

is the formal statement. Let r,s be non-zero reel numbers and define the band matrix ̂̂B(r,s) = {̂̂bnk(r,s)} by

̂̂bnk(r,s) =


r2 , (n = k),
2rs , (k = n−1),
s2 , (k = n−2),
0 , otherwise,

for all k,n ∈ N. To simplify the notation let us write ̂̂B(r,s) = ̂̂B and so forth. We must state the fact that here, the newly

defined matrix ̂̂B can be derived from the triple band matrix B(r,s, t) used by Sönmez [21] and the main results are obtained
independently from the paper of Sönmez [21].
Again in analogy with the sequence spaces that one can see in the paper of Kirişçi and Başar [20], the sequence spaces introduced
by Candan [22] are a generalization of the previously defined spaces. With r̃ = (rn)

∞
n=0 and s̃ = (sn)

∞
n=0 being convergent

sequences of positive real numbers. Candan [22] introduced the respective spaces using the matrix B̃ = B̃(r̃, s̃) = {bnk(r̃, s̃)}
defined as below

bnk(r̃, s̃) =

 rn , (k = n),
sn , (k = n−1),
0 , (0≤ k < n−1 or k > n),

for all k,n ∈N. The B̃(r̃, s̃)− transforms of a sequence x = (xk) is B̃(r̃, s̃)(x) = rkxk + sk−1xk−1 for all k ∈N. In the last decade,
Candan [22]-[24] has worked on many different studies using the B̃ matrix.

The main emphasis in this paper is going to be on defining the sequence space X(
̂̂B) and continuing with explanations of the

properties accounting for their importance in scientific work, and determining the β− and γ−duals of the spaces, in which ̂̂B
denotes the any of the classical spaces `∞, c, c0 or `p and ̂̂B is the band matrix ̂̂B(r,s). Moreover, the Schauder basis for the

space c(̂̂B),c0(
̂̂B) and `p(

̂̂B) are obtained, and some topological properties of the spaces c(̂̂B),c0(
̂̂B) and `p(

̂̂B) are studied.

Finally, some classes of matrix mappings on the space X(
̂̂B) are calculated.

The present paper is roughly composed as follows: In Section 1, we explain the kinds of sequence spaces that arise in scientific
study, including basic concepts, historical developments of some subjects and matrix domain etc. In Section 2, the domain

X(
̂̂B) within the sequence space X with X ∈ {`∞,c,c0, `p} is going to be introduced, and the β− and γ− duals of X(

̂̂B)
will be determined. The Schauder basis of the spaces c(̂̂B),c0(

̂̂B) and `p(
̂̂B) are given after a proof is given about under

which conditions the equality X = X(
̂̂B) and inclusion X ⊂ X(

̂̂B) are valid. In final section, some topological properties of

those spaces c0(
̂̂B), `1(

̂̂B) and `p(
̂̂B) having p > 1 are investigated. In Section 3, a general theorem which characterizes the

matrix transformations from the domain of a triangle matrix into any sequence spaces is stated and also proven. To present
the application of this fundamental theorem, a table is given showing the necessary and sufficient conditions for a matrix

transformations from X(
̂̂B) to Y in which X ∈ {`∞,c,c0, `p} and Y ∈ {`∞,c,c0, `p}.
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2. Some new sequence spaces derived by the domain of the matrix ̂̂B(r,s)
Section 2 is devoted to a quick review of the newly defined sequence spaces derived by using a band matrix ̂̂B defined above

and its various properties. Briefly, the subject of this section is the definition the sequence spaces `∞(
̂̂B), c(̂̂B), c0(

̂̂B) and `p(
̂̂B),

and it is seen that they are norm isomorphic to the spaces well-known classical sequence spaces. Moreover, one of the typical
applications includes calculating the β− and γ−duals of the spaces. Armed with elementary facts given earlier in the article,
we can now describe the spaces as follows;

`∞(
̂̂B) :=

{
x = (xk) ∈ w : sup

k∈N
|s2xk−2 +2rsxk−1 + r2xk|< ∞

}
,

c(̂̂B) :=
{

x = (xk) ∈ w : ∃l ∈ C 3 lim
k→∞
|s2xk−2 +2rsxk−1 + r2xk− l|= 0

}
,

c0(
̂̂B) :=

{
x = (xk) ∈ w : lim

k→∞
|s2xk−2 +2rsxk−1 + r2xk|= 0

}
,

`p(
̂̂B) :=

{
x = (xk) ∈ w : ∑

k
|s2xk−2 +2rsxk−1 + r2xk|p < ∞

}
.

In other words; the sets defined above; of all sequences whose ̂̂B-transforms are in the spaces `∞, c, c0 and `p, respectively.

Considering the matrix domain with the notation of (1.2), the remarkable feature of these sets is as follows `∞(
̂̂B), c(̂̂B),

c0(
̂̂B) and `p(

̂̂B) by `∞(
̂̂B) := {`∞}̂̂B, c(̂̂B) := ĉ̂B, c0(

̂̂B) := {c0}̂̂B and `p(
̂̂B) := {`p}̂̂B. When x = (xk) is a sequence and the

transformation ̂̂B of x = (xk) which is defined by matrix multiplication is the sequence y = (yk), we shall write

yk := s2xk−2 +2rsxk−1 + r2xk, (k ∈ N).

Before beginning the general theory, at first we should state the following fundamental theorem, showing that sets just described
have an important role in their algebraic structures.

Theorem 2.1. `∞(
̂̂B), c(̂̂B), c0(

̂̂B) and `p(
̂̂B) are sets which are linear spaces given by coordinatewise addition and also scalar

multiplication, that is, those `∞(
̂̂B), c(̂̂B), c0(

̂̂B) and `p(
̂̂B) sets are in fact the sequence spaces.

Proof. Since the calculations involving coordinatewise addition and scalar multiplication are considerably simply, details of
the proof will not be given here.

Now it is time to give the definition of isomorphism between two linear spaces. Let U and V be linear spaces. We say that U is
isomorphic to V if there exists a linear transformation T : U →V that is invertible. Such a linear transformation is called an
isomorphism from U onto V and it is written U ≈V.
We now derive one of the most important properties of X ∈ {`∞,c,c0, `p} and X̂̂B which are used extensively.

Theorem 2.2. The newly defined sequence spaces `∞(
̂̂B), c(̂̂B), c0(

̂̂B) and `p(
̂̂B) are norm isomorphic to the classical sequence

spaces `∞,c,c0 and `p, respectively; that is, `∞(
̂̂B)≈ `∞, c(̂̂B)≈ c, c0(

̂̂B)≈ c0 and `p(
̂̂B)≈ `p.

Proof. When focusing on the proof, it is almost the same to show that the newly defined sequence spaces related to the classical
sequence spaces are linear isomorphs, so we are going to prove only one here. What is needed to verify this allegation is
to guarantee the existence by the technique used in solving previously published papers could also have been used in from

the c0(
̂̂B) and c0. When the transformation T described above is taken into consideration again, taking y = T (x) = ̂̂Bx in the

definition of T , we can see that T is a linear transformation between c0(
̂̂B) to c0 when (1.2) is used. We shall not prove it in

detail. Over and above, it is obtained x = θ from some basic calculations whenever T (x) = θ . It follows from this fact that T
is injective. Thus, we choose an y = (yk) ∈ c0 and inverse transformation provides us the possibility to identify the sequence
x = (xk) by

xk :=
1
r2

k

∑
j=0

(k− j+1)
(
− s

r

)k− j
y j (k ∈ N) (2.1)
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then from (2.1) we successively calculate

s2xk−2 +2rsxk−1 + r2xk = s2

[
1
r2

k−2

∑
j=0

(k− j−1)
(
− s

r

)k− j−2
y j

]

+2rs

[
1
r2

k−1

∑
j=0

(k− j)
(
− s

r

)k− j−1
y j

]
+ r2

[
1
r2

k

∑
j=0

(k− j+1)
(
− s

r

)k− j
y j

]
= yk

for every k ∈ N.

From the last calculations, we conclude that the x = (xk) defined by above lies c0(
̂̂B) since the y = (yk) lies c0. This means that

T is surjective. All that we have done so far is to show that the newly defined space c0(
̂̂B) and well-known space c0 are linearly

isomorphic. We accomplished the proof by carrying out the necessary steps.

Theorem 2.3. Let X ∈ {`∞,c,c0, `p} and the matrix ̂̂B defined above. Then,

(i) X = X(
̂̂B) if

∣∣ s
r

∣∣< 1.

(ii) X ⊂ X(
̂̂B) is strict if

∣∣ s
r

∣∣≥ 1.

Proof. Let X ∈ {`∞,c,c0, `p}. The usage of appropriate properties of maths leads to obtaining equations for the matrix ̂̂B that
are briefly written below but actually require long calculations.

sup
n∈N

∑
k
|̂̂bnk|= (|r|+ |s|)2, lim

n→∞

̂̂bnk = 0,

lim
n→∞

∑
k

̂̂bnk = (r+ s)2 and sup
k∈N

∑
n
|̂̂bnk|= (|r|+ |s|)2,

̂̂B ∈ (X : X). Because of the above explanation, we get x ∈ X(
̂̂B) for any sequence x ∈ X . when these facts are used, we see

that the inclusion X ⊂ X(
̂̂B) is hold.

(i) We consider first the case where
∣∣ s

r

∣∣< 1. In proving that the following conditions are met for inverse matrix ̂̂B−1
:= (

̂̂b−1

nk )

of the matrix ̂̂B, we follow a similar way to the above.

sup
n∈N

∑
k
|̂̂b−1

nk |=
1
r2 ∑

k
(k+1)

∣∣∣ s
r

∣∣∣k < ∞,

lim
n→∞

̂̂b−1

nk = lim
n→∞

(n− k+1)
(
− s

r

)n−k

=
(
− s

r

)−k
lim
n→∞

(n− k)
(
− s

r

)n

= 0,

lim
n→∞

∑
k

̂̂b−1

nk =
1
r2 lim

n→∞

n

∑
k=1

k
(
− s

r

)k−1
exists,

sup
k∈N

∑
n
|̂̂b−1

nk |=
1
r2 ∑

n
(n+1)

∣∣∣ s
r

∣∣∣n < ∞,

̂̂B−1
∈ (X : X), where

̂̂b−1

nk :=

 (n− k+1) 1
r2

(
− s

r

)n−k
, (0≤ k ≤ n),

0 , (k > n)

for every k,n ∈ N. We know that x ∈ X(
̂̂B) and when we apply the definition, we get y = ̂̂Bx ∈ X and the next step makes the

fact that x = ̂̂B−1
y ∈ X . This means that the inclusion X(

̂̂B)⊂ X is fulfilled. This shows that the proof of Part (i) is over.
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(ii) When getting results we need to use the following.

t1 :=
{

n+1
r2

(
− s

r

)n
}
,

t2 :=
{

n+1
r2

}
, t3 := {(−1)n(n+2)} and t4 :=

{
1+(−1)n

2

}
.

With a simple approximation, if
∣∣ s

r

∣∣> 1 holds, then ̂̂Bt1 = e(0) = (1,0,0, . . . ,0, . . .) ∈ X . Thus, we have t1 ∈ X(
̂̂B). But, the

sequence t1 is unbounded and then t1 ∈ X(
̂̂B)\ X .

Suppose that
∣∣ s

r

∣∣= 1.

(a) Let X = c0, `p. Then, t1 ∈ X(
̂̂B)\X .

(b) Let X = `∞,c . Then,

i) When s =−r is taken, the transformation of t2 is ̂̂Bt2 = e(0) =
(
1,0,0, . . . ,0, . . .

)
∈ X . Hence t2 ∈ X(

̂̂B)\X .

ii) If s = r, then ̂̂Bt3 =
(
2r2,r2,0, . . . ,0, . . .

)
∈ `∞ and̂̂Bt4 =

(
r2,2r2,2r2, . . . ,2r2, . . .

)
∈ c. Hence t3 ∈ `∞(

̂̂B)\`∞ and t4 ∈ c(̂̂B)\c.

Clearly, from of these, we have precisely shown that the inclusion X ⊂ X̂̂B is strict.

We have the following terminology used by almost everyone studying in this field. Let X and Y arbitrary two sequence spaces.
Known as the multiplier space S(X ,Y ) defined by

S(X ,Y ) := {t = (tk) ∈ w : xt = (xktk) ∈ Y for all x = (xk) ∈ X} (2.2)

is set. We now look at some additional properties of multiplier space. Let X ,Y and Z denote any three sequence spaces
and X ⊃ Z ⊃ Y. In view of the preceding elementary knowledge, we see that the inclusions S(X ,Y ) ⊂ S(Z,Y ) and also
S(X ,Y ) ⊂ S(X ,Z). The notation of (2.2) provides an easy of forming the duals as follows Xα , Xβ and X γ are defined by
Xα = S(X , `1), Xβ = S(X ,cs) and X γ = S(X ,bs).

Lemma 2.4. Let X, Y be the sequence spaces and ξ ∈ {α,β ,γ}. If X ⊂ Y then Y ξ ⊂ Xξ .

The following list helps in dealing with some difficult situations:

sup
n∈N

∑
k
|ank|q < ∞ (2.3)

sup
k,n∈N

|ank|< ∞ (2.4)

lim
n→∞

ank = ak for each k ∈ N (2.5)

lim
n→∞

∑
k
|ank|= ∑

k
|ak| (2.6)

lim
n→∞

∑
k

ank = a (2.7)

The following lemma presented by Stieglitz and Tietz [25] is particularly useful in obtaining that certain properties.

Lemma 2.5. The necessary and sufficient conditions for A ∈ (X : Y ) when X ∈ {`∞,c,c0, `p, `1} and Y ∈ {`∞,c} can be read
from Table 1, where

1. (2.3) with q = 1. 2. (2.3).
3. (2.4). 4. (2.5) and (2.6).
5. (2.3) with q = 1, (2.5) and (2.7). 6. (2.3) with q = 1 and (2.5).
7. (2.3) and (2.5). 8. (2.4) and (2.5).

Table 1: The characterization of the class (X ,Y ) with X ∈
{
`∞, c, c0, `p, `1

}
and Y ∈ {`∞,c}

From `∞ c c0 `p `1
To
`∞ 1. 1. 1. 2. 3.
c 4. 5. 6. 7. 8.
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Lemma 2.6. ([8, Theorem 3.1]) Let C = (cnk) be defined via a sequence b = (bk) ∈ w and inverse matrix D = (dnk) of triangle
matrix U = (unk) by

cnk :=
{

∑
n
j=k b jd jk , (0≤ k ≤ n),

0 , (k > n),

for all k,n ∈ N. Then,

{XU}γ := {b = (bk) ∈ w : C ∈ (X : `∞)},

{XU}β := {b = (bk) ∈ w : C ∈ (X : c)}.

When both Lemma 2.5 and Lemma 2.6 are considered together, it is seen that the following corollary will be obtained.

Corollary 2.7. Define the sets ̂̂d1, ̂̂d2, ̂̂d3, ̂̂d4 and ̂̂d5 by

̂̂d1 =

{
a = (ak) ∈ w : sup

n∈N

n

∑
k=0

∣∣∣∣∣ 1
r2

n

∑
j=k

( j− k+1)
(
− s

r

) j−k
a j

∣∣∣∣∣
q

< ∞

}
,

̂̂d2 =

{
a = (ak) ∈ w : lim

n→∞

1
r2

n

∑
j=k

( j− k+1)
(
− s

r

) j−k
a j exist

}
,

̂̂d3 =

{
a = (ak) ∈ w : lim

n→∞

n

∑
k=0

∣∣∣∣∣ n

∑
j=k

b−1
jk a j

∣∣∣∣∣= ∞

∑
k=0

∣∣∣∣∣ limn→∞

1
r2

n

∑
j=k

( j− k+1)
(
− s

r

) j−k
a j

∣∣∣∣∣
}
,

̂̂d4 =

{
a = (ak) ∈ w : lim

n→∞

1
r2

n

∑
k=0

n

∑
j=k

( j− k+1)
(
− s

r

) j−k
a j exist

}
,

̂̂d5 =

{
a = (ak) ∈ w : sup

n,k∈N

1
r2

∣∣∣∣∣ n

∑
j=k

( j− k+1)
(
− s

r

) j−k
a j

∣∣∣∣∣< ∞

}
,

Then,

(i)
{
`∞(
̂̂B)}γ

= c(̂̂B)γ =
{

c0(
̂̂B)}γ

:= ̂̂d1 with q = 1.

(ii)
{
`p(
̂̂B)}γ

:= ̂̂d1.

(iii)
{
`1(
̂̂B)}γ

:= ̂̂d5.

(iv)
{

c0(
̂̂B)}β

:= ̂̂d1∩
̂̂d2 with q = 1.

(v)
{

c(̂̂B)}β

:= ̂̂d1∩
̂̂d2∩

̂̂d4 with q = 1.

(vi)
{
`p(
̂̂B)}β

:= ̂̂d1∩
̂̂d2.

(vii)
{
`1(
̂̂B)}β

:= ̂̂d2∩
̂̂d5.

(viii)
{
`∞(
̂̂B)}β

:= ̂̂d2∩
̂̂d3.

Sequence space X having a linear topology is known as K−space when every map pi : X → C described by pi(x) = xi is
continuous for every i ∈ N. Again AK−space X is known as FK− space when X satisfies the condition of being a complete
linear metric space. When FK−space of which topology is known as BK−space. When a normed sequence space X including
a sequence (bn) having the characteristics of having a unique sequence of scalars (an) for each x ∈ X such that

lim
n→∞

∥∥x−
(
α0b0 +α1b1 + · · ·+αnbn

)∥∥= 0,

under this condition (bn) is known as Schauder basis for X(or in short form only basis). Then the series ∑akbk having the
summation x is known as the expansion of x in terms of (bn), and denoted by x = ∑akbk. Because of the fact that, the matrix
domain XA of a normed sequence space denoted by X has got a basis iff X has got a basis when A = (ank) is a triangle, one can
obtain:
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Corollary 2.8. Let αk(r) = {̂̂Bx}k for all k ∈ N. Define the sequence z = (zk) and ̂̂b(k) = {̂̂b(k)}n∈N for every fixed k ∈ N by

zn = ∑
n
k=0
̂̂b−1

nk and ̂̂b(k)n =

{
0 , (n < k),̂̂b−1

nk , (n≥ k).
Then,

(a) The sequence {̂̂b(k)}n∈N is a basis for the spaces c0(
̂̂B) and `p(

̂̂B), and any x in c0(
̂̂B) or in `p(

̂̂B) has a unique
representation of the form

x := ∑
k

αk(r)
̂̂b(k).

(b) The set {z,̂̂b(k)}n∈N is a basis for the spaces c(̂̂B) and any x in c(̂̂B) has a unique representation of the form

x := lz+∑
k
[αk(r)− l]̂̂b(k),

where l = limk→∞{̂̂Bx}k.

It is known that the XY set means

XY := {z = (zk) ∈ w : zk = xkyk, ∀k ∈ N, x = (xk) ∈ X ,y = (yk) ∈ Y}

for the sequence spaces X and Y . When a BK−space X ⊃ φ is given, the nth section x[n] of the sequence x = (xk) ∈ X is
described by x[n] := ∑

n
k=0 xke(k) and it is said that x has got the characteristics:

AK if limn→∞ ‖x− x[n]‖X = 0 (abschnittskonvergenz),
AB if supn∈N ‖x[n]‖X < ∞ (abschnittsbeschränktheit),
AD if x ∈ φ (clousure of φ ⊂ X) (abschnittsdichte),
KB if the set {xke(k)} is bounded in X (koordinatenweise beschränkt).
It is said that the space X has a property if this property is held for each x ∈ X , (cf. [26]). One can obviously see that AK
implies AD and AK if and only if AB+AD. To give an example for this fact, even though c0 and `p are AK-spaces, c and `∞

are not AD-spaces.

Lemma 2.9. ([27, Theorem 2.1 and Lemma 4.1]). Let X ,Y be the BK−spaces and FU
Y = ( fnk) be defined via the sequence

α = (αk) ∈ Y and the triangle matrix U = (unk) by

fnk =
n

∑
j=k

α jun jd jk

for all k,n ∈ N. Then, the domain of the matrix U in the sequence space X has the following properties

(i) KB iff FU
`1
∈ (X : X).

(ii) AB iff FU
bv0
∈ (X : X).

From Lemma 2.9, we have:

Corollary 2.10. Let
∣∣ s

r

∣∣ be equal to 1. Under this condition, the space `1(
̂̂B) has both the KB− and AB− properties.

Lemma 2.11. [27, Theorem 2.2] Let X be a BK-space which has AK-property, U be a triangle matrix and XU ⊃ φ . Then the
sequence space XU has the AD-property if and only if the fact tU = θ for t ∈ Xβ implies the fact t = θ .

We know that both c0 and `p have the AK-property, when U =
̂̂B, we get the following corollary by applying Lemma 2.11.

Corollary 2.12. c0(
̂̂B) and `p(

̂̂B) (p > 1) have the AD-property if and only if
∣∣ s

r

∣∣≤ 1.

3. Some matrix transformations related to the sequence spaces `∞(
̂̂B),c(̂̂B),c0(

̂̂B) and `1(
̂̂B)

The present section is devoted to the characterization of some classes of infinite matrices related with newly defined sequence
spaces. The following theorem about matrix transformations is analogous to the corresponding theorem obtained by the
previous ones. It tells us how to combine those results as necessary and sufficient condition.
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Theorem 3.1. Let us assume that X be an FK-space, U be a triangle matrix, D denotes its inverse matrix and Y be any subset
of ω . Under these assumptions, one conclude that A = (ank) ∈ (XU : Y ) iff

C(n) := (c(n)mk ) ∈ (X : c) for all n ∈ N (3.1)

and

C = (cnk) ∈ (X : Y ), (3.2)

in which

c(n)mk :=
{

∑
m
j=k an jd jk , (0≤ k ≤ m),

0 , (k > m),
and cnk :=

∞

∑
j=k

an jd jk

for every k,m,n ∈ N.

Proof. Suppose that A = (ank) ∈ (XU : Y ) and let us take x ∈ XU . Under these assumptions, we leave it to the reader to verify
that following equations are indeed satisfied

m

∑
k=0

ankxk =
m

∑
k=0

ank

(
k

∑
j=0

dk jy j

)
=

m

∑
k=0

(
m

∑
j=k

an jd jk

)
yk =

m

∑
k=0

c(n)mk yk (3.3)

for all m,n ∈ N. Due to the fact that Ax exists, we deduce that C(n) must belong to the class (X : c). By passing to limit m→ ∞

in the equality (3.3) we can easily deduce Ax =Cy. It is obtained that Cy ∈ Y , using Ax ∈ Y . This means that C ∈ (X : Y ).
In a converse way, let us assume that (3.1), (3.2) are met and let us consider any x ∈ XU . In these conditions, we take
(cnk)k∈N ∈ Xβ it is obtained that (ank)k∈N ∈ Xβ

U for all n ∈ N, using (3.1). This tells us the existence of the A−transform of x,
namely Ax exists. Moreover, we derive from the equality (3.3) as m→∞ that Ax =Cy and this indicates that A ∈ (XU : Y ).

Now, we list the following conditions:

sup
m∈N

m

∑
k=0

∣∣∣∣∣ 1
r2

m

∑
j=k

( j− k+1)
(
− s

r

) j−k
an j

∣∣∣∣∣
q

< ∞ (3.4)

lim
m→∞

1
r2

m

∑
j=k

( j− k+1)
(
− s

r

) j−k
an j = cnk (3.5)

lim
m→∞

m

∑
k=0

∣∣∣∣∣ 1
r2

m

∑
j=k

( j− k+1)
(
− s

r

) j−k
an j

∣∣∣∣∣ = ∑
k
|cnk| for each n ∈ N (3.6)

lim
m→∞

m

∑
k=0

1
r2

k

∑
j=0

( j− k+1)
(
− s

r

) j−k
ank = αn for all n ∈ N (3.7)

sup
m,k∈N

∣∣∣∣∣ 1
r2

m

∑
j=k

( j− k+1)
(
− s

r

) j−k
an j

∣∣∣∣∣< ∞ (3.8)

sup
n∈N

∑
k
|cnk|q < ∞ (3.9)

lim
n→∞

cnk = βk (3.10)

lim
n→∞

∑
k
|cnk| = ∑

k
|βk| (3.11)

lim
n→∞

∑
k

cnk = β (3.12)
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sup
n,k∈N

|cnk|< ∞ (3.13)

sup
k∈N

∑
n
|cnk|< ∞ (3.14)

lim
n→∞

∑
k

cnk = 0 (3.15)

sup
N,K∈F

∣∣∣∣∣∑n∈N
∑
k∈K

cnk

∣∣∣∣∣< ∞ (3.16)

sup
N∈F

∑
k

∣∣∣∣∣∑n∈N
cnk

∣∣∣∣∣
q

< ∞, (3.17)

in which the symbol F illustrates the collection of all finite subsets of N. We note here that, Theorem 3.1 tells us that we will
have the following table.

Table 2. The characterization of the class A ∈ (X : Y ) with X ∈ {`∞(
̂̂B),c(̂̂B), c0(

̂̂B), `p(
̂̂B)} and Y ∈ {`∞,c,c0, `1}.

From `∞(
̂̂B) c(̂̂B) c0(

̂̂B) `p(
̂̂B) `1(

̂̂B)
To
`∞ 1. 2. 3. 4. 5.
c 6. 7. 8. 9. 10.
c0 11. 12. 13. 14. 15.
`1 16. 17. 18. 19. 20.

Corollary 3.2. The necessary and sufficient conditions for all A ∈ (X : Y ) when X ∈
{
`∞(
̂̂B),c(̂̂B),c0(

̂̂B), `p(
̂̂B)} and Y ∈

{`∞,c,c0, `1} can be read from the Table 2 : where,
1. (3.5), (3.6) and (3.9) with q = 1.
2. (3.5), (3.7) and (3.4),(3.9) with q = 1.
3. (3.5) and (3.4), (3.9) with q = 1.
4. (3.4), (3.5) and (3.9).
5. (3.5), (3.8) and (3.13).
6. (3.5), (3.6), (3.10) and (3.11).
7. (3.5), (3.7), (3.10), (3.12) and (3.4), (3.9) with q = 1.
8. (3.5), (3.10) and (3.4), (3.9) with q = 1.
9. (3.4), (3.5), (3.9) and (3.10).
10. (3.5), (3.8), (3.10) and (3.13).
11. (3.5), (3.6) and (3.15).
12. (3.5), (3.7), (3.10) with βk = 0 and(3.12) with β = 0 and (3.4), (3.9) with q = 1.
13. (3.5), (3.10) with βk = 0 and (3.4), (3.9) with q = 1.
14. (3.4), (3.5), (3.9) and (3.10) with βk = 0.
15. (3.5), (3.8), (3.10) with βk = 0 and (3.13).
16. (3.5), (3.6) and (3.16).
17. (3.4) with q = 1, (3.5),(3.7) and (3.16).
18. (3.4) with q = 1, (3.5) and (3.16).
19. (3.4), (3.5) and (3.17).
20. (3.5), (3.8) and (3.14).

Now, we are going to present the following lemma leading more quickly to the computation of the characterization of some
new matrix classes, using the Corollary 3.2.

Lemma 3.3. [28, Lemma 5.3] Let X, Y be arbitrary two sequence spaces, A be an infinite matrix and U a triangle matrix.
Then, A ∈ (X : YU ) iff UA ∈ (X : Y ).

Here we are able to give an ultimate note. When based on writing r2ank +2rsan−1,k + s2an−2,k instead of ank for all k,n ∈ N in

Corollary 3.2, since U =
̂̂B is triangle matrix, we can actually find out the characterization of the class (X(

̂̂B) : Y (̂̂B)) using
Lemma 3.3.
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4. Conclusion

In brief, the present manuscript has investigated algebraic and topological characteristics of the sequence space X(
̂̂B(r,s)). The

β - and γ-duals for these spaces have been calculated at the same time Schauder bases for those spaces c(̂̂B), c0(
̂̂B) and `p(

̂̂B)
are found out. It has been noted that all of these spaces have got special characteristics. Some matrix transformations have
been characterized.
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[3] M. Mursaleen, F. Başar, Sequence Spaces: Topics in Modern Summability Theory, CRC Press, Taylor & Francis Group, Series: Mathematics and Its

Applications, Boca Raton · London · New York, 2020.
[4] M. Mursaleen, Applied Summability Methods, Springer Briefs, 2014.
[5] B. de Malafosse, E.Malkowsky, and V. Rakocevic, Operators Between Sequence Spaces and Applications, Springer Nature Singapore, 152 Beach Road,

Singapore 18972, Singapore.
[6] H. Kızmaz, On certain sequence spaces, Canad. Math. Bull. 24(2) (1981), 169-176.
[7] M. Et, On some difference sequence spaces, Turk. J. Math. 17 (1993), 18-24.
[8] M. A. Sarıgöl, On difference sequence spaces, J. Karadeniz Tech. Uni. Fac. Arts Sci. Ser. Math.-Phys., 10 (1987), 63-71.
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