UJMA

Universal Journal of Mathematics and Applications

Journal Homepage: www.dergipark.gov.tr/ujma ISSN 2619-9653 DOI: https://doi.org/10.32323/ujma.1004517

The New Iterative Approximating of Endpoints of Multivalued Nonexpansive Mappings in Banach Spaces

Makbule Kaplan Özekes¹

¹Sinop University, Faculty of Education, Sinop, Turkey

Article Info	Abstract
Keywords: Endpoint, Multivalued map- pings, Strong and weak convergence 2010 AMS: 47H10, 47J25 Received: 4 November 2021 Accepted: 1 March 2022 Available online: 30 June 2022	The purpose of this paper is to introduce a modified iteration process to approximate endpoints of multivalued nonexpansive mappings in Banach space. We prove weak and strong convergence theorems of proposed iterative scheme under some suitable assumptions in the framework of a uniformly convex Banach space.

1. Introduction and Preliminaries

In this study, we shall denote by \mathbb{N} the set of natural numbers. Let $(E, \|.\|)$ be a Banach space and *C* be a nonempty convex subset of *E*. The distance from a $x \in E$ to a nonempty subset $C \subset E$ is defined by

 $dist(x,C) := \inf \{ ||x-z|| : z \in C \}.$

The radius of C relative to x is defined by

$$R(x,C) = \sup \{ ||x-z|| : z \in C \}.$$

Definition 1.1. A Banach space *E* is said to be uniformly convex if for each $\varepsilon \in (0,2]$, there is a $\delta > 0$ such that for every $x, y \in E$

$$\begin{cases} \|x\| \leq 1 \\ \|y\| \leq 1 \\ \|x-y\| \geq \varepsilon \end{cases} \} \Rightarrow \frac{\|x+y\|}{2} \leq 1-\delta.$$

We shall denote the family of nonempty compact subsets of C by K(C). The Hausdorff metric H on K(C) is defined as follows:

$$H(A,B) = \max \left\{ \sup_{x \in A} dist(x,B), \sup_{y \in B} dist(y,A) \right\} \text{ for } A, B \in K(C).$$

A multivalued mapping $T: C \to K(C)$ is said to be nonexpansive if

 $H(Tx,Ty) \le ||x-y||$, for each $x,y \in C$.

A point $x \in K$ is a fixed point of a multivalued mapping $T : C \to K(C)$ if $x \in T(x)$. Moreover, if $T(x) = \{x\}$, then x is called an endpoint (or a stationary point) of T. We shall denote the set of all endpoints and the set of all fixed points of T by E_T (or End(T)) and F_T , respectively. It is clear that $End(T) \subseteq Fix(T)$. Endpoint for multivalued mappings is an important concept. Many researchers have studied the exsitence of an endpoint of a multivalued mapping. In 1980, Aubin and Siegel [1] proved that every multivalued dissipative mapping on a complete

metric space has always an endpoint. In 1986, Corley [2] showed that a maximization with respect to a cone is equivalent to the problem of finding an endpoint of certain multivalued mapping. In 2018, Panyanak [3] showed that the modified Ishikawa iteration process converge to an endpoint of a multivalued nonexpansive mapping in Banach spaces. In 2020, Laokul [4] proved Browder's convergence theorem for multivalued mappings in Banach space without the endpoint condition by using the notion of diametrically regular mapping. Abdeljawad et al. [5] introduced the modified S- iteration process for finding endpoints of multivalued nonexpansive mappings in Banach spaces. Ullah et al. [6] proved the strong and Δ -convergence results of endpoints for multivalued generalized nonexpansive in Metric spaces.

Definition 1.2. A Banach space $(E, \|.\|)$ is said to have Opial property [7] if for each sequence $\{x_n\}$ in E which weakly converges to $x \in E$ and $y \neq x$, it follows that

 $\limsup_{n\to\infty} \|x_n-x\| < \limsup_{n\to\infty} \|x_n-y\|.$

Definition 1.3. [3] A mapping $T: C \to K(C)$ is said to satisfy condition (J) if there exists a nondecreasing function $h: [0, \infty) \to [0, \infty)$ with h(0) = 0, h(r) > 0 for $r \in (0, \infty)$ such that

 $R(x,T(x)) \ge h(dist(x,End(T)) \text{ for all } x \in C.$

Definition 1.4. [3] The mapping $T: C \to K(C)$ is said to be semicompact if for any sequence $\{x_n\}$ in C such that

$$\lim_{n \to \infty} R(x_n, T(x_n)) = 0$$

there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ and $q \in C$ such that $\lim_{k\to\infty} x_{n_k} = q$.

Definition 1.5. A sequence $\{x_n\}$ in *E* is said to be Fejër monotone with respect to *C* if

 $||x_{n+1} - p|| \le ||x_n - p||$

for all $p \in C$ and $n \in \mathbb{N}$.

The purpose of this paper is to introduce a modified iteration process to approximate endpoints of multivalued nonexpansive mappings in Banach space.

Let *C* be a nonempty subset of a Banach space and $T : C \to K(C)$ be a nonexpansive multivalued mapping. Let $\alpha_n, \beta_n, \gamma_n \in [a, b] \subset (0, 1)$ are real sequences. We introduce our iteration process as follows: $x_1 \in C$

 $z_n = (1 - \gamma_n) x_n + \gamma_n v_n, \ n \in \mathbb{N}$

where $v_n \in T(x_n)$ such that $||x_n - v_n|| = R(x_n, T(x_n))$, and

$$y_n = (1 - \beta_n) v_n + \beta_n w_n$$

where $w_n \in T(z_n)$ such that $||z_n - w_n|| = R(z_n, T(z_n))$, and

$$x_{n+1} = (1 - \alpha_n)v_n + \alpha_n u_n$$

where $u_n \in T(y_n)$ such that $||y_n - u_n|| = R(y_n, T(y_n))$. Following lemmas will be useful to prove our main results.

Lemma 1.6. [3] For a multivalued mapping $T : C \to K(C)$, the following statements hold.

(i) x ∈ F(T) ⇔ dist(x,T(x)) = 0.
(ii) x ∈ End(T) ⇔ R(x,T(x)) = 0.
(iii) If T is nonexpansive, the mapping g : C → ℝ defined by g(x) := R(x,T(x)) is continuous.

Lemma 1.7. [8] A Banach space *E* is uniformly convex if and only if an arbitrary k > 0, there exists a strictly increasing continuous function $\Psi : [0, \infty) \rightarrow [0, \infty)$ with $\Psi(0) = 0$ such that

 $\lim_{x \to \infty} \|\alpha x + (1 - \alpha)y\|^2 \le \alpha \|x\|^2 + (1 - \alpha) \|y\|^2 - \alpha (1 - \alpha) \Psi(\|x - y\|),$

for all $x, y \in B_k(0) = \{x \in X : ||x|| \le k\}$, and $\alpha \in [0, 1]$.

Lemma 1.8. [9] Let $\{\alpha_n\}, \{\beta_n\}$ be two real sequences such that

(i) $0 \le \alpha_n, \beta_n < 1$, (ii) $\beta_n \to 0$ as $n \to \infty$, (iii) $\sum \alpha_n \beta_n = \infty$,

Let $\{\delta_n\}$ be a nonnegative real sequence such that $\sum \alpha_n \beta_n (1 - \beta_n) \delta_n < \infty$. Then $\{\delta_n\}$ has a subsequence which converges to zero.

Definition 1.9. [10] Let $T: C \to CB(C)$ be a multivalued mapping. A sequence $\{x_n\}$ in C is called an approximate fixed point sequence (resp. an approximate endpoint sequence) for T if $\lim_{n\to\infty} dist(x_n, T(x_n)) = 0$ (resp. $\lim_{n\to\infty} R(x_n, T(x_n)) = 0$). The mapping T is said to have the approximate fixed point property (resp. the approximate endpoint property) if it has an approximate fixed point sequence (resp. an approximate endpoint sequence) in C.

(1.1)

Let *C* be a nonempty subset of a metric space (X,d) and $\{x_n\}$ be a bounded sequence in *X*. The asymptotic radius of $\{x_n\}$ relative to *C* is defined by

$$r(C, \{x_n\}) = \inf \left\{ \limsup_{n \to \infty} d(x_n, x) : x \in C \right\}.$$

The asymptotic center of $\{x_n\}$ relative to *E* is defined by

$$A(C, \{x_n\}) = \left\{ x \in C : \underset{n \to \infty}{\operatorname{limsup}} d(x_n, x) = r(C, \{x_n\}) \right\}.$$

Lemma 1.10. [11] Let C be a nonempty closed convex subset of a uniformly convex Banach space and $T : C \to K(C)$ be a multivalued nonexpansive mapping. Then the following implication holds:

 $\{x_n\} \subseteq C, x_n \rightarrow x, R(x_n, T(x_n)) \rightarrow 0 \Rightarrow x \in End(T).$

Proposition 1.11. [10] Let C be a nonempty subset of a metric space (X,d), $\{x_n\}$ be a sequence in E, and $T: C \to K(X)$ be a mapping. Then $R(x_n, T(x_n)) \to 0$ if and only if $dist(x_n, T(x_n)) \to 0$ and $diam(T(x_n)) \to 0$.

Theorem 1.12. [10] Let $(X, \|.\|)$ be a uniformly convex Banach space, C be a nonempty bounded closed convex subset of X, and $T: C \to K(C)$ be a nonexpansive mapping. Then T has an endpoint if and only if T has the approximate endpoint property.

2. Main Results

We start with the following lemma.

Lemma 2.1. Let C be a nonempty closed convex subset of an uniformly convex Banach space E and $T : C \to K(C)$ be a multivalued nonexpansive mapping with $E_T \neq \emptyset$. Let $\{x_n\}$ be a sequence as defined in (1.1). Then $\lim_{n\to\infty} ||x_n - p||$ exists for each $p \in E_T$.

Proof. Let $p \in End(T)$. By (1.1), we have

$$\begin{aligned} \|x_{n+1} - p\| &= \|(1 - \alpha_n) v_n + \alpha_n u_n - p\| \\ &\leq (1 - \alpha_n) \|v_n - p\| + \alpha_n \|u_n - p\| \\ &= (1 - \alpha_n) dist(v_n, T(p)) + \alpha_n dist(u_n, T(p)) \\ &\leq (1 - \alpha_n) H(T(x_n), T(p)) + \alpha_n H(T(y_n), T(p)) \\ &\leq (1 - \alpha_n) \|x_n - p\| + \alpha_n \|y_n - p\|. \end{aligned}$$

and

$$\begin{aligned} \|y_n - p\| &= \|(1 - \beta_n) v_n + \beta_n w_n - p\| \\ &\leq (1 - \beta_n) \|v_n - p\| + \beta_n \|w_n - p\| \\ &= (1 - \beta_n) dist(v_n, T(p)) + \beta_n dist(w_n, T(p)) \\ &\leq (1 - \beta_n) H(T(x_n), T(p)) + \beta_n H(T(z_n), T(p)) \\ &\leq (1 - \beta_n) \|x_n - p\| + \beta_n \|z_n - p\| \end{aligned}$$

and

$$\begin{aligned} \|z_n - p\| &= \|(1 - \gamma_n) x_n + \gamma_n v_n - p\| \\ &\leq (1 - \gamma_n) \|x_n - p\| + \gamma_n \|v_n - p\| \\ &= (1 - \gamma_n) \|x_n - p\| + \gamma_n dist(v_n, T(p)) \\ &\leq (1 - \gamma_n) \|x_n - p\| + \gamma_n H(T(x_n), T(p)) \\ &\leq (1 - \gamma_n) \|x_n - p\| + \gamma_n \|x_n - p\| \\ &= \|x_n - p\|. \end{aligned}$$

Using (2.3) and (2.2) ,we obtain

$$||y_n - p|| \le (1 - \beta_n) ||x_n - p|| + \beta_n ||x_n - p|| = ||x_n - p||$$

which implies that

$$||x_{n+1}-p|| \le (1-\alpha_n) ||x_n-p|| + \alpha_n ||x_n-p|| = ||x_n-p||.$$

Thus $\{||x_n - p||\}$ is nonincreasing sequence and bounded, which implies that $\lim_{n\to\infty} ||x_n - p||$ exists for each $p \in E_T$. Also $\{x_n\}$ is bounded.

Theorem 2.2. Let *E* be a uniformly convex Banach space with Opial property, *C* be a nonempty closed convex subset of *E* and $T : C \to K(C)$ be a multivalued nonexpansive mapping with $E_T \neq \emptyset$. If $\{x_n\}$ is the sequence defined by (1.1) with $\alpha_n, \beta_n, \gamma_n \in [a,b] \subset (0,1)$ for all *n* in \mathbb{N} , then $\{x_n\}$ converges weakly to an element of E_T .

(2.2)

(2.1)

(2.3)

Proof. Fix $p \in E_T$. Then, as in the proof of Lemma 2.1, $\{x_n\}$ is bounded and so $\{y_n\}, \{z_n\}$ are bounded. Therefore, there exists k > 0 such that $x_n - p$, $y_n - p$, $z_n - p \in B_k(0)$ for all $n \ge 0$. Since *E* is a uniformly convex, by Lemma 1.7, there exists a strictly increasing continuous function $\Psi : [0, \infty) \to [0, \infty)$ with $\Psi(0) = 0$ such that

$$\begin{aligned} \|z_{n} - p\|^{2} &= \|(1 - \gamma_{n})x_{n} + \gamma_{n}v_{n} - p\|^{2} \\ &\leq (1 - \gamma_{n})\|x_{n} - p\|^{2} + \gamma_{n}\|v_{n} - p\|^{2} - \gamma_{n}(1 - \gamma_{n})\Psi(\|x_{n} - v_{n}\|) \\ &\leq (1 - \gamma_{n})\|x_{n} - p\|^{2} + \gamma_{n}dist^{2}(v_{n}, T(p)) - \gamma_{n}(1 - \gamma_{n})\Psi(\|x_{n} - v_{n}\|) \\ &\leq (1 - \gamma_{n})\|x_{n} - p\|^{2} + \gamma_{n}H^{2}(T(x_{n}), T(p)) - \gamma_{n}(1 - \gamma_{n})\Psi(\|x_{n} - v_{n}\|) \\ &\leq \|x_{n} - p\|^{2} - \gamma_{n}(1 - \gamma_{n})\Psi(\|x_{n} - v_{n}\|). \end{aligned}$$

$$(2.4)$$

By Lemma 1.7 and (2.4), we have

$$\begin{aligned} \|y_{n} - p\|^{2} &= \|(1 - \beta_{n})v_{n} + \beta_{n}w_{n} - p\|^{2} \\ &\leq (1 - \beta_{n})\|v_{n} - p\|^{2} + \beta_{n}\|w_{n} - p\|^{2} - \beta_{n}(1 - \beta_{n})\Psi(\|v_{n} - w_{n}\|) \\ &\leq (1 - \beta_{n})dist^{2}(v_{n}, T(p)) + \beta_{n}dist^{2}(w_{n}, T(p)) - \beta_{n}(1 - \beta_{n})\Psi(\|v_{n} - w_{n}\|) \\ &\leq (1 - \beta_{n})H^{2}(T(x_{n}), T(p)) + \beta_{n}H^{2}(T(z_{n}), T(p)) - \beta_{n}(1 - \beta_{n})\Psi(\|v_{n} - w_{n}\|) \\ &\leq (1 - \beta_{n})\|x_{n} - p\|^{2} + \beta_{n}\|z_{n} - p\|^{2} - \beta_{n}(1 - \beta_{n})\Psi(\|v_{n} - w_{n}\|) \\ &\leq (1 - \beta_{n})\|x_{n} - p\|^{2} + \beta_{n}\|z_{n} - p\|^{2} \\ &\leq \|x_{n} - p\|^{2} - \beta_{n}\gamma_{n}(1 - \gamma_{n})\Psi(\|x_{n} - v_{n}\|) \end{aligned}$$
(2.5)

from (2.4), (2.5) and by Lemma 1.7, we have

$$\begin{aligned} \|x_{n+1} - p\|^{2} &= \|(1 - \alpha_{n})v_{n} + \alpha_{n}u_{n} - p\|^{2} \\ &\leq (1 - \alpha_{n})\|v_{n} - p\|^{2} + \alpha_{n}\|u_{n} - p\|^{2} - \alpha_{n}(1 - \alpha_{n})\Psi(\|v_{n} - u_{n}\|) \\ &\leq (1 - \alpha_{n})dist^{2}(v_{n}, T(p)) + \alpha_{n}dist^{2}(u_{n}, T(p)) - \alpha_{n}(1 - \alpha_{n})\Psi(\|v_{n} - u_{n}\|) \\ &\leq (1 - \alpha_{n})H^{2}(T(x_{n}), T(p)) + \alpha_{n}H^{2}(T(y_{n}), T(p)) - \alpha_{n}(1 - \alpha_{n})\Psi(\|v_{n} - u_{n}\|) \\ &\leq (1 - \alpha_{n})\|x_{n} - p\|^{2} + \alpha_{n}\|y_{n} - p\|^{2} - \alpha_{n}(1 - \alpha_{n})\Psi(\|v_{n} - u_{n}\|) \\ &\leq (1 - \alpha_{n})\|x_{n} - p\|^{2} + \alpha_{n}\|y_{n} - p\|^{2} \\ &\leq \|x_{n} - p\|^{2} - \alpha_{n}\beta_{n}\gamma_{n}(1 - \gamma_{n})\Psi(\|x_{n} - v_{n}\|). \end{aligned}$$

$$(2.6)$$

so,

$$||x_{n+1}-p||^2 \le ||x_n-p||^2 - \alpha_n \beta_n \gamma_n (1-\gamma_n) \Psi(||x_n-\nu_n||).$$

This implies that

$$\sum_{n=1}^{\infty} \alpha_n \beta_n \gamma_n (1-\gamma_n) \Psi(\|x_n-v_n\|) < \infty$$

By Lemma 1.8, we have $\lim_{n\to\infty} \Psi(||x_n - v_n||) = 0$. As Ψ is strictly increasing and continuous, we get $\lim_{n\to\infty} ||x_n - v_n|| = 0$. Hence

$$\lim_{n \to \infty} R(x_n, T(x_n)) = \lim_{n \to \infty} ||x_n - v_n|| = 0.$$
(2.7)

We want to show that $\{x_n\}$ converges weakly to an element of E_T . For this, it must be showen that $\{x_n\}$ has unique weak subsequential limit in E_T . Therefore, we assume that there are subsequences $\{x_{n_i}\}$ and $\{x_{n_j}\}$ of $\{x_n\}$ such that $x_{n_i} \rightarrow u$ and $x_{n_j} \rightarrow v$. By (2.7), $\lim_{n_i\to\infty} R(x_{n_i}, T(x_{n_i}) = 0)$. It follows from Lemma 1.10 that $u \in E_T$. Similarly, we can be shown that $v \in E_T$. Now, suppose $u \neq v$. By Lemma 2.1 and the Opial property, we get

$$\lim_{n \to \infty} \|x_n - u\| = \lim_{n_i \to \infty} \|x_{n_i} - u\|$$
$$< \lim_{n_i \to \infty} \|x_{n_i} - v\|$$
$$= \lim_{n \to \infty} \|x - v\|$$
$$= \lim_{n_j \to \infty} \|x_{n_j} - v\|$$
$$< \lim_{n_j \to \infty} \|x_{n_j} - u\|$$
$$= \lim_{n \to \infty} \|x_n - u\|$$

which is a contradiction. Hence $\{x_n\}$ converges weakly to an element of E_T .

Next, we prove strong convergence theorems in uniformly convex Banach spaces.

Theorem 2.3. Let E, C and T be as in Theorem 2.2. Let $\{x_n\}$ be the sequence defined by (1.1) with $\alpha_n, \beta_n, \gamma_n \in [a,b] \subset (0,1)$. If T is semi-compact, then $\{x_n\}$ converges strongly to an element of E_T .

Proof. In view of (2.6), we have

$$\alpha_n\beta_n\gamma_n(1-\gamma_n)\Psi(\|x_n-v_n\|)<\infty.$$

By Lemma 1.8, there exists subsequence $\{v_{n_k}\}$ and $\{x_{n_k}\}$ of $\{v_n\}$ and $\{x_n\}$, respectively, such that $\lim_{k\to\infty} \Psi(||x_{n_k} - v_{n_k}||) = 0$. Since Ψ is strictly increasing and continuous, $\lim_{k\to\infty} ||x_{n_k} - v_{n_k}|| = 0$. So,

$$\lim_{k \to \infty} R(x_{n_k}, T(x_{n_k})) = \lim_{k \to \infty} \|x_{n_k} - v_{n_k}\| = 0.$$
(2.8)

Conversely, *T* is semicompact, we may assume, by passing through a subsequence, that $x_{n_k} \rightarrow q$ for some $q \in C$. We need show that $q \in E_T$ and $x_n \rightarrow q$. By Lemma 1.6 (iii), together with (2.8), we have

$$R(q, T(q)) = \lim_{k \to \infty} R(x_{n_k}, T(x_{n_k})) = 0.$$
(2.9)

It follows from Lemma 1.6 (ii) that $q \in E_T$. By Lemma 2.1 $\lim_{n \to \infty} ||x_n - q||$ exists for each $q \in E_T$ and hence q is the strong limit of $\{x_n\}.$

Proposition 2.4. [12] Let C be a nonempty closed subset of a Banach space and $\{x_n\}$ be a Fejer monotone sequence with respect to C. Then $\{x_n\}$ converges strongly to an element of *C* if and only if $\lim_{n\to\infty} dist(x_n, C) = 0$.

Theorem 2.5. Let E, C, T and $\{x_n\}$ be as in Theorem 2.2. If T satisfies condition (J), then $\{x_n\}$ converges strongly to an endpoint of T.

Proof. Since T is a nonexpansive mapping, E_T is closed. As T satisfies condition (J), $\lim_{n\to\infty} dist(x_n, E_T) = 0$. Lemma 2.1 implies that $\{x_n\}$ is Fejer monotone with to respect E_T . By Proposition 2.4, $\{x_n\}$ converges strongly to an element of E_T .

Acknowledgements

The author would like to express their sincere thanks to the editor and the anonymous reviewers for their helpful comments and suggestions.

Funding

There is no funding for this work.

Availability of data and materials

Not applicable.

Competing interests

There are no competing interests.

Author's contributions

The author contributed to the writing of this paper. The author read and approved the final manuscript.

References

- [1] J. P. Aubin, J. Siegel, Fixed points and stationary points of dissipative multivalued maps, Proc. Am. Math. Soc., 78(3) (1980), 391-398.
- H. W. Corley, Some hybrid fixed point theorems related to optimization, J. Math. Anal. Appl., 120(2) (1986), 528-532
- [2] H. W. Corley, Some hybrid fixed point theorems related to optimization, J. Main. Anai. Appl., 120(2) (1900), 520-552.
 [3] B. Panyanak, Approximating endpoints of multi-valued nonexpansive mappings in Banach spaces, J. Fixed Point Theory Appl., 20(2) (2018), Article ID: 77, 8 pages, doi:10.1007/s11784-018-0564-z.
- [4] T. Laokul, Browder's convergence theorem for multivalued mappings in Banach spaces without the endpoint condition, Abstract and Applied Analysis, 2020 (2020), Article ID: 6150398, 7 pages, doi:10.1155/2020/6150398.
 [5] T. Abdeljawad, K. Ullah, J. Ahmad, N. Mlaiki, *Iterative approximation of endpoints for multivalued mappings in Banach spaces*, Journal of Function

- [5] I. Abdeljawad, K. Ullah, J. Anmad, N. MIaiki, *nerative approximation of enapoints for mattivature inappings in Banach spaces*, southar of 1 anchor Spaces, 2020 (2020), Article ID: 2179059, doi:10.1155/2020/2179059.
 [6] K. Ullah, J. Ahmad, M. Sen, M. S. U. Khan, *Approximating stationary point of multivalued generalized nonexpansive mappings in Banach spaces*, Advances in Mathematical Physics, 2020 (2020), Article ID: 9086078, 6 pages, doi:10.1155/2020/9086078.
 [7] Z. Opial, *Weak convergence of the sequence of successive approximations for nonexpansive mappings*, Bull. Amer. Math. Soc., 73(4)(1967), 591-597.
 [8] H. K. Xu, *Inequalities in Banach spaces with applications*, Nonlinear Analysis: Theory, Methods & Applications, 16(12) (1991), 1127-1138, https://doi.org/10.1016/0022.54650010010 doi:10.1016/0362-546X(91)90200-K.
- [9] B. Panyanak, Mann and Ishikawa iterative processes for multivalued mappings in Banach spaces, Comp. Math. Appl., 54(6) (2007), 872-877 doi:10.1016/j.camwa.2007.03.012
- [10] B. Panyanak, Endpoints of multivalued nonexpansive mappings in geodesic spaces, Fixed Point Theory Appl., 2015, Article ID: 147, 11 pages, doi:10.1186/s13663-015-0398-y.
- [11] B. Panyanak, The demiclosed principle for multi-valued nonexpansive mappings in Banach spaces. J. Nonlinear Convex Anal., 17(10) (2016), 2063-2070. [12] P. Chuadchawna, A Farajzadeh, A. Kaewcharoen, Convergence theorems and approximating endpoints for multivalued Suzuki mappings in hyperbolics spaces, J. Comp. Anal. Appl., 28(5) (2020), 903-916.