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ABSTRACT 

 
In this study, the plane receding contact problem of two elastic layers which one is functionally graded 

material (FGM) resting on a Winkler foundation is considered. The functionally graded layer is modelled as a 
nonhomogeneous medium with an isotropic stress-strain law. The external load is applied to the functionally 

graded elastic layer by means of a rigid cylindrical stamp and the homogeneous elastic layer rets on a Winkler 

foundation. The effect of gravity forces are neglected and only compressive normal tractions can be 
transmitted through the interfaces. Governing equations and mixed boundary conditions of the double 

receding contact problem are converted into a pair of singular integral equations by Fourier integral 

transforms. The system of integral equation is numerically solved by making use of appropriate Gauss-
Chebyshev integration formulas for the contact pressures and contact lengths at both interfaces of contact. The 

main objectives of the paper are to analyze the effect of the nonhomogeneity parameter, the elastic spring 

constanat of Winkler foundation, the magnitude of the applied load, the radius of rigid cylindrical stamp and 
materials properties on the contact pressures and the contact lengths.  

Keywords: Receding contact, Winkler foundation, functionally graded material. 

 

 

1. INTRODUCTION 

 

Functionally graded materials (FGMs) are increasingly used in a wide range of engineering 

practice and a new kind of inhomogeneous composites whose material properties over the past 

decade are designed for specific functions. Some potential applications of FGMs involve contact 

problems which is widely studied because of its applications to a great variety of importenet 

structures of practical interest such as foundation grillages, pavements in roads and runways, 

railway ballast, gas turbines, brake disks and other structures consisting of layered media. 

Contact problems of two separate bodies pressed againist each other have been extensively 

studied previously. A contact is described to be receding that when two bodies contact each other, 

the applied loads cause the bodies to deform and the initial contact area changes. In this type of 

contact problems, the length of the contact zone and the contact pressure which is zero at the end 

of the contact segment are the primary unknowns. 
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The receding contact problems have been widely examined during the past decades by several 

researchers both analytically and numerically. The numerical studies on this type contact 

problems include those based on the finite element method [1] – [6] or those based on the 

boundary element [7] – [10].  

The analytical solutions of the receding contact problems between a FG layer and a rigid/ 

homogeneous substrate or layer are examined by El-Borgi et al. [11, 12], Rhimi et al. [13, 14], 

choi [15] and Jie and Xing [16]. Yan and Changwen [17] studied the receding contact problem of 

between a homogeneous elastic layer and a half - plane substrate coated with functionally graded 

materials.  Comez [18] and Comez et al. [19] considered the frictional contact problem of a 

functionally graded layer and and a homogeneous orthotropic layer fully connected rigid 

foundation from bottom surface and loaded by a rigid cylindrical stamp from top surface. The 

plane frictional contact problem between a rigid cylindrical punch and a FG bilayer which the 

layers have different thicknesses and elastic constants is examined by Comez and Guler [20]. The 

contact problem of a rigid stamp and a functionally graded layer resting on a Winkler foundation 

is investigated by Comez [21].  

As it can be seen in literature that there is limited the receding contact problems including 

layered media which have FG layer resting on a Winkler foundation.  Therefore, the duoble 

receding contact problem of between a functionally graded layer and a homogeneous elastic layer 

resting on a Winkler foundation and loaded by a rigid cylindrical stamp is considered in this 

study. The functionally graded layer is modelled as a nonhomogeneous medium with an isotropic 

stress-strain law. The external load is applied to the functionally graded elastic layer by means of 

a rigid cylindrical stamp and the homogeneous elastic layer rets on a Winkler foundation. The 

effect of gravity forces are neglected and only compressive normal tractions can be transmitted 

through the interfaces. Governing equations and mixed boundary conditions of the double 

receding contact problem are converted into a pair of singular integral equations by Fourier 

integral transforms. The system of integral equation is numerically solved by making use of 

appropriate Gauss-Chebyshev integration formulas for the contact pressures and contact lengths at 

both interfaces of contact. The main objectives of the paper are to analyze the effect of the 

nonhomogeneity parameter, the elastic spring constanat of Winkler foundation, the magnitude of 

the applied load, the radius of rigid cylindrical stamp and materials properties on the contact 

pressures and the contact lengths. 

 

2. FORMULATION OF THE CONTACT PROBLEM 

 

Consider the double receding contact problem of between a functionally graded layer and a 

homogeneous elastic layer resting on a Winkler foundation and loaded by a rigid cylindrical 

stamp shown in Fig. 1. The problem is solved under the assumptions that the contact along the 

interfaces is frictionless, only compressive normal tractions can be transmitted through the contact 

interfaces and the effect of gravity forces are neglected. As it can be seen in Fig. 1 that a rigid 

cylindrical stamp with radius R transmits a concenrated normal force to a functionally graded 

layer of thickness 
1h  and a homogeneous layer of thickness 

2h   rests on a Winkler foundation of 

elastic spring constant 
0k . The rigid cylindrical stamp and the FG layer are in contact with each 

other on the interval ( , )a a  and the FG layer and the homogeneous layer are in contact with 

each other on the interval ( , )b b .  
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Figure 1. Geometry and load ing case of the double receding contact problem 

 

For the graded layer, the material is modelled as a nonhomogeneous isotropic material with a 

gradient oriented along the  y - direction. The poisson’s ratio 
1  

is assumed to be a constant and 

the shear modulus 
1  depends on the y - coordinate only and is expressed as the following 

exponential function:  
 

1 0( ) yy e 
,                                    1(0 )y h                                                          (2.1) 

 

where, 
0  is the shear modulus on the bottom surface of the FG layer (for 0y  ) and   

is nonhomogeneity parameter controlling the variation of the shear modulus in the graded 

medium. For the homogeneous layer, the shear modulus and the Poisson’s ratio are 
2  and 

2 , 

respectively.  

The frictionless double receding contact problem may be solved by considering separately the 

graded layer and the homogeneous layer. The equations of plane problem in both domains are the 

equilibrium equations in the absence of body forces and the linear elastic strain law which are, 

respectiveley, given by 
 

0
ixyix

x y

 
 

 
,    0

iyx iy

x y

  
 

 
 , (2.2a,b) 
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where, iu  and iv  ( 1, 2)i 
 

denote the displacemet components in the x - and y - 

directions, respectively, 3 4i i    for plane strain and (3 ) / (1 )i i i      for plane 

stress, in which i  is Poisson’ ratio. 
ix , 

iy
 
and 

ixy
 
represent the stress components, and 

i  is the shear modulus of the layers. The subscripts 1  and 2  denote the FG layer and the 

homogeneous layer, respectively. 

To solve the receding contact problem between the FG layer and the homogeneous layer, the 

following two dimensional elasto-static Navier’s equations are derived by combining Eqs. (2.1)- 

(2.3): 

  

       
2 2 2

1 1 1 1 1
1 1 1 12 2

1 1 2 1 1 0
u u v u v

x y x y y x
     

    
        

     
,   (2.4a) 

  

       
2 2 2

1 1 1 1 1
1 1 1 12 2

1 1 2 3 1 0
u u

x y x y x y

  
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    
        

     
 ,   (2.4b) 
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2 2 2

2 2 2
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x y x y
 

  
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   
2 2 2

2 2 2
2 22 2

1 1 2 0
u

x y x y

 
 

  
    

   
,                                                         (2.4c,d) 

 

Assuming that 0x   is a plane symmetry, it is sufficient to consider the problem in the 

region   0 x   only. Using Fourier transform technique and the symmetry property of the 

problem, the following expressions may be written, for the displacements, 
 

0

2
( , ) ( , )sini iu x y y xd   





  , 

0

2
( , ) ( , )cosi iv x y y xd   





  , ( 1, 2)i     (2.5a,b) 

  

where,  ( , )i y   and  ( , )i y   are Fourier transform of ( , )iu x y  and ( , )iv x y  

( 1, 2)i  , respectively. 

By the use of Fourier integral transforms, the partial differential equations (2.4) can be 

reduced to a group of ordinary differential equations. If the solutions of these ordinary differential 

equations are sought as, 

  

4

1

1

jn y

j

j

A e


 , 

4

1

1

jn y

j j

j

A m e


                                                                             (2.6a,b) 

  

2

ye  ,             
2

ye                                                                                                 (2.6c,d) 
 

the following expressions of the displacement and stress components are readily obtained as,  
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for the FG layer;  
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for the homogeneous layer; 
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where, 
jA ,

jB , 
jC , and 

jD ( 1,...,4)j 
 
are the unknown functions that will be 

determined from the boundary conditions of the problem. 
jn ( 1,...,4)j   satisfies the 

following characteristic equation, 
 

2 2 2 2 2
4 3 2 2 2 2 1

1

(3 ( ) )
2 ( 2 ) 2 0
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n n n n

     
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
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The roots of characteristic equation (2.9) may be given with, 
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2 2 1
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In equations (2.6b) and (2.7b,c), the known functions 
jm  may be expressed as, 
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3. THE BOUNDARY CONDITIONS AND THE SYSTEM OF INTEGRAL EQUATIONS 

  

The plane double receding contact problem has to be solved under the following boundary 

conditions: 

  

1

1 1
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1 ( ,0) 0xy x  , (0 )x                                                                                              (3.1e) 
  

2 ( ,0) 0xy x  , (0 )x                                                                                              (3.1f) 
  

2 2 0 2 2( , ) ( , )y x h k x h    , (0 )x                                                                    (3.1g) 
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x x
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 1 2( ,0) ( ,0) 0x x
x
 


 


, (0 )x b                                                                     (3.1j) 

 

where, a  and b  are the half contact lengths between the rigid stamp and the FG layer, and 

between the FG layer and the homogeneous layer, respectively. 1( )p x  and 2 ( )p x  are the 

primary unknown contact pressures on the contact surfaces, respectively. ( )F x  is a known 

function giving the profile of the rigid stamp and 0k  is the elastic spring constant representing of 

the Winkler foundation.  

By making use of the boundary conditions (3.1a - h), the unknwon functions 
jA ,

jB , 
jC , 

and 
jD  appearing in equations (2.7) and (2.8) may be determined in terms of the primary 

unknwon contact pressures 1( )p x  and 2 ( )p x . Thus, the stresses and the displacements can be 

expressed depending on the unknown contact pressures which have not yet determined. 

The solution (2.7) and (2.8) with 
jA ,

jB , 
jC , and 

jD satisfies all of the boundary 

conditions given by equations (3.1a - h) except the mixed conditions (3.1i) and (3.1j). The 

primary unknown functions 1( )p x  and 2 ( )p x  are determined from the mixed conditions 

which have not yet satisfied. After some routine manipulations and using the symmetry 

consideration, these mixed conditions give the following system of the integral equations 

depending on 1( )p x   and 2 ( )p x .  
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where, R is the radius of the rigid cylindrical stamp and, 
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    2 2 24 4 22

2 2 24 16 sinh h hke e h e t x d         .                                   (3.3e) 

 

In equations (3.3a) - (3.3e),  1  
and 2   are given in Eyuboglu [22], and  

    

0 2/k k  .                                                                                                                            (3.3f)  
  

In addition to the contact pressures 1( )p x  and 2 ( )p x , the half contact lengths a  and b
are also unknown in the system of the integral equations (3.2a) and (3.2b). These unknowns a  

and b
 
are determined from the equilibrium conditions expressed as following equations: 

   

 1

a

a

p t dt P


 ,    2

b

b

p t dt P


 .                                                                       (3.4a,b) 

 

4. THE NUMERICAL SOLUTION OF THE SYSTEM OF INTEGRAL EQUATIONS  
  

Designating the variables ( , )x t  on 0y   and  1y h   by  1 1( , )x t  and 2 2( , )x t , 

respectively, and defining following dimensionless quantities, 
  

1 1x as  ,  2 2x bs ,                                                                                                (4.1a,b)   
    

1 1t ar  ,  2 2t br ,  (4.1c,d) 
1

1 1 1 1( ) ( )
h

G r p t
P

 , 
1

2 2 2 2( ) ( )
h

G r p t
P

               (4.1e,f) 

  

the normalized form of the integral equations (3.2a, b) and the equilibrium conditions (3.4a, 

b) may be written as follows: 
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1

1 1 1

1 1

( ) 1
a

G r dr
h





 , 

1

2 2 2

1 1

( ) 1
b

G r dr
h





 ,                                                                (4.3a,b) 

 

Because of the smooth contact at the end points a  and b , the contact pressures 1( )p x  and 

2 ( )p x
 
are zero at the edges. Thus, the integral equations (3.2a) and (3.2b) have index -1 [23]. 

To insure smooth contact at the end points, let 

   

     1 1 1 1 1 1i i iG r w r g r ,     
1/2

2

1 1 11i iw r r  ,        1,...,i N ,           (4.4a) 

  

   2 2 2 2 2 2( )i i iG r w r g r ,    
1/2

2

2 2 21i iw r r  ,  1,...,i N ,                 (4.4b) 

 

where,  1 1g r  and  2 2g r  are continuous and bounded functions in the interval [-1, 1]. 

Using Gauss-Chebyshev integration formulas [23], equations (4.2) and (4.3) can be converted to a 

system of algebraic equations as follows: 
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where, ir  and ks  are the zeros of the related Chebyshev polynomials and 
N

iW  is the 

weighting constant: 
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i
r i N

N

 
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 
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2 1
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2 1
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k
s k N

N

  
   

 
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It can be demonstrated that the ( / 2 1)N  -th equations in (4.5a) and (4.5b) are 

automatically satisfied. Thus, equations (4.5) and (4.6) give 2 2N   algebraic equations to 

determine the 2 2N   unknowns 1( )ig r , 2 ( )ig r ( 1,..., )i N , a  and b . The system of 

equations are linear in  1( )ig r  and 2 ( )ig r , but nonlinear in a  and b . Therefore, an iteration 

scheme has to be used to determine these two unknowns.   

 

5. NUMERICAL RESULTS AND DISCUSSION 

  

This section presents numarical results and discussion for the contact pressures and contact 

lengths at both interfaces of contact. Therefore, the effects of the nonhomogeneity parameter, the 

elastic spring constanat, the magnitude of the applied load, the radius of rigid cylindrical stamp 

and materials properties on the contact pressures and the contact lengths are examined in Figs. 2-9 

and Tables 1-4 for various dimonsionless quantities such as 1/R h ,
 1h , 0 2/   and 

0 2/k k  . 

Tables 1-3 and Figures 2-5 show the variations of the half contact lengths 1/a h
 
and 1/b h  

for various dimensionless quantities such as 1/R h ,
 1h , 0 2/   and 0 2/k k  . As it 

can be seen in Table 1 that both the half contact lengths 1/a h
 
and 1/b h

 
between the rigid 

stamp and the FG layer, and between the FG layer and the homogeneous layer, respectively, 

increases with increasing 1/R h
 
ratio.  

 

Table 1. Variations of half contact lengths 1/a h and 1/b h
 
with 

 
for various values of rigid 

stamp radius ( 1 2 2,  
 0 2/ 1,    1k   ). 

 

1h  
1/ 10R h   1/ 50R h   1/ 100R h   

1/a h  1/b h  1/a h  1/b h  1/a h  1/b h  

-1 0.151739 1.336927 0.324858 1.361852 0.450813 1.390786 

0,01 0.097590 1.445485 0.221070 1.455382 0.317386 1.468406 

1 0.061266 1.598321 0.144055 1.601851 0.212656 1.606983 
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Figure 2. Variations of half contact length 1/a h
 
between the rigid stamp and the FG layer with 

elastic spring constant ratio k
 
for various values of the nonhomogeneity parameter 

 

1 2( 2,  
 0 2/ 1,  

 1/ 100R h  ). 
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Figure 3. Variations of half contact length 1/b h
 
between the FG layer and the homogeneous 

layer with elastic spring constant ratio k
 
for various values of nonhomogeneity parameter 

 

1 2( 2,  
 0 2/ 1,  

 1/ 100R h  ). 

 

1 0h   indicates that the rigidity of the top surface is higher than the bottom surface of the 

FG layer whereas 1 0h   corresponds to a special case where the layer is homogeneous. 

Tables 1-3 and Figures 2-5 show that the effect of nonhomogeneity parameter 1h  on the half 

contact lengths. It is clearly evident from the tables and the figures that as nonhomogeneity 

parameter 1h  
increases, the half contact length 1/a h

 
between the rigid stamp and the FG 

layer decreases, but the half contact length 1/b h  between the FG layer and the homogeneous 

layer increases. Figures 2-5 and Tables 2-3 illustrate that increasing elastic spring constant k , the 

half contact lengths 1/a h
 
and 1/b h  decrease. That increasing elastic spring constant k

 
increases the rigidity of the foundation. That's why both the contact lengths are decreased. As it 

can be seen in Table 3 and Figures 4-5 that the half contact length 1/a h
 
between the rigid 

stamp and the FG layer decreases, but the half contact length 1/b h  between the FG layer and 

the homogeneous layer increases as shear modules ratio 0 2/   increases.  

 

A. Birinci, A. Eyuboglu     / Sigma J Eng & Nat Sci 38 (2), 667-686, 2020 



679 

 

 

Table 2. Variations of the half contact lengths 1/a h and 1/b h
 
with 

 
for various values of 

k  
 
( 1 2 2,  

 0 2/ 1,  
 1/ 100R h   ). 

 

1h  
 k=0,02   k=0,1  k=0,2 

1/a h  1/b h  1/a h  1/b h  1/a h  1/b h  

-1 0.517983 3.095658 0.477351 2.177473 0.466473 1.856735 

0,01 0.362626 3.321718 0.335652 2.342216 0.328249 2.002576 

1 0.239327 3.618156 0.223658 2.554162 0.219241 2.194941 

 

 
 

Figure 4. Variations of the half contact length 1/a h
 
between the rigid stamp and the FG layer 

with the shear modules ratio 0 2/ 
 
for various values of the nonhomogeneity parameter 

                

( 1 2 2,  
 

1k  , 1/ 10R h  ). 
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Table 3. Variations of the half contact lengths 1/a h and 1/b h
 
with   for various values of 

the shear modulus ratios  

0 2/ 
 
( 1 2 2,  

 
1k  , 1/ 10R h  ). 

 

1h  
0 2/ 1    0 2/ 2    0 2/ 10    

1/a h  1/b h  1/a h  1/b h  1/a h  1/b h  

-1 0.151739 1.336927 0.109098 1.569336 0.049939 2.305771 

0,01 0.097590 1.445485 0.068995 1.726751 0.030802 2.604380 

1 0.061266 1.598321 0.042878 1.921335 0.018902 2.944393 

 

 
 

Figure 5. Variations of the half contact length 1/b h
 
between the FG layer and the 

homogeneous layer with the shear modules ratio 0 2/   for various values of the 

nonhomogeneity parameter 
  

( 1 2 2,  
 

1k  , 1/ 10R h  ). 

 

Figures 6-9 depict the distributions of the normalized contact pressures 1 1( ) / ( / )p x P h  

and  2 1( ) / ( / )p x P h
 
for various values of the nonhomogeneity parameter 

 
and the elastic 
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spring constant ratio k .  As it can be seen the figures that the contact pressures along the contact 

surfaces are always maximum at the symmetry plane. Figures 6 and 7 show that the effect of 

nonhomogeneity parameter   on the contact pressures 1 1( ) / ( / )p x P h  and   

2 1( ) / ( / )p x P h .  It is clearly evident from the figures that as the nonhomogeneity parameter 

  increases, i.e. the rigidity of the top surface is higher than the bottom surface of the FG layer, 

the maximum values of the contact pressures between the rigid stamp and the FG layer increase, 

but  the maximum values of the contact pressures between the FG layer and the homogeneous 

layer decrease. Figures 8 and 9 illustrate that as the elastic spring constant increases, i.e. as the 

foundation becomes more rigid, the maximum values of the contact pressures between the rigid 

stamp and the FG layer decrease, but the maximum values of the contact pressures between the 

FG layer and the homogeneous layer increase. These results are consistent with Figures 2-3 and 

Table 2.  

 

 
 

Figure 6. Contact pressures distributions under the rigid stamp for various values of 

nonhomogeneity parameter   

 ( 1 2 2,  
 0 2/ 1,  

 
1k  , 1/ 100R h  ). 
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Figure 7. Contact pressures distributions between the FG layer and the homogeneous layer for  

various values of nonhomogeneity parameter  

 ( 1 2 2,  
 0 2/ 1,  

 
1k  , 1/ 100R h  ). 
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Figure 8. Contact pressures distributions under the rigid stamp for various values of the elastic 

spring constant ratio k
 
( 1 2 2,  

 0 2/ 1,  
 1/ 100R h  , 1  ). 
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Figure 9. Contact pressures distributions between the FG layer and the homogeneous layer for 

various values of elastic spring constant ratio  

k ( 1 2 2,   0 2/ 1,   1/ 100R h  , 1  ). 

 

Table 4. Comparison of the half contact lengths obtained from present study with Comez et al.  

(2003) for various dimensionless values of  

2 1/ ( / )P h  and 1/R h  ( 1 2 2,  
  
k  1 0h  ). 

 

2

1/P h



 

1/ 10R h   1/ 500R h   1/ 1000R h   

Present study Comez et al. [24]  Present study Comez et al. [24] Present study Comez et al. [24] 

 

1/a h
 

1/b h  1/a h  

 

1/b h
 

 

1/a h
 

1/b h  

 

1/a h
 

1/b h  

 

1/a h
 

1/b h  

 

1/a h
 

1/b h  

100 0.2207 1.2586 0.2202 1.2534 1.5890 1.9432 1.5873 1.9547 2.1678 2.4479 2.1352 2.4081 

250 0.1384 1.2490 0.1386 1.2446 1.0304 1.5839 1.0312 1.5626 1.4504 1.8606 1.4354 1.8379 

500 0.0974 1.2557 0.0978 1.2421 0.7306 1.4185 0.7243 1.4025 1.0304 1.5840 1.0312 1.5641 

750 0.0795 1.2450 0.0798 1.2407 0.5932 1.3584 0.5862 1.3457 0.8432 1.4719 0.8484 1.4559 

1000 0.0688 1.2445 0.0690 1.2395 0.5105 1.3282 0.5044 1.3172 0.7258 1.4162 0.7243 1.4024 
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The double receding contact problem of two homogeneous elastic layers resting on a rigid 

foundation which the external load is applied to upper elastic layer by means of a rigid cylindrical 

stamp is studied by Comez et al. [24]. In the present study, when k   and  1 0h  , the 

problem becomes to the study of Comez et al. [24]. Comparison of the half contact lengths 

obtained from present study with Comez et al. [24] for various dimensionless values of 

2 1/ ( / )P h  and 1/R h   is given in Table 4. As it can be seen from  the table that the results 

obtained from the present study are compatible with the results given in Comez et al. [24].   

 

6. CONCLUSIONS 

  

In the present study, the double receding contact problem of between a functionally graded 

layer and a homogeneous elastic layer resting on a Winkler foundation and loaded by a rigid 

cylindrical stamp is considered. The nonhomogeneity parameter, the elastic spring constant,  the 

radius of rigid cylindrical stamp and materials properties have an important effect on the contact 

pressures and the contact lengths. The contact lengths increase with the increasing the radius of 

rigid cylindrical stamp. The contact length between the rigid stamp and the FG layer decreases, 

but the contact length between the FG layer and the homogeneous layer increases as the rigidity 

of the FG layer decreases from the loaded top surface to the bottom surface, i.e. nonhomogeneity 

parameter 1h  increases.  The contact lengths at the contact surfaces decrease with increasing 

the elastic spring constant. As the shear modules ratio 0 2/    increases, the contact length 

between the rigid stamp and the FG layer decreases, but the contact length between the FG layer 

and the homogeneous layer increases. The contact pressures along the contact surfaces are always 

maximum at the symmetry plane. The maximum values of the contact pressures between the rigid 

stamp and the FG layer increase, but the maximum values of the contact pressures between the 

FG layer and the homogeneous layer decrease as the rigidity of the top surface is higher than the 

bottom surface of the FG layer. If the foundation becomes more rigid, the maximum values of the 

contact pressures between the rigid stamp and the FG layer decrease, but the maximum values of 

the contact pressures between the FG layer and the homogeneous layer increase. These results are 

quite compatible with the literature.  
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