

The Gershgorin type theorem on localization of the eigenvalues of infinite matrices and zeros of entire functions

Michael Gil¹

Keywords Infinite matrix, Compact operator, Localization of spectrum, Zeros of entire functions **Abstract** – Let 1 , <math>1/p + 1/p' = 1 and $A = (a_{jk})_{j,k=1}^{\infty}$ be a *p*-Hille-Tamarkin infinite matrix, i.e.

$$\sum_{j=1}^{\infty} \left(\sum_{k=1}^{\infty} |a_{jk}|^{p'} \right)^{p/p'} < \infty$$

It is proved that the spectrum of A lies in the union of the discs

$$\left\{ z \in \mathbb{C} : |a_{jj} - z| \le \left[\sum_{j=1}^{\infty} (\sum_{k=1, k \neq j}^{\infty} |a_{jk}|^{p'})^{p/p'} \right]^{1/p} \right\} (j = 1, 2, ...)$$

In addition, an application of that result to finite order entire functions is discussed. An illustrative example is also presented.

Subject Classification (2020): 47A10; 47A11; 30B10.

1. Introduction and statement of the main result

Let 1 , <math>1/p + 1/p' = 1 and $A = (a_{jk})_{j,k=1}^{\infty}$ be a *p*-Hille-Tamarkin infinite matrix, i.e.

$$c_p(A) := \left[\sum_{j=1}^{\infty} \left(\sum_{k=1}^{\infty} |a_{jk}|^{p'}\right)^{p/p'}\right]^{1/p} < \infty.$$

The paper is devoted to the localization of the eigenvalues of such matrices.

The literature on the localization of the eigenvalues of finite and infinite matrices is very rich, cf. [1, 3, 5, 9, 14, 15, 18, 19] and the references which are given therein. At the same time, to the best of our knowledge, the location of the eigenvalues of Hille-Tamarkin matrices has not been considered in the available literature.

As is well-known, Hille-Tamarkin matrices represent numerous integral operators, arising in various applications, cf. [17]. About properties of Hille-Tamarkin matrices, see for instance, [17], [6],[7, Section 18]. In particular, in the well-known book [17], the convergence of the powers of the eigenvalues of these matrices is investigated. The works [6, 7] deal with infinite matrices, whose upper-triangular parts are Hille-Tamarkin matrices. Besides, the invertibility and positive invertibility conditions are explored, as well as

¹gilmi@bezeqint.net (Corresponding Author)

 $^{^{1}\}mathrm{Department}$ of Mathematics, Ben Gurion University of the Negev, Beer-Sheva, Israel

Article History: Received: 10.10.2021 - Accepted: 03.03.2022 - Published: 10.03.2022

upper bounds for the spectra have been derived.

Denote

$$\tau_p(A) := \left[\sum_{j=1}^{\infty} \left(\sum_{k=1, k \neq j}^{\infty} |a_{jk}|^{p'} \right)^{p/p'} \right]^{1/p}.$$

Throughout the paper $\lambda_k(A)$ (k = 1, 2, ...) are the eigenvalues of A taken with their multiplicities and enumerated in the non-increasing way of the absolute values: $|\lambda_{k+1}(A)| \le |\lambda_k(A)|$ (k = 1, 2, ...), and $\sigma(A)$ is the spectrum of A as the operator in l^p . Recall that l^p is the Banach space of the sequences $x = (x_k)_{k=1}^{\infty}$ of complex numbers with the finite norm

$$||x||_{l^p} = \sum_{k=1}^{\infty} (|x_k|^p)^{1/p}.$$

The following theorem is the main result of this paper.

Theorem 1.1. Let $c_p(A) < \infty$ for a finite p > 1. Then with the notation

$$U_{j,p}(A) := \{ z \in \mathbb{C} : |a_{jj} - z| \le \tau_p(A) \} \ (j = 1, 2, ...),$$

one has

$$\sigma(A) \subset \cup_{j=1}^{\infty} U_{j,p}(A).$$

The proof of this theorem is presented in the next section.

For a positive integer *n*, let $\mathbb{C}^{n \times n}$ be the set of $n \times n$ -matrices and $A_n = (a_{jk})_{j,k=1}^n \in \mathbb{C}^{n \times n}$. Recall that by the Gershgorin theorem [15],

$$\sigma(A_n) \subset \cup_{j=1}^n \hat{U}_j(A_n),$$

where

$$\hat{U}_{j}(A_{n}):=\{z\in\mathbb{C}:|a_{jj}-z|\leq\sum_{k=1,k\neq j}^{n}|a_{jk}|\}\ (j=1,...,n).$$

This result can be easily extended to the infinite dimensional case, provided

$$\sup_{j}\sum_{k=1}^{\infty}|a_{jk}|<\infty.$$

Thus, Theorem 1.1 can be considered as an extending of the Gershgorin theorem to a finite p > 1. Furthermore, the quantity $\hat{s}(A) := \sup_{j,k} |\lambda_j(A) - \lambda_k(A)|$ is called the spread of A. In the finite dimensional case the spread plays an essential role, cf. [15, Section III.4]. Since

$$|\lambda_j(A) - \lambda_k(A)| \le |\lambda_j(A) - a_{jj}| + |\lambda_k(A) - a_{kk}| + |a_{jj} - a_{kk}|,$$

for a *p*-Hille-Tamarkin matrix A Theorem 1.1 gives us the inequality

$$\hat{s}(A) \le \sup_{j,k} |a_{jj} - a_{kk}| + 2\tau_p(A).$$
(1.1)

Similarly, let $A = (a_{jk})$ and $B = (b_{jk})$ be two *p*-Hille-Tamarkin matrices. Then the quantity $s(A, B) := \sup_{j,k} |\lambda_j(A) - \lambda_j(A)|$

 $\lambda_k(B)$ will be called the mutual spread of *A* and *B*. Since

$$|\lambda_j(A) - \lambda_k(B)| \le |\lambda_j(A) - a_{jj}| + |\lambda_k(B) - b_{kk}| + |a_{jj} - b_{kk}|$$

Theorem 1.1 gives us the inequality

$$s(A,B) \le \sup_{j,k} |a_{jj} - b_{kk}| + \tau_p(A) + \tau_p(B).$$
(1.2)

Let $r_s(A)$ denote the spectral radius of *A*. Then clearly, $|r_s(A) - r_s(B)| \le s(A, B)$. Now we can apply inequality (1.2).

2. Proof of Theorem 1.1

Let $A_n = (a_{jk})_{j,k=1}^n \in \mathbb{C}^{n \times n}$, $\mu \in \sigma(A_n)$ and $x = (x_j)$ be the eigenvector of A_n corresponding to μ :

$$\sum_{k=1}^{n} a_{jk} x_k = \mu x_j \ (j = 1, ...n).$$

Then

$$(\mu - a_{jj})x_j = \sum_{k=1, k \neq j}^n a_{jk} x_k$$

and

$$|a_{jj} - \mu| |x_j| \le \sum_{k=1, k \ne j}^n |a_{jk}| |x_k| \ (j = 1, ..., n)$$

So by the Hőlder inequality,

$$|a_{jj} - \mu|^p |x_j|^p \le (\sum_{k=1, k \neq j}^n |a_{jk}|^{p'})^{p/p'} \sum_{i=1}^n |x_i|^p$$

and

$$\sum_{j=1}^{n} |a_{jj} - \mu|^{p} |x_{j}|^{p} \le \tau_{p}^{p}(A_{n}) \sum_{i=1}^{n} |x_{i}|^{p}.$$

Here

$$\tau_p(A_n) := \left[\sum_{j=1}^n \left(\sum_{k=1, k \neq j}^n |a_{jk}|^{p'} \right)^{p/p'} \right]^{1/p}$$

Consequently,

$$\min_{j} |a_{jj} - \mu| \le \tau_p(A_n).$$

In other words, for any eigenvalue μ of A_n , there is an integer $m \le n$, such that $|a_{mm} - \mu| \le \tau_p(A_n)$. We thus have proved the following result.

Lemma 2.1. Let $A_n \in \mathbb{C}^{n \times n}$. Then for any finite p > 1 we have

$$\sigma(A_n) \subset \cup_{j=1}^n U_{j,p}(A_n),$$

where

$$U_{j,p}(A_n) = \{z \in \mathbb{C} : |a_{jj} - z| \le \tau_p(A_n)\}.$$

Proof of Theorem 1.1: By the Hőlder inequality we have

$$\|A\|_{l^p} \le c_p(A), \tag{2.1}$$

where $||A||_{l^p}$ means the operator norm of A in l^p . Since $\tau_p(A_n) \to \tau_p(A)$ as $n \to \infty$, according to (2.1), $A_n \to A$ in the operator norm and therefore, by the upper semicontinuity of spectra [11, Theorem IV.3.1], for any finite k we have $\lambda_k(A_n) \to \lambda_k(A)$ as $n \to \infty$. Now Lemma 2.1 implies the required result. \Box

3. Applications to entire functions

Let us consider the entire function

$$h(z) = \sum_{k=0}^{\infty} \frac{a_k z^k}{(k!)^{\alpha}} \quad (0 < \alpha \le 1, \ z \in \mathbb{C}, \ a_0 = 1, \ a_k \in \mathbb{C}, \ k \ge 1).$$
(3.1)

Denote the zeros of *h* with the multiplicities in non-decreasing order of their absolute values by $z_k(h)$: $|z_k(h| \le |z_{k+1}(h)| \ (k = 1, 2, ...)$ and assume that for a $p > 1/\alpha$,

$$\theta_p(h) := \sum_{k=2}^{\infty} |a_k|^{p'} < \infty \ (1/p + 1/p' = 1).$$
(3.2)

Introduce the quantity

$$b_p(h) := [\theta_p^{p/p'}(h) + \sum_{j=2}^{\infty} \frac{1}{j^{\alpha p}}]^{1/p} = [\theta_p^{p/p'}(h) + \zeta(\alpha p) - 1]^{1/p},$$

where

$$\zeta(z) = \sum_{k=1}^{\infty} k^{-z}$$
 (Re $z > 1$)

is the Riemann zeta function. Our aim in this section is to prove the following theorem.

Theorem 3.1. Let *h* be defined by (3.1) and condition (3.2) hold. Then for any zero z(h) of *h* we have either $|a_1 - \frac{1}{z(h)}| \le b_p(h)$ or $|z(h)| \ge \frac{1}{b_p(h)}$.

To prove this theorem introduce the polynomial

$$f_n(z) = \sum_{k=0}^n \frac{a_k z^{n-k}}{(k!)^{\alpha}}$$

and $n \times n$ -matrix

$$F_n = \begin{pmatrix} -a_1 & -a_2 & \dots & -a_{n-1} & -a_n \\ 1/(2^{\alpha}) & 0 & \dots & 0 & 0 \\ 0 & 1/(3^{\alpha}) & \dots & 0 & 0 \\ \vdots & \vdots & \dots & \vdots & \vdots \\ 0 & 0 & \dots & 1/(n^{\alpha}) & 0 \end{pmatrix}.$$

Let $z_k(f_n)$ (k = 1, ..., n) be the zeros of f_n with their multiplicities enumerated in non-increasing order of their absolute values, and $\lambda_k(F_n)$ be the eigenvalues of F_n taken with the multiplicities enumerated in the non-increasing order of their absolute values.

Lemma 3.2. One has $\lambda_k(F_n) = z_k(f_n) \ (k = 1, ..., n)$.

Proof.

Clearly, f_n is the characteristic polynomial of the matrix

$$B = \begin{pmatrix} -a_1 & -\frac{a_2}{2^{\alpha}} & \dots & -\frac{a_{n-1}}{((n-1)!)^{\alpha}} & -\frac{a_n}{(n!)^{\alpha}} \\ 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \dots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 \end{pmatrix}.$$

Following [8, Lemma 5.2.1, p. 117], put

$$m_k = \frac{1}{k^{\alpha}}$$
 and $\psi_k = \frac{1}{(k!)^{\alpha}} = m_1 m_2 \cdots m_k$ $(k = 1, ..., n)$.

Then

$$F_n = \begin{pmatrix} -a_1 & -a_2 & \dots & -a_{n-1} & -a_n \\ m_2 & 0 & \dots & 0 & 0 \\ 0 & m_3 & \dots & 0 & 0 \\ \vdots & \vdots & \dots & \vdots & \vdots \\ 0 & 0 & \dots & m_n & 0 \end{pmatrix}$$

and

$$B = \begin{pmatrix} -a_1 & -a_2\psi_2 & \dots & -a_{n-1}\psi_{n-1} & -a_n\psi_n \\ 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \dots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 \end{pmatrix}$$

Let μ be an eigenvalue of B, i.e. for the eigenvector $(x_k)_{k=1}^n \in \mathbb{C}^n$, we have

 $-a_1x_1 - a_2\psi_2x_2 - \dots - a_{n-1}\psi_{n-1}x_{n-1} - a_n\psi_nx_n = \mu x_1,$

$$x_k = \mu x_{k+1} \ (k = 1, ..., n-1).$$

Since $\psi_1 = 1$, substituting $x_k = y_k/\psi_k$, we obtain

$$-a_1y_1 - a_2y_2 \dots - a_{n-1}y_{n-1} - a_ny_n = \mu y_1$$

and

$$\frac{y_k}{\psi_k} = \mu \frac{y_{k+1}}{\psi_{k+1}} \ (k = 1, ..., n-1).$$

Or

$$m_{k+1}y_k = \frac{y_k\psi_{k+1}}{\psi_k} = \mu y_{k+1} \ (k = 1, ..., n-1).$$

These equalities are equivalent to the equality $F_n y = \mu y$ with $y = (y_k)$. In other words $TBT^{-1} = F_n$, where

 $T = \text{diag}(1, \psi_2, ..., \psi_n)$ and therefore

$$T^{-1} = \operatorname{diag}(1, \frac{1}{\psi_2}, ..., \frac{1}{\psi_n})$$

This proves the lemma. \Box

The simple calculations show that

$$\tau_p(F_n) = [(\sum_{k=2}^n |a_k|^{p'})^{p/p'} + \sum_{j=2}^n \frac{1}{j^{\alpha p}}]^{1/p}.$$

Due to Lemmas 2.1 and 3.2, for any zero $z(f_n)$ of f_n either

$$|a_1 - z(f_n)| \le \tau_p(F_n), \text{ or } |z(f_n)| \le \tau_p(F_n).$$
 (3.3)

With

$$h_n(z) = z^n f_n(1/z) = \sum_{k=0}^n \frac{a_k z^k}{(k!)^{\alpha}},$$

we obtain

$$z_k(h_n) = \frac{1}{z_k(f_n)} = \frac{1}{\lambda_k(F_n)} \quad (k = 1, ..., n).$$

Here $z_k(h_n)$ are the zeros of h_n with their multiplicities enumerated in non-decreasing order of their absolute values. According to (3.3) for any zero $z(h_n)$ of h_n either

$$|a_1 - \frac{1}{z(h_n)}| \le \tau_p(F_n), \text{ or } |z(h_n)| \ge \tau_p(F_n).$$
 (3.4)

Proof of Theorem 3.1: Clearly, $\tau_p(F_n) \to b_p(h)$ as $n \to \infty$. In each compact domain $\Omega \in \mathbb{C}$, we have $h_n(z) \to h(z)$ $(n \to \infty)$ uniformly in Ω . Due to the Hurwitz theorem [16, p. 5] $z_k(h_n) \to z_k(h)$ for $z_k(h) \in \Omega$. Now (3.4) prove the theorem. \Box

From Theorem 3.1 it follows

$$\inf|z_j(h)| \ge \frac{1}{|a_1| + b_p(h)|}$$

So the disc $|z| < \frac{1}{|a_1|+b_p(h)|}$ is a zero-free domain.

Note that the classical results on the zeros of entire functions are presented in [13]; the recent investigations on localization of the zeros of entire functions can be found, for instance, in the works [2, 4, 8, 10, 12] and the references which are given therein.

4. Example

The following example characterizes the sharpness of Theorem 1.1.

Let $A = \operatorname{diag}(B_j)_{j=1}^{\infty}$, where

$$B_j = \begin{pmatrix} \frac{1}{j} & \frac{\sqrt{3}}{2j} \\ \frac{\sqrt{3}}{2j} & \frac{1}{j} \end{pmatrix} \quad (j = 1, 2, \ldots).$$

Under consideration we have

$$\tau_2(A) = [2\sum_{j=1}^{\infty} \frac{3}{4j^2}]^{1/2} = \sqrt{3\zeta(2)/2} \approx \sqrt{3 \cdot 1.645/2} \le 1.570.$$

By Theorem 1.1

$$\sigma(A) \subseteq \bigcup_{j=1}^{\infty} \{ z \in \mathbb{C} : |z - \frac{1}{j}| \le 1.570 \}.$$

Simple calculations show that $\lambda_1(B_j) = \frac{3}{2j}$, $\lambda_2(B_j) = \frac{1}{2j}$ (j = 1, 2, ...).

Author Contributions

The author read and approved the final version of the manuscript.

Conflicts of Interest

The author declares no conflict of interest.

Acknowledgement

The author is very grateful to the referee of this paper for his (her) helpful remarks.

References

- [1] C.M. Da Fonseca, *On the location of the eigenvalues of Jacobi matrices*. Appl. Math. Lett. **19**, no. 11, 1168-â1174, 2006.
- [2] K.K. Dewan and N.K. Govil, On the location of the zeros of analytic functions. Int. J. Math. Math. Sci. 13(1), 67-â72, 1990.
- [3] S.V. Djordjević and G. Kantùn-Montiel, *Localization and computation in an approximation of eigenvalues. Filomat* **29**, no. 1, 75â-81, 2015.
- [4] K.M. Dyakonov, *Polynomials and entire functions: zeros and geometry of the unit ball*. Math. Res. Lett. 7(4), 393-â404, 2000.
- [5] J.A. Espinola-Rocha, Factorization of the scattering matrix and the location of the eigenvalues of the Manakov-Zakharov-Shabat system. Phys. Lett. A 372, no. 40, 6161-â6167, 2008.
- [6] M.I. Gilâ, *Invertibility and spectrum of Hille-Tamarkin matrices, Mathematische Nachrichten*, **244**, 1-11, 2002.
- [7] M.I. Gilâ, Operator Functions and Localization of Spectra. Lectures Notes in Mathematics, vol. 1830, Springer, Berlin 2003.
- [8] M.I. Gil', *Localization and Perturbation of Zeros of Entire Functions*, Lecture Notes in Pure and Applied Mathematics, 258. CRC Press, Boca Raton, FL, 2010.
- [9] L. Grammont, and A. Largillier, *Krylov method revisited with an application to the localization of eigenvalues.* Numer. Funct. Anal. Optim. **27**, no. 5-6, 583-â618, 2006.
- [10] N.I. Ioakimidis, A unified Riemann-Hilbert approach to the analytical determination of zeros of sectionally analytic functions. J. Math. Anal. Appl. 129(1), 134â-141, 1988.

- [11] T. Kato, Perturbation Theory for Linear Operators, Berlin, Springer-Verlag, 1980.
- [12] A.M. Kytmanov and O.V. Khodos, On localization of zeros of an entire function of finite order of growth, Complex Anal. Oper. Theory 11, 393-â416, 2017.
- [13] B.Y. Levin, *Distribution of Zeros of Entire Functions*. American Mathematical Society, Providence R.I., 1980.
- [14] Liu, Qiong; Li, Zhengbo and Li, Chaoqian, *A note on eventually SDD matrices and eigenvalue localization*. Appl. Math. Comput. **311**, 19-â21, 2017.
- [15] M. Marcus and H. Minc, A Survey of Matrix Theory and Matrix Inequalities. Allyn and Bacon, Boston 1964.
- [16] M. Marden, Geometry of Polynomials, Amer. Math. Soc., Providence, R.I., 1985.
- [17] A. Pietsch, Eigenvalues and s-Numbers. Cambridge University Press, Cambridge 1987.
- [18] Wu, Junliang and Wang, Dafei, *Sharpening of the inequalities for Schur, Eberlein, Kress and Huang, and new location of eigenvalues.* J. Math. Inequal. **8**, no. 3, 525â-535, 2014.
- [19] Wu, Junliang and Zhao, Jianguo, A survey of the progress of locating methods of complex matrices' eigenvalues and some new location theorem and their applications. IMA J. Appl. Math. 80, no. 4, 273–285, 2015.