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Abstract 

We mainly examine the type of the structure of the solutions of the following equation namely, 

                𝑢𝑡 + 𝑘𝑢𝑢𝑥 = 𝑢𝑥𝑥 + 𝑢2(1 − 𝑢), −∞ < 𝑥 < ∞, 𝑡 > 0 

where 𝑘 ≠ 0 is a parameter occurrence in the long term by using dynamical system theory and exhibiting a phase-space analysis of its 

stable points. The critical points are identified depend on the solution of above equation in dynamic system. Then in parallel with the 

ciritical points eigenvalues and eigenvectors are determined and thus general solutions are written by depending on those found 

eigenvalues and eigenvectors. Thus, the structure of the critical points can be named in the phase -space. After some minor calculations 

are done, from one equilibrium point that enhancing from 0 to decreasing to 1 into the other and thus heteroclinic trajectory is 

demonstrated that supports the travelling wave solution to the equation. Then all points are indicated depending on properties of the 

structure of eigenvalues of the critical points in phase-space by using a generated matlab implementation. The result of the our work 

illustrates that the equation can confirm shock-wave solutions 

 

Keywords: Phase-space analysis, Nonlinear advanced equation, Shock-wave solutions.   

Dinamik Sistemde İleri Nonlineer Denklemin Analizi 

Öz 

Aşağıdaki denklemin 

 

                𝑢𝑡 + 𝑘𝑢𝑢𝑥 = 𝑢𝑥𝑥 + 𝑢2(1 − 𝑢), −∞ < 𝑥 < ∞, 𝑡 > 0 

 𝑘 ≠ 0 bir parametre, sonuçlar yapısını dinamik sistemi ve sabit noktaların faz-uzay analizlerini kullanarak, uzun zamandaki oluşumunu 

inceliyoruz. Dinamik sistemde yukarıdaki denklemin çözümüne bağlı olarak kritik noktalar belirlenir. Daha sonra kritik noktalara 

paralel olarak özdeğerler ve özvektörler belirlenir ve böylece bulunan özdeğerler ve özvektörlere bağlı olarak genel çözümler yazılır. 

Böylece kritik noktaların yapısı faz uzayında isimlendirilebilir. Bazı küçük hesaplamalar yapıldıktan sonra, 0'dan 1'e artan bir denge 

noktasından diğerine doğru artan ve böylece heteroclinic yörüngenin denkleme giden dalga çözümünü desteklediği gösterilmiştir. Daha 

sonra üretilen bir matlab uygulaması kullanılarak faz uzayındaki kritik noktaların özdeğer yapısının özelliklerine bağlı olarak tüm 

noktalar belirtilir. Çalışmamızın sonucu, denklemin şok dalgası çözümlerini doğrulayabildiğini göstermektedir. 

 
 

Anahtar Kelimeler: Faz-uzay analizi, İleri nonlineer denklem, Dalga çözümleri. 
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1. Introduction 

      It is well known that obtaining analytical solutions of 

nonlinear partial differential equations has a significant role to 

define physical phenomena which are rising in several areas such 

as physics, biology, chemistry and engineering (Cross and 

Hohenberg, 1993; Dee and Langer, 1983; Bramson, 1983; 

Burgers, 1939; Burgers, 1940; Burgers, 1975; Van Saarloos, 

2003). Many different methods have been applied to determine 

the analytical wave solutions to nonlinear equations for many 

years science (Behzadi and Araghi, 2011; Bramson, 1983; 

Burgers, 1939; Burgers, 1940; Burgers, 1975; Van Saarloos, 2003 

). Numerous nonlinear equations have an extensive area of 

applications in fluid mechanics, chemical and plasma physics and 

so on. One of those equations is the generalized Burgers-Fisher 

equation, 

                             𝑢𝑡 + 𝛿𝑢𝑛𝑢𝑥 = 휀𝑢𝑥𝑥 + 𝜗𝑢(1 − 𝑢𝑛)                 (1) 

where 𝛿, 휀, 𝜗 in real number and 𝑛 > 0 is constant. Some analytic 

accurate travelling wave solutions of the equation (1) have been 

demonstrated by applying different methods. When 𝛿 is counted 

as 0 the equation (1) is reduced to the Fisher-KPP equation which 

has been studied by many authors science (Behzadi and Araghi, 

2011; Bramson, 1983; Burgers, 1939; Burgers, 1940; Burgers, 

1975; Van Saarloos, 2003 ). When 𝜗  is counted as 0 the equation 

(1) is reduced to the generalized Burgers equation. Many 

scientists in different area have given an enormous effort to the 

generalized Burgers equation to find the exact travelling wave 

solutions of it through the years due to its value in science. Despite 

of the methods used in those equations to solve travelling wave 

solutions of them the dynamical attitude of the ordinary 

differential equation forms of the equation (1) or reduced forms 

of (1) have not been taken as consideration. In this paper, the 

dynamic system of a modified form of the equation (1) given as 

                   𝑢𝑡 + 𝑘𝑢𝑢𝑥 = 𝑢𝑥𝑥 + 𝑢2(1 − 𝑢)                                   (2)  

where 𝑘 ≠ 0 is a parameter, has been considered. We hope to find 

a travelling wave solution occurance which is corresponded by a 

heteroclinic orbit in phase space. Therefore we examine the phase 

plane analysis of the dynamic system of ode form the equation (2) 

and give exact solution for the equation (2) in the section 2. In the 

latter section, we analyse the dynamical system of the ode form 

of the equation (2) numerically and represent numerical solution 

and exact solution in same graph. In the last section we conclude 

our work and give a summary of our results. 

2. Dynamical system 

       In this section we first substitute the transformation given 

below into the equation (2)  

                    𝑠 = 𝑥 − 𝑐𝑡       𝑢 = 𝑈(𝑠)                                           (3) 

where 𝑐 is the wave speed and we get that 

              −𝑐𝑈𝑠 + 𝑘𝑈𝑈𝑠 = 𝑈𝑠𝑠 + 𝑈2(1 − 𝑈) .                            (4) 

 The dynamical system of the equation (4) is obtained on writing 

𝑈𝑠 = 𝑉  and we have  

𝑈𝑠 = 𝑉                                                                 

                  𝑉𝑠 = −𝑐𝑉 + 𝑘𝑈𝑉 − 𝑈2(1 − 𝑈).                               (5) 

  The dynamical system (5) has two equilibrium points at P:(0,0) 

and R:(1,0). We require a monotone solution in 0 ≤ 𝑈 ≤ 1 with 

𝑈𝑠(𝑠) ≤ 0. We next classify the equilibrium points by 

linearization. According to the theory of the dynamic system, if 

eigenvalues of the equilibrium point are both less than 0, the 

equilibrium point is stable node; If eigenvalues of the equilibrium 

point are both greater than 0, the equilibrium point is unstable 

node; If eigenvalues of the equilibrium point have different sign, 

the equilibrium point is saddle node. We first consider the 

equilibrium point P:(0,0). The associated linear system and the 

jacobian matrix of the system are given by 

    𝑈𝑠 = 𝑉                                                                   

                   𝑉𝑠 = −𝑐𝑉−𝑈2                                                                 (6) 

               𝐴+ = [
0 1

−2𝑈 −𝑐
].                                                             

Eigenvalues of the jacobian matrix 𝐴+and associated eigenvectors 

are given by  

     𝜌1 = 0          𝜌2 = −𝑐,                                                      

    𝑣1 = (
1

0
)    𝑣2 = (

1

𝑐
).                                                      

Because of one eigenvalue is zero the other one determine the 

model of node in phase plane. So we consider the eigenvalue −𝑐 

which decays to 0 and shows stable node. Figure 1 displays the 

(U,V)  phase plane in the neigbourhood of the equilibrium point 

P:(0,0). The stable node is clearly displayed on the figure. 
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Figure1. Vector flow for the system (6) 

We next consider the equilibrium point R:(1,0). On writing �̌� =

𝑈 − 1 and �̌� = 𝑉 the associated linear system of the equilibrium 

point R:(1,0) and the jacobian matrix of the system are obtained 

�̌�′ = 𝑉                            

                                     �̌�′ = �̌� + (𝑘 − 𝑐)�̌�                                      (7) 

                               𝐴 = [
0 1
1 𝑘 − 𝑐

].                                             

Eigenvalues of 𝐴 and associated eigenvectors are given by 

𝑝± =
(𝑘 − 𝑐) ± √(𝑘 − 𝑐)2 + 4

2
 , 

𝑣± = (
1

𝜌±

) . 

Now since 𝜌+ > 0 > 𝑝−  the point R:(1,0) is a saddle point. The 

solution of our modified Burger-Fisher equation germinate to 

shock wave in three specific values of c. The first case while c=k-

2 with 𝑘 > 2 then the fixed point R:(1,0) exhibits saddle node. 

The latter case is while c=k+2 with 𝑘 > 0 then the fixed point 

R:(1,0) exhibits saddle node too. The last one is when 𝑐 =
𝑘

2
+

2

𝑘  
  𝑤𝑖𝑡ℎ 𝑘 ≥ 2 and again the fixed point R:(1,0) exhibits saddle 

node. Therefore, the Linearization Theorem indicates that point 

R:(1,0) is a saddle point for nonlinear system. Figure 2 displays 

the (U,V) phase plane in the neigbourhood of the equilibrium 

point R:(1,0). The unstable manifold entering the region where 

V<0 is clearly displayed in the figure.  

Figure2. Vector flow for the system (7) 

  We note from linear system (5)  
𝑑

𝑑𝑐
(

𝑑𝑉

𝑑𝑈
) = −1 the phase plane 

rotates clockwise for increasing 𝑐. We further note that a close 

exact solution of the system (5) exists and is given by  

                      𝑈(𝑠) = 1 −
2

 1 + 𝐵𝑒−(1+2√2)𝑧
 

 

             𝑈(𝑠)~ {~1 −
1

𝐵
𝑒𝑐𝑧  𝑧 → −∞,                           

~𝐵𝑒−𝑐𝑧   𝑧 → ∞,                                   
      (8) 

where 𝐵 is constant and when c=k-2, k+2 and 
𝑘

2
+

2

𝑘  
. All from 

these solutions the phase path is determined for 𝑠 = 𝑥 − 𝑐𝑡 

joining the fixed points P:(0,0)  and R:(1,0) and that gives a 

heteroclinic connection between the equilibrium points for these 

three chosen wave speed 𝑐.   

3. Parabolic Method  

  We practice numeric techniques for clarifying this model and 

comparing its closed form solution with shock wave solution of 

the equation (2).  We practise parabolic method to get numeric 

explication of the equation (2). For further details about the 

method the references (Griffiths and Schiesser, 2009; Griffiths 

and Schiesser, 2010; Landejuela, 2011; Hanaç, 2021) is cited to 

read for who is interested in. After some computations we get the 

numeric style of equation like, 

               𝑈𝑗
𝑛+1 = 𝑈𝑗

𝑛 + ∆𝑡 (
𝑈𝑗+1

𝑛 − 2𝑈𝑗
𝑛 + 𝑈𝑗−1

𝑛

∆𝑥2
)

+ 𝑘

𝑈
𝑗−

1

2

𝑛 − 𝑈𝑗+1/2
𝑛

∆𝑥
+ 휀𝑗

𝑛(𝑥)(1 − 𝑈𝑗
𝑛) = 0 

where 휀𝑗
𝑛(𝑥) refers to as 𝑢2(𝑥).  In Figure 3 exact solutions 

to the Burger Fishers model exhibits for c which is chosen 

specifically.  

 

Figure3. Exact solutions for dissimilar values of c is shown 

in the physical plane. Figure also displays the shock wave 

portraits U(s) that encounter (8). 
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We portray the numerical finding out of the equation (2)  with 

chosing 𝑁∗ grid point equals to 250, ∆𝑡 = .5 and the exact 

solution (8) for the wave speed c=k-2 with k>2. In Figure 4 the 

shock wave solution of the equation(2) with waving accelerate 

c=k-2 is observed to grow quickly as 𝑡 → ∞ and the red line is 

represented by the exact solution and the overlap one that blue 

line is represented by the numeric result, sustains that time 

dependant solution gets close form of the exact solution fairly 

rapid. 

 
Figure4. Chart of exact solution (red line) and the numerical 

solutions of the equation  (2) at times 𝑡 = 0, 2, 4. 

Besides in the Figure 4 we portray the numerical finding out 

of the equation (2)  with chosing 𝑁∗ grid point equals to 250, ∆𝑡 =

.5 and the exact solution (8) for the wave speed c=k+2 and c=
𝑘

2
+

2

𝑘  
  respectively. In Figure 5 and 6 the shock wave solution of the 

equation(2) with waving accelerate c= k+2 and c=
𝑘

2
+

2

𝑘  
 

respectively reveal intensly good agreement between exact 

solutions and numeric results. 

 
Figure5. Chart of exact solution (green line) and the numerical 

solutions of the equation  (2) at times 𝑡 = 0, 2, 4, 6. 

 

 

Figure6. Chart of closed form of exact solution (red line) and 

the numerical solutions of the equation  (2) at times 𝑡 =
0, 2, 4, 6. 

4. Conclusion 

In this paper, we search the Burger Fisher equation with the 

modified advection part and parameter 𝑘 ≠ 0 (2) in dynamic 

theory. We review the dynamic behaviour of shock wave solutions 

of the equation (2) applying linearizaton theorem. We reach phase 

path and indicate joinnig orbit occurance which provides soliton 

solutions. Lastly, we apply parabolic method to get numerical 

solutions of the equation (2) and compare with exact solution in 

same distance x with time intervals for waving accelerate c=k-2  

c=k+2 and c=
𝑘

2
+

2

𝑘  
 respectively. The equation with the modified 

advection part and parameter 𝑘 ≠ 0 has various impressive 

properties. The modified advection part and parameter 𝑘 ≠ 0  

mathematical model form has shock wave solutions for three 

specific value of 𝑐. Mathematical model of the modified form 

ensures a simple phsical version, for an exact solution with 𝑐 =
𝑘 − 2, with 𝑐 less than 2 on the pretense of unpyhsical (Canosa, 

1973;Edelstein-Keshet, 2005;Fisher, 1937; Kolmogorov et al,  

1937; Kot, 2003; Murray, 2002 ). 
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