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Abstract 
 

In this work, one dimensional Burgers' equation and coupled Burgers' equation are solved via Homotopy 
perturbation method (HPM). Solutions two and three-dimensional graphics and tables of some obtained 
results are constructed with the help of a ready-made package program. All solutions found in this study 
validate the efficiency of the method. According to the results, we have found out that our gained solutions 
convergence very speedily to the analytical solutions. In conclusion, we can say that the present method can 
also be applied for the solutions of a wide range of nonlinear problems. 
 

Keywords: one dimensional Burgers' equation, Coupled Burgers' equation, Homotopy perturbation method, 
embedding parameter 
 
 

Burgers ve Coupled Burgers Denklemlerinin Tam ve Nümerik Çözümleri 
Üzerine 

 

Öz 
 

Bu çalışmada, bir boyutlu Burgers denklemi ve Burgers denklemler sistemi Homotopi pertürbasyon metodu 
(HPM) ile çözülmüştür. Elde edilen çözümlerin iki ve üç boyutlu grafikleri ve tabloları hazır paket programı 
yardımıyla oluşturulmuştur. Bu çalışmada bulunan tüm çözümler metodun etkinliğini doğrulamaktadır. 
Sonuçlara göre, elde ettiğimiz çözümlerin analitik çözümlere çok hızlı bir şekilde yakınsadığı ortaya çıkarılmıştır. 
Sonuç olarak, sunulan metodun geniş aralıktaki lineer olmayan problemlerin çözümleri için uygulanabilir 
olduğunu ifade etmemiz mümkündür. 
 

Anahtar Kelimeler: bir boyutlu Burgers denklemi, Coupled Burgers denklemi, Homotopi pertürbasyon metodu, 
yerleştirilen parametre 
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Introduction 

In most cases it is difficult to solve nonlinear problems, especially analytically. Several techniques 

have been developed to solve these problems (Amirov & Ergun, 2020; Ergun, 2019; 2020). 

Perturbation techniques (Cole, 1968; He, 1999; Nayfeh, 2000) were among the popular ones and are 

based on the existence of small or large parameters, namely the perturbation quantities. 

Unfortunately, many nonlinear problems in science and engineering do not contain such kind of 

perturbation quantities at all. Hence, some non-perturbative technique (Adomian, 1994; Lyapunov, 

1992; Wazwaz, 2002) have been developed, in which these techniques are independent upon small 

parameters. However, both perturbative and non-perturbative techniques cannot provide a simple 

way to adjust or control the convergence region and the rate of given approximate series (Liao, 1992; 

2004).  

To overcome such problems, the Homotopy perturbation method (HPM) is constructed and 

proposed. The method is powerful and has been successfully applied to solve many types of 

nonlinear problems in science and engineering by many authors. In this work, we implement the 

Homotopy perturbation method (HPM) in order to obtain the analytic solutions of one dimensional 

Burgers' equation and coupled Burgers' equation. 

Material and Method 

Homotopy Perturbation Method 

To explain the method, we take into consideration the subsequent nonlinear equation: 

                              0,A u f r     r ,                                                                                                   (2.1) 

with the boundary condition 

                           , 0 ,B u u n      ,r                                                                                

where A  is a general differential operator, B  is a boundary operator,  f r  is a known analytical 

function and   is the boundary of the domain   (He, 1999). A  can be divided into two parts which 

are L  and N , where L  is linear and N  is nonlinear. Then, equation (2.1) can be rewritten as the 

following form 

                  0.L u N u f r                                                                                   

By means of homotopy technique, we construct a homotopy  

                             , : 0,1V r p     

which satisfies  

                      0, 1 0,H V p p L V L u p A V f r         
   0,1 , ,p r                       (2.2) 

or 
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                      0 0, 0,H V p L V L u pL u p N V f r                                                                (2.3) 

where  0,1p  is an embedding parameter, 0u  is the initial approximation of equation (2.1). 

Distinctly, we get from equations (2.2) and (2.3), 

                               0,0 0,H V L V L u                                                                                               (2.4) 

                               ,1 0.H V A V f r                                                                                                 (2.5) 

The changing process of p  from zero to unity is just that of  ,V r p  from  0u r  to  u r . In 

topology, this is called deformation, and also,    0L V L u  and    A V f r  are called 

homotopy (He, 1999). 

With respect to homotopy perturbation method, we can firstly use the embedding parameter p  as 

small parameter, we will assume that the solution of equations (2.2) and (2.3) can be rewritten as a 

power series of ,p   

                          0 1 2
1

lim
p

u V V V V


                                                                  

Results and Discussion 

Application of the Present Method and Numerical Results 

In this section, the homotopy perturbation method (HPM) is developed to acquire the approximate 

solutions of the one dimensional Burgers' equation and coupled Burgers' equation is used. Primarily, 

we consider the one dimensional Burgers' equation is as follows, 

                    0, 0 ,t x xxu uu vu t                                                                                                      (3.1) 

                    
 

,0 ,
1

e
u x

e





     



                                                                                                (3.2)                      

where  x v   and parameters , and v   are arbitrary constants. When we apply the 

method to the Burgers' equation, one has 

                       01 0p Y u p Y YY vY           
,                                                                            (3.3) 

where  
2

2
, ,

dY dY d Y
Y Y Y

dt dx dx
      and  0,1p . By arranging equality (3.3), substituting the 

initial guess (3.2) identifying the zeroth component and 

                      
2

0 1 2 ,Y Y pY p Y     

                      
2

0 1 2 ,Y Y pY p Y     
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2

0 1 2 ,Y Y pY p Y        

                      
2

0 1 2 ,Y Y pY p Y        

we have computed the remaining components 1 2 3 4 5, , , , ,Y Y Y Y Y
 
etc. via recursive scheme as 

follows 

                      
 

0 ,

1

x

v

x

v

e
Y

e





     




 

                    

 

2

1 2

2
,

1

x v

x v

e t
Y

e v





 



 

                      
 

 

2 3 2

2 3
2

1
,

1

x v x v

x v

e e t
Y

e v

 



  



 

                        

In this way, we obtain the approximate solution of initial value problem (3.1)-(3.2) in series form by 

                       0 1 2
1

0

, lim ,k

k
p

k

u x t p Y Y Y Y





                                                                              (3.4) 

Also, it should be expressed that the equation has the analytic solution given by                                                   

                      
 

 

 
, ,

1

x t
v

x t
v

e
u x t

e







   




  




                                                                                      (3.5) 

Numerical assessments of one dimensional Burgers' equation are given in Figure 1-2 and Table 1. 
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           a)                                                                                     b) 

        

Figure 1. The 3D Graph of Approximate and Analytic Solution of One Dimensional Burgers' Equation 

when 0.1 , 0.3 , 0.5v     

a) The 3D Graph of Approximate Solution (3.4) for  3 ,x t
 
via HPM   b) The 3D Graph of Analytic Solution (3.5) 

 

Figure 2. Comparison between HPM and Analytic Solution of One Dimensional Burgers' Equation 

when 0.1 , 0.3 , 0.5v     

Table 1. Absolute Error of One Dimensional Burgers' Equation Attained by HPM for  3 ,x t  

 0.1 , 0.3 , 0.5v     

i it x
 

0.1 0.2 0.3 0.4 0.5 

0.1 1.92735×10-8 1.54218×10-7 5.20559×10-7 1.23402×10-6 2.41026×10-6 

0.2 1.92147×10-8 1.5379×10-7 5.19258×10-7 1.23128×10-6 2.40558×10-6 

0.3 1.91133×10-8 1.53022×10-7 5.16808×10-7 1.22581×10-6 2.39557×10-6 

0.4 1.897×10-8 1.51917×10-7 5.13221×10-7 1.21764×10-6 2.38027×10-6 

0.5 1.87853×10-8 1.5048×10-7 5.08512×10-7 1.20681×10-6 2.35977×10-6 
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In addition, we focus on the coupled Burgers' equation has the following form: 

                       2 0t xx x x
u u uu uv    ,                 

                       2 0t xx x x
v v vv uv    ,                                                                                                  (3.6) 

with the initial conditions 

                      
 ,0 sinu x x  ,  ,0 sin ,v x x                                                                                          (3.7) 

Exact solutions of the system are given by 

                         , , sin ,tu x t v x t e x                                                                                                    (3.8) 

In order to solve numerically system (3.6) using HPM, we construct homotopy for this system 

                      

   

   

0

0

1 2 0 ,

1 2 0 ,

p Y u p Y Y YY YT

p T V p T T TT YT

             

             

                                                          (3.9)                  

where 
2 2

2 2
, , ; , ,

dY dY d Y dV dV d T
Y Y Y T T T

dt dx dx dt dx dx
          and  0,1p . By 

rearranging equalities (3.9), substituting the initial guesses (3.7) and the values 

                      
2

0 1 2 ,Y Y pY p Y     

                      
2

0 1 2 ,Y Y pY p Y     

                      
2

0 1 2 ,Y Y pY p Y        

                      
2

0 1 2 ,Y Y pY p Y        

and 

                      
2

0 1 2 ,T T pT p T     

                      
2

0 1 2 ,T T pT p T     

                      
2

0 1 2 ,T T pT p T        

                      
2

0 1 2 ,T T pT p T        
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we have gained the subsequent components, respectively 

                     0 sin ,Y x  

                    1 sin ,Y t x   

                    
2

2 sin ,
2

t
Y x  

                        

and 

                     0 sin ,T x  

                    1 sin ,T t x   

                    
2

2 sin ,
2

t
T x  

                        

It is possible to add more components of approximation. By means of the above obtained 
components, the approximate solutions of coupled Burgers' equation (3.6) have the form, 

                      

 

 

0 1 2
1

0

0 1 2
1

0

, lim ,

, lim ,

k

k
p

k

k

k
p

k

u x t p Y Y Y Y

v x t p T T T T











    

    




                                                                      (3.10) 

and we have attained the subsequent numerical evaluations in Figure 3-4 and Table 2 :    

          a)                                                                               b) 

      

Figure 3. The 3D Graph of Approximate and Analytic Solution of Coupled Burgers' Equation 

a) The 3D Graph of Approximate Solution (3.10) for  10 ,x t
 
via HPM   b) The 3D Graph of Analytic Solution 

(3.8) 
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Figure 4. Comparison between HPM and Analytic Solution of Coupled Burgers' Equation 

Table 2. Absolute Error of Approximate Solution of Coupled Burgers' Equation Acquired by HPM for 

 10 ,x t  

it
 ix

 
0.1 0.2 0.3 0.4 0.5 

0.1 0. 2.76168×10-15 1.5811×10-13 2.78327×10-12 2.56944×10-11 

0.2 2.77556×10-17 5.52336×10-15 3.14665×10-13 5.53874×10-12 5.11321×10-11 

0.3 0. 8.18789×10-15 4.68153×10-13 8.23891×10-12 7.60589×10-11 

0.4 0. 1.07692×10-14 6.1684×10-13 1.08568×10-11 1.00226×10-10 

0.5 
0. 1.32672×10-14 7.59393×10-13 1.3366×10-11 1.23391×10-10 

 

In this sub-section, we explain and discuss numerical results indicated above.  

Initially, we will evaluate the results for one dimensional Burgers' equation (3.1). Numerical results 

attained by HPM for one dimensional Burgers' equation are demonstrated above in Figure 1-2 and 

Table 1. In Figure 1-2, we compare the approximate series solutions with analytic solution and show 

very good agreement between HPM and analytic solution. In Table 1, it is seen that even three 

components of the approximate series solution gained by HPM is much close to the analytic solution. 

Additionally, numerical results acquired by means of HPM for coupled Burgers' equation (3.6) are 

constructed above in Figure 3-4 and Table 2. We illustrated the simulation of numerical values for the 

system which are cited in Figures 3 and 4 in terms of 3D and 2D plots, respectively. It is seen that 

there are very good agreement with approximate series solutions and analytic solutions. From Table 

2, it is shown that numerical solutions also obtained for ten components by means of HPM are very 

convergent to analytic solutions. We can observe from the cited table, the hired solution algorithm is 

efficient and accurate. Furthermore, all gained results indicate the validity, effectiveness and 

applicability of the present method. 

Conclusion 

In this paper, we investigate the solution for one dimensional Burgers' and coupled Burgers' 

equations and their corresponding consequences using efficient analytical algorithm namely, HPM. 

10 5 5 10
x

0.5

0.5

u

uExact

uHPM
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Our obtained numerical results verify and indicate the success of the method for these equations. 

Numerical approximations demonstrate a high degree of accuracy of the applied method. Based on 

the current results and findings presented in all figures and tables, implementation of the method in 

this way has proved an efficient means for solving such physical and mathematical models. It will be 

encouraging for further studies. 

Consequently, the HPM is effective and powerful by determining analytic solutions for these kind of 

problems in science and engineering (Abbasbandy, 2007; Ganji & Rafei, 2006; Ganji & Rajabi, 2006; 

He, 1999). The solutions are very rapidly convergent by performing the present method. 
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