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Abstract: This paper presents a novel systemic algorithm based on conservative power pinch analysis principles 

using a computationally efficient insight-based binary linear programming optimization technique in a 

model predictive framework for integrated load shifting and shedding in an isolated hybrid energy 

storage system. In a receding 24-hour predictive horizon, the energy demand and supply are integrated 

via an adaptive power grand composite curve tool to form a diagonal matrix of predicted hourly 

minimum and maximum energy constraints. The intgrated energy constraints must be satisfied 

recursively by the binary optimisation to ensure the energy storage’s state of charge only operates within 

30% and 90%. Hence, the control command to shift or shed load is contingent on the energy storage 

state of the charge violating the operating constraints. The controllable load demand is shifted and/or 

shed to prevent any violations while ensuring energy supply to the most critical load without sacrificing 

the consumers' comfort. The proposed approach enhances efficient energy use from renewable energy 

supply as well as limits the use of the Hydrogen resources by a fuel cell to satisfy controllable load 

demands which can be shifted to periods in the day with excess renewable energy supply. 
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Nomenclature  

𝐵𝐴𝑇 Battery 

𝐶𝑙 The capacity of accumulator 𝑙 
𝐷𝑆𝐿 Diesel generator 

𝐸𝐿 Electrolyzer   

𝐹𝐶 Fuel cell 

𝐻𝑇 Hydrogen Tank 

𝑆𝑂𝐴𝑐𝑐 Accumulator or energy storage 

𝐿𝐷𝐶, 𝐿𝐷𝑁𝐶 Controllable load and uncontrollable load respectively 

𝑆𝑂𝐴𝑐𝑐𝑙
𝑛 State of accumulator 𝑙  

𝑆𝐿𝑜 Lower pinch limit or utility  

𝑆𝑈𝑝 Upper pinch limit or utility 

𝑃𝐺𝐶𝐶 Power grand composite curve 

𝑊1 ,𝑊2 Penalty weights for wattage running cost and preference index respectively 

𝑊𝑇 Water tank 

∆𝑘 Time interval 

𝑥𝑖(𝑘) Binary variable for the state of the ith dispatchable unit 

𝑘 Time interval in the predictive horizon 

𝑙 Accumulator 

i,j Matrix row and column 
h hour 
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1. INTRODUCTION 

Demand-side management (DSM) could be described as the adjustment of consumer demand for energy, 

applying various techniques to encourage less energy usage during peak electricity demand hours. Load 

shifting as a concept can be described as one of the main aspects of demand-side management. Load 

shifting is the movement of electrical energy consumption from one time period to another to reduce 

energy consumption. Since there is a growing increase in electrical power usage especially in residential 

buildings during peak demand periods, the need to reduce energy consumption during these periods 

cannot be overemphasized as not only the utility companies but also consumers will benefit [1,2].  

Generally, load shifting is achieved by controlling the operational status of energy-consuming devices 

and time. To identify opportunities for consumer-driven load shifting in commercial and industrial 

buildings, several metrics showed how site peak can be easily reduced considering some factors like 

typical building operations [3,4]. Besides, an analysis of load reduction and load shifting in industrial 

and commercial buildings under flexible electricity pricing plans was presented in Ref. [5]. The authors 

suggested several methods for load shifting and reduction of peak electricity demands. A robust 

optimization method to manage uncertainties associated with the use of air conditioners and water 

heaters was proposed in [6], using cost and trade-off schemes, without renewable energy systems 

integration. Spatial load migration is also seen as an alternative form of demand-side management 

compared to load shifting and load shedding as presented in [7].  

Several optimal control techniques have been performed by researchers to achieve energy efficiency 

and load shifting through the coordination of the operational status of pumps and time-period in pumping 

stations [8]. In Ref. [9], a dynamic programming optimization was successfully used to study the control 

of heating systems in buildings and optimize energy cost during winter, by shifting a load of heating to 

off-peak hours. A model for global solar radiation was presented in [10], used as a part of a mobile load 

demand management application that helped in maximizing utilized energy for heating systems, thereby 

reducing cost and emissions. The combination of Electric System Cascade Analysis with load shifting 

was used to reduce energy consumption in a renewable distributed energy generation system as 

presented in [11], the application of the model in the case study showed a 3.1% reduction for the solar 

installation area and 3.9% reduction for the biomass power generation.  

Furthermore, since smart grids are considered an important feature in future energy scenarios, several 

measures have been proposed to promote the demand side response in smart grids [12]. The authors in 

Ref. [13] proposed that smart grid designs must recognize smart users, who are actively engaged in 

energy consumption as critical as what is proposed by demand-side management. A smart grid 

optimization model based on demand-side management was also proposed in [14], by defining agents 

responsible for load, generation and storage management. The authors showed that the model when 

applied to the grid loads and Electric vehicle charging, helped in allocating demand more efficiently.  

A proposed combined multi-objective dynamic economic and emission dispatch model with demand-

side management (DSM) was presented in [15], to take advantage of the benefits of DSM for utility and 

generation. The DSM used a day ahead-based load shifting technique used for handling domestic loads. 

Also, a day-ahead self-healing scheduling approach in isolated networked microgrid systems presented 

in [16] was based on a two-level energy management system (EMS). Results showed the efficiency of 

the EMS model in enhancing the network and reducing the operational cost of the microgrid system. 

The authors in [17] proposed a demand-side response method for smart microgrids mainly for 

controllable domestic loads in the case of renewable energy penetration. The method showed improved 

flexibility of the controlled loads. A set of DSM approaches used to enhance flexibility in the energy 

management system of an off-grid system with renewable energy sources was presented in Ref. [18]. 
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The authors in [19] discussed recent progress in energy efficiency policy frameworks from the demand-

side management on the part of the utility towards the reduction of carbon emission footprints. In Ref. 

[20], DSM ensured the reduction of peak load demand in smart grids and a perspective on the interaction 

between non-ideal grids and LED lamps in residential buildings was presented in [21], which by 

extensive analysis of voltage harmonics, sustained abnormal voltage, supply frequency variations on 

LED lamps and showed its effect on the LED lighting program adopted worldwide. A model of hybrid 

Particle Swarm optimization algorithm with Sinusoidal and Cosine acceleration coefficient in [22] 

showed a reduction in peak load, reduction in consumer’s energy bill and production cost savings in a 

microgrid. 

Similarly, in [23] the energy management of microgrids was achieved using a demand-response program 

that incorporated artificial intelligence (AI) based particle swarm optimization technique, to minimize 

the fuel cost of a distributed generation (DG) while concurrently accounting for uncertainties. In [24], 

the grey wolf accretive satisfaction algorithm based on a binary grey wolf optimization was successfully 

used to obtain an optimal switching pattern of domestic appliances thereby enabling maximum customer 

satisfaction under a limited budget. The authors in [25] proposed a resilient home energy management 

system, which coordinates domestic energy resources during planned outages using scenario analysis 

techniques to tackle the stochastic behavior of renewable energy sources. 

An algorithm for instantaneous load shifting was proposed in Ref. [26]. The algorithm was a practical 

linearized demand control algorithm to run regularly and promptly as new hourly price signals become 

obtainable using a realistic price simulation model. The work showed that reinforcement learning was a 

good alternative to other well-known methods. The use of reinforcement learning algorithms for load 

shifting in a cooling system was presented in [27], where, two algorithms were used to control the 

operation of the central cooling system for price changes. The results showed 14% weekly cost savings.  

In Ref. [28], reinforcement learning was used for energy management in a stand-alone hybrid energy 

storage system (HESS) considering uncertainty. The authors used reinforcement learning based on 

adaptive power pinch analysis (PoPA) for energy management. Power pinch analysis, which is a 

conservative approach for targeting energy deficit as well as waste recovery of surplus or excess energy 

was used in [29] as a day ahead predictive energy management strategy for the control of HESS. 

Furthermore, PoPA was used in Refs. [30,31] for off-peak load shifting with optimal storage sizing in a 

standalone hybrid energy storage system. The proposed load shifting approach in the case study in [30] 

showed that a reduction of about 30% in storage size was achieved. 

1.1. Problem Statement and Motivation 

In Ref. [32] an elegant mathematical formulation for load shifting in a home energy management system 

was achieved using linear optimization in which a running stage cost and constant constraints were used 

to optimize the system. However, since the approach in Ref. [32] was based on one-time step 

optimization with no predictive horizon, hence the algorithm was disposed to sub-optimality. 

Furthermore, to ensure the Bellman’s optimality [28] to obtain the least global stage cost, the entire 

control horizon must be analyzed within a predictive horizon along with any interdependences of the 

dynamic constraints on the entire energy system.   

1.2. Proposed Algorithm 

This paper proposes at a systems-level a systemic load shifting model predictive control (MPC) 

algorithm formulated as a binary (mixed) linear optimization (written in MatLab 2021 script) which 

incorporates the concept of the conservative adaptive power pinch analysis approach [28] in a predictive 

horizon with solutions inferred hourly in the control horizon. The systemic formulation is not only 

computationally efficient but also offers the advantage of versatility as it can be extended to optimize 

varied problems involving optimal load (electricity, water irrigation etc.) scheduling. However, as a case 

study, the proposed load shifting DSM MPC-adaptive PoPA algorithm is deployed in an isolated hybrid 
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energy system [28,33,34] as shown in Fig. 1, which consists of photovoltaic panels (PV), a backup diesel 

generator (DSL), consumer load demands (LDs), fuel cell (FC), electrolyzer (EL), battery storage 

(BAT), water (WT) and hydrogen storage tanks (HT).  The DC/DC and AC/DC converters have been 

omitted in Fig. 1 for conciseness. The violation of the lower and upper operating constraints of the 

battery and the number of unserved controllable loads are used as evaluation indices to ascertain the 

performance of the proposed algorithm and in contrast to the consumers' default operating condition of 

the controllable load demand. 

 
Figure 1. Isolated hybrid energy storage system used as experimental case study [28, 33, 34]. 

 

2. METHODOLOGY 

The net energy in the system is modelled in consistency with recent works [28,33,34] but with the DSL, 

EL and FC deactivated since they conservatively operate to serve the uncontrollable load 𝐿𝐷𝑁𝑐 only, 

while the controllable load 𝐿𝐷𝑁𝑐 is served by the PV. Hence, during the operation of the 𝐿𝐷𝑐 

shifting/scheduling algorithm, the mathematical expression for the net energy in the BAT with the DSL, 

EL and FC deactivated is reduced or simplified to the following:  

𝑆𝑂𝐶(𝑘) = 𝑆𝑂𝐶(𝑘 − 1) + ∑[𝑃𝑉(𝑘) − (𝐿𝐷𝑐(𝑘)

𝑁

𝑘=1

 + 𝐿𝐷𝑁𝑐(𝑘)) ] ∗  ∆𝑘/𝐶𝑙           𝑙 ∈ [𝐵𝐴𝑇]  (1) 

Here, hourly time interval is the storage capacity 𝐶𝑙 and subscript 𝑙 ∈ [𝐵𝐴𝑇, 𝑊𝑇,𝐻𝑇] in general but for 

load shifting 𝑙 refers to the BAT, 𝑆𝑂𝐶(𝑘 − 1) are the initial percentage state of charge in the battery and 

𝑆𝑂𝐶(𝑘) is the percentage state of charge of the BAT at time step 𝑘 (such that the net power from the 

PV and the loads LDs ∈ [𝐿𝐷𝑐, 𝐿𝐷𝑁𝑐] that is both the controllable 𝐿𝐷𝑐(𝑘) and uncontrollable load 

𝐿𝐷𝑁𝑐(𝑘)is expressed as follows:  

𝑃(𝑘: 𝑁) = ∑ 𝑃𝑉(𝑘) − (𝐿𝐷𝑐(𝑘)

𝑁

𝑘=1

 + 𝐿𝐷𝑁𝑐(𝑘)) (2) 

and in an elegant systemic representation as follows: 
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𝑃(𝑘:𝑁) = ∑ ∑(𝑃𝑉(𝑘) −

𝑛

𝑖=1

(𝐿𝐷𝑐(𝑘) + 𝐿𝐷𝑁𝑐(𝑘)) 𝑖   

𝑁

𝑘=1

 (3) 

where, subscript 𝑖 denotes the 𝑖𝑡ℎ number of array of devices, 𝑖 ∈ [1: 𝑛], 𝑃(𝑘:𝑁) represents the 

accumulated energy from time 𝑘 to the end of the horizon 𝑁, 𝑃𝑉(𝑘) denotes the energy supplied by the 

PV at time interval 𝑘, 𝐿𝐷𝑐(𝑘) represents the energy demand ensured from the controllable load device 

which can be shifted and/or de/activated by the proposed load shifting DSM algorithm. 𝐿𝐷𝑁𝑐(𝑘) denotes 

the energy demanded by the non-controllable load which must remain ON or energized. By extension 

in matrix form, let 𝑃𝑖𝑗  defined in Eq. (3) be a left diagonal matrix of the predicted power flow in the 

HESS from time instance 𝑘 to 𝑁 as follows: 

∑∑𝑃𝑖𝑗

𝑘

𝑗=1

𝑁

𝑖=1

=

[
 
 
 
 
 
𝑃1,1(𝑘) 0 0 0 0

𝑃2,1(𝑘) 𝑃2,2(𝑘 + 1) 0 0 0

𝑃3,1(𝑘) 𝑃3,2(𝑘 + 1) 𝑃3,3(𝑘 + 1) 0 0

⋮ ⋮ ⋮ ⋱ 0
𝑃𝑖,1(𝑘) 𝑃𝑖,2(𝑘 + 1) … 𝑃𝑖,𝑗−1(𝑁 − 1) 𝑃𝑖,𝑗(𝑁)]

 
 
 
 
 

 [𝑋𝑖] (4) 

In Eq. (4), 𝑋𝑖 is a 𝑛x1 vector of ones of 𝑖 elements in the 𝑃𝑖𝑗 matrix only for regularization. Thus, the 

diagonal 𝑃𝑖𝑗  aggregated over 𝑖: 𝑗 similarly, infers the cumulative energy in the system which must be 

within the operating limits.   

The decision taken which might de/activate the controllable load is based on a cost function, which is 

the weighted priority scale of preference for load usage and the necessary constraints needed to prevent 

violation of the constraints of the system. The cost function is such that the energy (or cumulative net 

power per time) to be consumed by the controllable load is minimized. Therefore, contingent on the 

prediction of the SOC of BAT, a decision to either activate or de-activate the controllable load, such 

that the predicted energy level when excess or insufficient and would not lead to a violation of the SOC 

of BAT upper or lower limits respectively is imperative. Furthermore, the energy requirement of 

controllable loads which have strict operational time dependences is treated as a single energy utility or 

entity.  

Furthermore, the objective of the optimization is to minimize the global cost of electricity usage between 

different appliances (such as washing machines, heaters, air conditioners etc.) while satisfying the 

consumers’ load demand. Thus, satisfying the consumers’ load demand is achieved by shifting and 

scheduling load appliances based on a weighted priority index on a scale of 0 - 1 and the availability of 

energy supply is represented mathematically as follows:  

𝑚𝑖𝑛 ∑ ∑𝑐𝑖
𝑇

𝑛

𝑖=1

𝑁

𝑘=1

𝑥𝑖  . 𝑡𝑖(𝑘)  ,             𝑥 ∈ {0,1} (5) 

Where, 𝑐𝑖
𝑇 , 𝑥𝑖 and 𝑡𝑖 is the cost, the binary decision variables and time of use of the 𝑖𝑡ℎ ∈  [1: 𝑛] 

appliances 𝑛 respectively at each time step 𝑘.  

Subject to upper 𝑆𝑈𝑃 and lower 𝑆𝐿𝑂 pinch constraints: 

1

𝐶𝑙
∑ ∑𝑎𝑖𝑗 . 𝑥𝑗

𝑚

𝑗=𝑘

𝑛

𝑖=1

. 𝑡𝑖(𝑘) ≤ [𝑆𝑜𝐴𝑐𝑐(𝑘 − 1)𝑖 +
1

𝐶𝑙
 ∑ ∑ 𝑑𝑖𝑎𝑔([𝑃𝑖 𝑗

𝑖

𝑗=𝑘

𝑁

𝑖=1

(𝑘)])]  − 𝑆𝑈𝑃 (6) 

−
1

𝐶𝑙

∑∑𝑎𝑖𝑗 . 𝑥𝑗

𝑚

𝑗=𝑘

𝑛

𝑖=1

. 𝑡𝑖(𝑘) ≤ − [𝑆𝑜𝐴𝑐𝑐(𝑘 − 1)𝑖 +
1

𝐶𝑙

 ∑∑𝑑𝑖𝑎𝑔([𝑃𝑖 𝑗(𝑘)

𝑖

𝑗=𝑘

𝑁

𝑖=1

])] + 𝑆𝐿𝑂 , 𝑗 ∈  {𝑘: 𝑁} (7) 
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Where, 𝑗 ∈  {𝑘:𝑁} is the current time step of the horizon which terminates at 𝑁. 

The cost function 𝑐𝑖
𝑇 is defined as a weighted running sum 𝑤1, and a descending scale of preference 

index [1 - 5], 𝑤2 at a 𝑘𝑡ℎ interval.  This is such that for instance at an interval k+5 the cost is the 

cumulative sum of the energy consumed by an 𝑖𝑡ℎ appliance from 𝑘 to 𝑘 + 4 in addition with an 

equivalent scale of preference arbitrarily defined by the consumer such that an index of ‘5’ denotes the 

least preferred and ‘1’ is the most preferred.  

The constraint in Eq. (6) ensures the total energy in the BAT is less than or equal to 𝑆𝑈𝑃 hence, the upper 

pinch is not violated, by activating and/ shifting suitable controllable load 𝐿𝐷𝑐 accordingly to absorb 

any excess energy in advance. Similarly, the constraint in Eq. (7) takes cognizance of the lower pinch 

violation by deactivating and/shifting load the controllable load 𝐿𝐷𝑐 to a later but suitable hour of the 

day. 

Thus, Eq. (8) is the expansion of Eq. (6,7) which results in twenty-three in-equality constraints 

corresponding to the time interval horizon (𝑘 − 𝑁) as follows which must satisfy the upper 𝑆𝑈𝑃 and 

lower 𝑆𝐿𝑂 operating pinch constraints: 

𝑆𝐿𝑂 ≤

[
 
 
 
 

𝑆𝑜𝐴𝑐𝑐(𝑘 − 1)𝑖

𝑆𝑜𝐴𝑐𝑐(𝑘)𝑖

𝑆𝑜𝐴𝑐𝑐(𝑘 + 1)𝑖

⋮
𝑆𝑜𝐴𝑐𝑐(𝑁 − 1)𝑖=1:𝑛]

 
 
 
 

−
1

𝐶𝑙

[
 
 
 
 
 

[
 
 
 
 
𝑎𝑖=1,𝑗=1:𝑛 . 𝑥𝑗=1:𝑛. 𝑡𝑖=1:24

𝑎𝑖=2,𝑗=1:𝑛 . 𝑥𝑗=1:𝑛. 𝑡𝑖=2:24

𝑎𝑖=3,𝑗=1:𝑛 . 𝑥𝑗=1:𝑛. 𝑡𝑖=3:24

⋮
𝑎𝑖=𝑁,𝑗=1:𝑛 . 𝑥𝑗=1:𝑛. 𝑡𝑖=1 ]

 
 
 
 

+

[
 
 
 
 

𝑃1,1

𝑃2,2

𝑃3,3

⋮
𝑃𝑖=𝑁,𝑗=𝑁]

 
 
 
 

]
 
 
 
 
 

≤ 𝑆𝑈𝑃 (8) 

The load-shifting decision-making variable 𝑥𝑗=1:𝑛 is contingent on the multiple 𝑛𝑡ℎ electrical appliances 

which have a corresponding power rating 𝑎𝑖=𝑘:𝑁,𝑗=1:𝑛 at time interval 𝑖 = 𝑘, for a maximum duration in 

a 𝑁 hours receding horizon 𝑡𝑖=1:𝑁. 

∑𝑥𝑖

𝑛

𝑖=1

. 𝑡𝑖(𝑘) ≤ 𝑍𝑖  (9) 

where the piecewise binary equivalent function of the constraint in Eq. (9) is achieved as follows: 

𝑍𝑖 = {1 ∑ ∑𝑥𝑖

𝑛

𝑖=1

𝑁−1

𝑘=1

. 𝑡𝑖(𝑘) ≤ 𝑊𝑖    

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}                          , ∀ 𝑘 = 1,2,3,…𝑁 (10) 

Such that,  

𝑊𝑖 denotes the total number of intervals an 𝑖𝑡ℎ appliance can be activated and 𝑍𝑖is a binary variable that 

enables or disables constraint in Eq. (10).  

The binary constraint in Eq. (10), enforces a maximum duration for which the 𝑖𝑡ℎ appliances can be 

activated contingent on the function in Eq. (11) which attains a 1 (ON) or 0 (OFF) logic state only if the 

number of activations was less than or greater than the desired number of activations for any 

𝑖𝑡ℎcontrollable appliances respectively. 

𝑥𝑖 = 0 − 1 (11) 
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The equality constraint binary variable expressed in Eq. (12) ensures that the decision variable or logic 

state is binary 0 or 1 only. Thus, the controllable load as defined by the consumer is de/activated by 𝑥𝑖 

as follows: 

𝐿𝐷𝑐(𝑘)𝑖 ≜ [𝐿𝐷𝑐(𝑘)𝑖=1 + 𝐿𝐷𝑐(𝑘)𝑖=2, …+ 𝐿𝐷𝑐(𝑘)𝑖=𝑛] ∗ [

𝑥𝑖=1

𝑥𝑖=2

⋮
𝑥𝑖=𝑛

] , ∀𝑘=1,2,3,..𝑁−1  and 𝑖 ∈ [1 − 𝑛] (12) 

The flow chart for the load shifting and shedding based on the MPC-based adaptive PoPA is shown in 

Fig. 2. 

 
Figure 2. Flow chart for MPC Based on Adaptive PoPA for Load Shifting and Shedding algorithm 
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3. SIMULATION RESULTS AND DISCUSSION 

This section compares the system response with and without load shifting algorithm for energy deficit 

and excess energy violation of the operating constraints and unserved load demand. The load shifting 

algorithm operates by shifting or shedding the controllable load such that the minimum or maximum 

state of charge 𝑆𝑚𝑖𝑛 and 𝑆𝑚𝑎𝑥 must stay within 𝑆𝐿𝑂 and 𝑆𝑈𝑃 (i.e. 30% and 90%), respectively (60% 

depth of discharge) while successfully supplying the critical load. Hence, 𝑆𝑚𝑖𝑛  and 𝑆𝑚𝑎𝑥 , indicates the 

lowest and highest values of the predicted PGCC. Thus, the BAT only serves the critical load demand 

while the non-critical or controllable load demand is shifted optimally when the available energy in the 

system is insufficient to cater for the entire load demands without the PGCC violating the 𝑆𝐿𝑂.  

To evaluate the algorithm, the SoC of BAT is set at an initial condition of 50%, while the consumer is 

assumed to have only two appliances (but can be any realistic amount); termed appliances 1 and 2 are 

denoted as 𝐿𝐷𝑐(𝑘)1and 𝐿𝐷𝑐(𝑘)2  respectively. The corresponding time of use for 𝐿𝐷𝑐(𝑘)1and 𝐿𝐷𝑐(𝑘)2  
which are arbitrary are defined as 𝑡1(𝑘) = [0 0  0 0 1 1 1 1 1 1 0 1 1 0 0 0 1 1 0 0 0 0 0] and 𝑡2(𝑘) =
[0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1]. The wattage for appliance 1 (Freezer)  𝐿𝐷𝑐(𝑘)1 are 

500W and appliance 2 (a Desktop PC x 2) 𝐿𝐷𝑐(𝑘)2 is 300W [35] with a priority scale of preference set 

to 5 and 3 having a total amount of operational time (h) for both appliances are 10h and 7h respectively.  

Further, the critical or uncontrollable aggregated load demand which is a typical duck-shaped residential 

load profile, and PV irradiation profile are consistent with the previous research work [28]. To evaluate 

the load shifting algorithm only, the state of the HESS converters/energy transformation devices; FC, 

EL and DSL will remain deactivated. The initial condition of the controllable appliances is such that it 

is activated for all 24 hours of the day, typically as would be depicted in an extreme case of energy 

mismanagement by perhaps the most naive consumer a worst-case scenario. 

3.1. Results for Excess Energy Case Study 

The case study examines the algorithm using a corresponding critical load demand and PV energy 

generation profile of a bright summer day when enough excess energy sufficient to cause overcharging 

of the BAT on noonday is generated.  The BAT initial SOC is set to 80%, and the controllable loads (1 

and 2) which are randomly activated using an approach presented in [35], result in a 10 h and 7 h total 

ON time for 𝐿𝐷𝑐(𝑘)1 and 𝐿𝐷𝑐(𝑘)2 respectively. The original logic state activation sequence for 

𝐿𝐷𝑐(𝑘)1=[0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1], and  𝐿𝐷𝑐(𝑘)2=[0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1] are shown in Figs. 3(a,b), respectively while, Fig. 4(a) and 4(b) 

shows the load shifted activation sequence for  𝐿𝐷𝑐(𝑘)1 and 𝐿𝐷𝑐(𝑘)2. 

The original and load shifted response of state of charge of the BAT plotted over 24 h which represents 

the power grand composite curve (PGCC) is indicated by the brown and blue coloured plot respectively 

in Fig. 5.  The original BAT state of charge shows the occurrence of 5 violations of the 𝑆𝑈𝑃 (indicated 

as the dashed green line) which indicates the BAT was overcharged with excess energy from the PV 

between the 9th and 14th hours. However, with the load shifting algorithm deployed, these 5 violations 

which had previously occurred between the 9th and 14th hours are avoided by rescheduling the 

controllable loads as follows: 𝐿𝐷𝑐(𝑘)1 = [0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0] and  

𝐿𝐷𝑐(𝑘)2 = [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] as shown in Figs. 4(a,b).  
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(a) (b) 

Figure 3. (a) Original logic state of the controllable load demand 1 in summer, (b) original Logic state of the 

shifted controllable load demand 2 in summer 

 

  
(a) (b) 

Figure 4. (a) Logic state of the shifted controllable load demand 1 in summer, (b) logic state of the shifted 

controllable load demand 2 in summer. 

 

 
Figure 5. Original and shifted battery state of charge response in summer. 

3.2. Result for Energy Deficit Case Study 

This case study evaluates the algorithm with critical load demand and PV energy generation profile 

corresponding to a cloudy day in Winter when the energy from the PV is insufficient to adequately 

charge the BAT. The BAT SOC is initialized to 55%, and the controllable loads (1 and 2) which are 

randomly activated as in the previous case study, result in a 12 h and 11h total ON time for 𝐿𝐷𝑐(𝑘)1 and 

𝐿𝐷𝑐(𝑘)2 respectively. The original logic state activation sequence for 𝐿𝐷𝑐(𝑘)1=[0, 0, 0, 1, 0, 1, 1, 1, 0, 

0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1] and 𝐿𝐷𝑐(𝑘)2=[0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 

0, 1] are shown in Fig. 6(a) and 6(b) respectively. Fig. 7(a) and 7(b) show the load shifted activation 
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sequence for  𝐿𝐷𝑐(𝑘)1 and 𝐿𝐷𝑐(𝑘)2 while Fig. 8 shows the original and load-shifted response of the 

state of charge of the BAT plotted over 24h.  

The original BAT state of charge shows the occurrence of 5 violations of the 𝑆𝐿𝑂 (indicated as the dashed 

red line) which denotes the BAT was over-discharged due to insufficient energy in the system between 

the 19th and 23rd h.  Nevertheless,  with the load shifting algorithm deployed,  these 5 violations which 

had previously occurred between the 19th and 23rd h are avoided by shedding the controllable loads as 

follows: 𝐿𝐷𝑐(𝑘)1 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1] and 𝐿𝐷𝑐(𝑘)2 = [0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1] as shown in Fig. 7(a) and 7(b). Hence, out of a total 

of 12 and 11 activations for 𝐿𝐷𝑐(𝑘)1 and 𝐿𝐷𝑐(𝑘)2  only a total of 3 activations each are scheduled by 

the algorithm to avoid the 5 violations of 𝑆𝐿𝑂. 

  
(a) (b) 

Figure 6. (a) Original logic state of the controllable load demand 1 in winter, (b) original logic state of the 

controllable load demand 2 in winter. 

 

  
(a) (b) 

Figure 7. (a) Logic state of the shifted controllable load demand 1 in winter, (b) logic state of the shifted 

controllable load demand 2 in winter. 

 

 
Figure 8. Original and shifted battery state of charge response in winter. 
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3.3 Discussion for Excess Energy Case Study 

In the deficit energy scenario, the original activation of 𝐿𝐷𝑐(𝑘)1 as shown in Fig. 3(a) is rescheduled by 

the load shifting algorithm such that the activation of  𝐿𝐷𝑐(𝑘)1 occurs during the early hours of the day 

(between the 2nd and 8th h, 11th and 14th h) in other to absorb the excess energy in the BAT as shown 

in Fig. 4(a). Similarly, as shown in Fig. 3(b) the original profile of 𝐿𝐷𝑐(𝑘)2  is shifted to the early hours 

of the day as the 𝐿𝐷𝑐(𝑘)1 is activated 7 times, between the 1st and 7th h of the day as shown in Fig. 

4(b). Hence, 𝐿𝐷𝑐(𝑘)1 and 𝐿𝐷𝑐(𝑘)2 were successfully shifted and activated by the optimisation 

algorithm based on the user’s preference, and allowable time of use. Further, load satisfaction was 100% 

as the total number of usage hours for the controllable and critical appliance were adequately met while 

the BAT is operated without violating any operating limits. Moreso, the approach will allow usage of 

the electrolyser only if there is still excess energy in the system after optimal load shifting hence, 

improving the overall regenerative system’s efficiency. Table 1, presents the summarized result for the 

analysis performed hourly over a 24 h horizon span during an excess energy scenario in the summer 

season. 

Table 1. 24 h operational parameters with/without load shifting algorithm deployed at 55% and 80% SOC summer 

seasonal profile (Excess energy case study). 

Operational Parameters 
No-load shifting and SOC 

at 80% initial condition 

Load shifting and SOC at 

80% initial condition 

Upper pinch violation 5 0 

Lower pinch violation 0 0 

Critical Pinch violation 0 0 

Controllable load 1 satisfaction (%) 100 100 

Controllable load 2 satisfaction (%) 100 100 

Critical load Satisfaction (%) 100 100 

3.4 Discussion for Deficit Energy Case Study 

In the deficit energy case study performed in winter season, the original controllable load demands, 

𝐿𝐷𝑐(𝑘)1 and 𝐿𝐷𝑐(𝑘)2 shown in Figs. 6(a,b) were shifted and shed by the optimal load shifting algorithm 

such that out of a total of 12 and 11 activations for 𝐿𝐷𝑐(𝑘)1 and 𝐿𝐷𝑐(𝑘)2 respectively only a total of 3 

activations each were scheduled by the algorithm to avoid the 5 violations of 𝑆𝐿𝑂 as shown in Figs. 

7(a,b), respectively. This indicates that out of the total amount of energy, i.e., 9.3KWh, which is needed 

to sufficiently supply 𝐿𝐷𝑐(𝑘)1 and 𝐿𝐷𝑐(𝑘)2  only 2.4KWh was available. Hence, an equivalent of 

6.9KWh indicates 74.2% of the total amount of energy demand which must be outsourced from the FC 

or DSL, if  𝐿𝐷𝑐(𝑘)1 and 𝐿𝐷𝑐(𝑘)2  are to be successfully satisfied without over-discharging the BAT. In 

the research study [36], the effect of increasing the depth of discharge beyond the optimal operating 

range underscored the detrimental impact on the life cycle of BAT. In contrast to the optimal load 

shifting, without shitting or shedding load demand as shown in Fig. 8, the supply of energy that would 

have catered for the critical load would be consumed in the early hours of the day based on the original 

activation sequence of the controllable load which was not shifted or shed to meet all the load demands. 

Therefore, the over-discharging action will adversely reduce the life cycle of the BAT and consequent 

prompt the avoidable use of the hydrogen fuel cell when the SoC of the BAT is below 30%. Table 2, 

presents the summarized result for the hourly analysis performed over a 24h horizon span in winter to 

investigate the holistic load shifting/shedding algorithm under a deficit energy scenario in the winter 

season. 

Table 2: 24h Operational Parameters with/without load shifting algorithm deployed at 55% and 80% SOC Winter 

seasonal profile (Energy deficit case study) 

Operational Parameters No-load shifting and SOC 

at 80% initial Condition 

Load shifting and SOC at 

80% initial Condition 

Upper pinch violation 0 0 

Lower pinch violation 5 0 

Critical Pinch violation 2 0 

Controllable load 1 satisfaction (%) 100 12.5 

Controllable load 2 satisfaction (%) 100 12.5 

Critical load satisfaction (%) 79.1 100 
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4. CONCLUSION 

This work presented a novel algorithm for load shifting and shedding in a model predictive framework 

based on the principles of conservative power pinch analysis using an insight-based binary linear 

programming optimization technique. The algorithm was evaluated using two case studies: a bright 

summer day and a cloudy winter day (i.e. on 24 h horizon). The performance of the algorithm evaluated 

on a typical day in the summer season showed the effectiveness of load shifting. This was such that the 

excess energy in the system which led to over-charging above the limit of the energy storage was 

avoided by shifting the loads to periods before such excesses occurred. Similarly, in the winter day 

scenario, due to the predicted occurrence of deficit energy in the system, the algorithm shed the 

controllable load such that over-discharging of the energy storage never occurs. Thus, the proposed 

algorithm did not only ensure 100% satisfaction of the critical load demand it also traded off some of 

the controllable load demand to prevent the detrimental operation of the energy storage beyond the 

specified depth of discharge. Finally, the proposed algorithm was shown to improve systems reliability 

concerning critical load demand satisfaction while enhancing the operation of the energy storage. 
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