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ABSTRACT

In this paper, we first define the notion of Lagrangian statistical submersion from a Kähler-like
statistical manifold onto a statistical manifold. Then we prove that the horizontal distribution
of a Lagrangian statistical submersion is integrable. Next, we establish Chen-Ricci inequality for
Lagrangian statistical submersions from Kähler-like statistical manifolds onto statistical manifolds
and discuss the equality case of the obtained inequality through a basic tensor introduced by
O’Neill that plays the role of the second fundamental form of an isometric immersion. At the end,
we give a nontrivial example of a Kähler-like statistical submersion.
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1. Introduction

A statistical manifold (M,∇, gM ) is a Riemannian manifold if ∇gM is symmetric, where ∇ is a torsion-free
affine connection. For (M,∇, gM ), we define another torsion-free affine connection ∇∗ satisfying [2]

XgM (Y,Z) = gM (∇XY,Z) + gM (Y,∇∗
XZ),

for any X,Y, Z ∈ Γ(TM). The connections ∇ and ∇∗ are called dual connections and satisfy
(
∇∗)∗ = ∇.

If (∇, gM ) is a statistical structure on M , then (∇∗, gM ) is also a statistical structure. Any torsion-free affine
connection ∇ always has a dual connection given by [2]

2∇0 = ∇+∇∗,

where ∇0 is the Levi-Civita connection on M .

Takano [18] defined a semi-Riemannian manifold (M, gM ) with almost complex structure J which has
another tensor field J∗ of type (1, 1) satisfying

gM (JX, Y ) + gM (X, J∗Y ) = 0,

for X,Y ∈ Γ(TM). Then (M, gM , J) is called an almost Hermite-like manifold. It is easy to verify the following
relations [18]:

(J∗)∗ = J, (J∗)2 = −Id, g(JX, J∗Y ) = g(X,Y ).

Since, J2 = −Id, the tensor field J is symmetric to g.
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Let (M,∇, gM , J) be an almost Hermite-like statistical manifold. Then (M,∇, gM , J) is called a Kähler-like
statistical manifold [18] if J is parallel with respect to ∇. Also, we have

gM ((∇XJ)Y,Z) + gM (Y, (∇XJ
∗)Z) = 0.

On a Kähler-like statistical manifold (M,∇, gM , J), Takano [18] introduced the curvature tensor Rie with
respect to ∇ such that

Rie(X,Y )Z =
c

4

{
gM (Y,Z)X − gM (X,Z)Y − gM (Y, JZ)JX + gM (X, JZ)JY

+ [gM (X, JY )− gM (Y, JX)]JZ
}
, (1.1)

where c is a constant.

To find relationship between the extrinsic and intrinsic invariants of a submanifold has been very popular
in the recent twenty five years (for example [5, 13, 14]). The first study in this direction was initiated by B.-Y.
Chen in 1993. M.E. Aydin et al. [6] studied and proved inequalities for the scalar curvature and the Ricci
curvature for statistical submanifolds in statistical manifolds of constant curvature associated with the dual
connections. A.N. Siddiqui et al. [15, 16] worked with the statistical curvature tensor field, instead of the
curvature tensor fields with respect to the dual connections and obtained geometric inequality by treating
it as an optimization problem. On the other hand, statistical submersions between statistical manifolds are
introduced and investigated by Abe and Hasegawa in [1]. In [17], Chen inequalities for statistical submersions
between statistical manifolds are studied. Such inequalities derived by many authors (for instance, see,
[4, 8, 9]) for Riemannian submersions.

Motivated by the affirmative studies, in the present paper, first we study some results on Lagrangian
statistical submersions. Then we obtain the Chen-Ricci inequality for Lagrangian statistical submersions and
characterize a basic tensor introduced by O’Neill and its dual introduced by Takano for which the equality case
holds.

2. Statistical Submersion

The study of Riemannian submersions is a topic of great interest in differential geometry. Foundational
works of O’Neill [10] and Gray [7] stated the fundamental tensors and equations relating the geometry of the
total space, the base and the fibers of the submersion. Several generalizations of Riemannian submersions play
a role in physics, particularly in Yang-Mills theory, String theory and Kaluza-Klein theory (cf. M. Falciteli, S.
Ianus, A.M. Pastore, Riemannian submersions and related topics, World Scientific, 2004). Later, Riemannian
submersions between manifolds endowed with various geometric structures were studied by many authors
(see, [4, 8, 9]).

Let ψ : (M, gM ) → (B, gB) be a Riemannian submersion between two Riemannian manifolds (M, gM ) and
(B, gB). We set dim(M) = m, dim(B) = n. For each point q ∈ B, ψ−1(q) is an n-dimensional Riemannian
submanifold with the induced metric g, called a fiber and denoted by M . The dimension of each fiber is always
(m− n) = r. A vector field onM is vertical if it is tangent to fibers and horizontal if orthogonal to fibers. For any
p ∈M , in the tangent space TpM of M , the vertical and horizontal spaces are respectively denoted by Vp(M)
and Hp(M). Then the tangent bundle TM is decomposed as

T (M) = V(M)⊕H(M),

where V(M) and H(M) are the vertical and horizontal distributions. Moreover, let

V : TM → V(M), H : TM → H(M)

be the projection mappings. We call a vector field X on M projectable if there exists a vector field X∗ on B such
that

ψ∗(Xp) = X∗ψ(p),
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for each p ∈M , in this situation X and X∗ are ψ-related. A vector field X is said to be basic if it is projectable
and horizontal [10, 11].

The geometry of Riemannian submersions is characterized by O’Neill’s [10] tensors T and A of type (1, 2),
which are defined as follows.

TEF = V∇VEHF +H∇VEVF, (2.1)
AEF = V∇HEHF +H∇HEVF, (2.2)

for any E,F ∈ Γ(TM). It is easy to see that TE and AE are skew-symmetric operators on the tangent bundle of
M reversing the vertical and the horizontal distributions. We summarize the properties of the tensor fields T
and A. Let U, V be vertical and X,Y be horizontal vector fields on M , then we have [18]

TUV = TV U, AXY = −AYX =
1

2
V[X,Y ]. (2.3)

We recall that if TUV = 0, for all U, V ∈ V(M), then ψ is said to be a statistical submersion with isometric fibers
[18].

Let (M,∇, gM ) and (B, ∇̃, gB) be a statistical manifold and Riemannian manifold, respectively. Let ψ :M → B
be a Riemannian submersion. Then the affine connections induced on fibers by the dual connections ∇ and ∇∗

from M are respectively denoted by ∇ and ∇∗
. Notice that both the affine connections ∇ and ∇∗

are defined
by

∇UV = V∇UV, ∇∗
UV = V∇∗

UV.

Also, we observe that ∇ and ∇∗
are torsion free and conjugate to each other with respect to g. We put

S = ∇−∇∗, then is a symmetric tensor.

Statistical manifolds with almost complex structure and its statistical submersions, statistical submersion
of the space of the multivariate normal distribution, statistical manifolds with almost contact structures and
its statistical submersions were studied by Takano in [18, 19, 20]. Recently, remarkable statistical submersions
such as cosymplectic-like statistical [3], quaternionic Kähler-like statistical [23] and para-Kähler-like statistical
submersions [22] have been investigated till now.

Definition 2.1. [18, 20] Let (M,∇, g) and (B, ∇̃, gB) be two statistical manifolds. Then ψ : (M,∇, g) → (B, ∇̃, gB)
is a statistical submersion if ψ satisfies

ψ∗(∇XY )p = (∇̃ψ∗Xψ∗Y )ψ(p),

for basic vector fields X,Y on M and p ∈M .

By changing ∇ for ∇∗ in (2.1), (2.2), and (2.3), ones respectively define T ∗ and A∗ (see [18, 20]). We remark
that A and A∗ are equal to zero if and only if H(M) is integrable with respect to ∇ and ∇∗, respectively. For
X,Y ∈ H(M) and V,W ∈ V(M), we turn up [18]

gM (TVW,X) = −gM (W, T ∗
VX), gM (AXY, V ) = −gM (Y,A∗

XV ). (2.4)

In [18], Takano provided the following lemmas which are useful for this study. Therefore, for a statistical
submersion ψ : (M,∇, g) → (B, ∇̃, gB), we have

Lemma 2.1. [18] If X and Y are horizontal vector fields, then

AXY = −A∗
YX.

Lemma 2.2. [18] For X,Y ∈ H(M) and U, V ∈ U(M), we have

∇UV = TUV +∇UV, ∇∗
UV = T ∗

UV +∇∗
UV,

∇UX = TUX +H∇UX, ∇∗
UX = T ∗

UX +H∇∗
UX,

∇XU = AXU + U∇XU, ∇∗
XU = A∗

XU + U∇∗
XU,

∇XY = H∇XY +AXY, ∇∗
XY = H∇∗

XY +A∗
XY.

Furthermore, if X is basic, then H∇UX = AXU and H∇∗
UX = A∗

XU .
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Let Rie (resp. Rie∗) be the curvature tensor with respect to ∇ (resp. ∇∗) of M and Rie (resp. Rie
∗
) be the

curvature tensor with respect to the induced affine connection ∇ (resp. ∇∗
) of each fiber. The Gauss equations

are given by [18]

gM (Rie(U, V )W,W ′) = gM (Rie(U, V )W,W ′) + gM (TUW, T ∗
VW

′)

− gM (TVW, T ∗
UW

′), (2.5)

g(Rie∗(U, V )W,W ′) = gM (Rie
∗
(U, V )W,W ′) + gM (T ∗

UW, TVW ′)

− gM (T ∗
VW, TUW ′),

The mean curvature vector fields of the fibre with respect to the affine connection ∇, its conjugate connection
∇∗ and Levi-Civita connection ∇0 are given by the horizontal vector fields N =

∑r
a=1 TUaUa, N ∗ =

∑r
a=1 T ∗

Ua
Ua

and N 0 =
∑r

a=1 T 0
Ua
Ua, respectively, [18]

H =
1

r

r∑
a=1

TUa
Ua =

1

r
N , H∗ =

1

r

r∑
a=1

T ∗
Ua
Ua =

1

r
N ∗,

H0 =
1

r

r∑
a=1

T 0
Ua
Ua =

1

r
N 0.

On the other hand, we have

n∑
i=1

r∑
a,b=1

T i
ab =

n∑
i=1

r∑
a,b=1

g(TUaUb, Xi). (2.6)

Let (M,∇, gM , J) and (B, ∇̃, gB , J̃) be two almost Hermite-like statistical manifolds. Then a semi-Riemannian
submersion ψ :M → B is said to be an almost Hermite-like submersion [18] if ψ∗J = J̃ψ∗. The horizontal and
vertical distributions are J-invariant if and only if are J̃-invariant. If X is basic on M which is ψ-related to X∗

on B, then JX (resp. J∗X) is basic and ψ-related to J̃X∗ (resp. J̃∗X∗), where J̃ and J̃∗ are tensor fields of type
(1, 1) such that

gB(J̃X∗, Y∗) + gB(X∗, J̃
∗Y∗) = 0.

Takano [18] considered that a statistical submersion ψ : (M,∇, gM ) → (B, ∇̃, gB) is a Kähler-like statistical
submersion if (M,∇, gM , J) is a Kähler-like statistical manifold and each fibre is a J-invariant semi-Riemannian
submanifold of M .

Theorem 2.1. [18] If ψ : (M,∇, gM ) → (B, ∇̃, gB) is a Kähler-like statistical submersion, then the base (B, ∇̃, gB , J̃)
and each fibre (M,∇, g, J) are Kähler-like statistical manifolds.

On combining (1.1) and (2.5), we obtain [18]

gM (Rie(U,V )W,W ′) + gM (TUW, T ∗
VW

′)− gM (TVW, T ∗
UW

′)

=
c

4

{
gM (Y,Z)X − gM (X,Z)Y − gM (Y, JZ)JX + gM (X, JZ)JY

+
[
gM (X, JY )− gM (Y, JX)

]
JZ

}
. (2.7)

3. On Lagrangian Statistical Submersion

Similar to the classical definition of anti-invariant Riemannian and Lagrangian Riemannian submersions
from a Kählerian manifold M onto a Riemannian manifold B (see [12], [21]), we give the following definitions.

Let (M,∇, gM , J) be an Hermite-like statistical manifold and (B, ∇̃, gB) be a statistical manifold. Suppose
that there exists a statistical submersion ψ :M → B such that ker(ψ∗) is anti-invariant with respect to J , then
ψ is called an anti-invariant. On the other hand, an anti-invariant statistical submersion is called a Lagrangian
statistical submersion, if dim(ker(ψ∗)) = dim((ker(ψ∗))

⊥). In this case, J (respectively, J∗) of M reverses the
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vertical and the horizontal distributions.

In this section, we prove that the horizontal distribution of a Lagrangian statistical submersion from a Kähler-
like statistical manifold M is integrable. First, we give the following lemmas:

Lemma 3.1. Let ψ : (M,∇, gM ) → (B, ∇̃, gB) be a Lagrangian statistical submersion from a Kähler-like statistical
manifold M onto a statistical manifold B. Then we have TUJE = JTUE, for any E ∈ Γ(TM) and U ∈ Γ(V(M)).

Lemma 3.2. Let ψ : (M,∇, gM ) → (B, ∇̃, gB) be a Lagrangian statistical submersion from a Kähler-like statistical
manifold M onto a statistical manifold B. Then we have AXJY = JAXY, and A∗

XJ
∗Y = J

∗A∗
XY , for any X,Y ∈

Γ(H(M)).

Proposition 3.1. Let ψ : (M,∇, gM ) → (B, ∇̃, gB) be a Lagrangian statistical submersion from a Kähler-like statistical
manifold M onto a statistical manifold B. Then we have

AXJY = −A∗
Y JX, (3.1)

for any X,Y ∈ Γ(H(M)).

Proof. By Lemma 3.2 and Lemma 2.1, we have

AXJY = JAXY = −JA∗
YX = −A∗

Y JX,

for any X,Y ∈ Γ(H(M)). Thus, we get our assertion.

Similarly, the above result holds for A∗
X .

Theorem 3.1. Let ψ : (M,∇, gM ) → (B, ∇̃, gB) be a Lagrangian statistical submersion from a Kähler-like statistical
manifold M onto a statistical manifold B. Then AXY = A∗

XY = 0, for any X,Y ∈ Γ(H(M)), provided that rank(J +

J
∗
) coincides with the dimension of the fibers.

Theorem 3.1 gives the following results.

Corollary 3.1. If ψ : (M,∇, gM ) → (B, ∇̃, gB) is a Lagrangian statistical submersion from a Kähler-like statistical
manifold M onto a statistical manifold B such that J = J

∗
, then AXY = A∗

XY = 0, for any X,Y ∈ Γ(H(M)).

The following result follows immediately from Corollary 3.1 and (2.3).

Corollary 3.2. If ψ : (M,∇, gM ) → (B, ∇̃, gB) is a Lagrangian statistical submersion from a Kähler-like statistical
manifold M onto a statistical manifold B such that J = J

∗
, then the horizontal distribution H is completely integrable.

4. Chen-Ricci Inequality

In this section, we derive Chen-Ricci inequality for Lagrangian statistical submersions from Kähler-like
statistical manifolds onto statistical manifolds and discuss the equality case of the obtained inequality through
O’Neill’s tensor (and its dual introduced by Takano) that plays the role of the second fundamental form of an
isometric immersion.

Now, we assume a Lagrangian statistical submersion ψ : (M,∇, gM ) → (B, ∇̃, gB) from a Kähler-like statistical
manifold M(c) whose curvature tensor Rie is of the form (1.1) onto a statistical manifold B. Then, for each
p ∈M , the local orthonormal bases of horizontal Hp(M) and vertical Vp(M) subspaces are respectively given
by {X1, . . . , Xn} and {U1 = U, . . . , Ur}.

From (1.1), we have

r∑
a,b=1

gM (Rie(Ua, Ub)Ub, Ua) =
c

4

r∑
a,b=1

{
gM (Ua, Ua)gM (Ub, Ub)− gM (Ua, Ub)gM (Ub, Ua)

− gM (Ub, JUb)gM (Ua, JUa) + gM (Ua, JUb)gM (Ua, JUb)

+ gM (Ua, JUb)gM (Ua, JUb)− gM (Ub, JUa)gM (Ua, JUb)
}
. (4.1)
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By the relations (4.1), (2.7) and the symmetry of T and T ∗, we get

c

4
r(r − 1) = 2R− r2gM (H,H∗) +

r∑
a,b=1

gM (TUaUb, T ∗
Ua
Ub), (4.2)

where R is the scalar curvature of each fibre with respect to the induced affine connection.

Since 2T 0 = T + T ∗ and 2H0 = H +H∗, then equation (4.2) becomes

c

4
r(r − 1) = 2R− 2r2gM (H0, H0) +

r2

2
(||H||2 + ||H∗||2)

+

r∑
a,b=1

{
2gM (T 0

Ua
Ub, T 0

Ua
Ub)−

1

2

[
gM (T 0

Ua
Ub, T 0

Ua
Ub) + gM (T ∗

Ua
Ub, T ∗

Ua
Ub)

]}
= 2R− 2r2||H0||2 + r2

2
(||H||2 + ||H∗||2) +

n∑
i=1

r∑
a,b=1

{
2(T 0i

ab )
2

− 1

2

[
(T i
ab)

2 + (T ∗i
ab )

2
]}
.

(4.3)

For local orthonormal frame {Xi, Ua}1≤i≤n,1≤a≤r on M , one can derive

n∑
i=1

r∑
a,b=1

(T i
ab)

2 =
r2

2
||H||2 + 1

2

n∑
i=1

[T i
11 − · · · − T i

rr]
2

+ 2

n∑
i=1

r∑
b=2

(T i
1b)

2 − 2

n∑
i=1

∑
2≤a≤b≤r

(
T i
aaT i

bb − (T i
ab)

2
)
,

and
n∑
i=1

r∑
a,b=1

(T ∗i
ab )

2 =
r2

2
||H∗||2 + 1

2

n∑
i=1

(
T ∗i
11 − · · · − T ∗i

rr

)2
+ 2

n∑
i=1

r∑
b=2

(T ∗i
1b )

2 − 2

n∑
i=1

∑
2≤a<b≤r

(
T ∗i
aaT ∗i

bb − (T ∗i
ab )

2
)
.

Combining the above two equalities, we find

n∑
i=1

r∑
a,b=1

[(T i
ab)

2 + (T ∗i
ab )

2] ≥ 2

n∑
i=1

∑
2≤a<b≤r

T i
aaT ∗i

bb +

n∑
i=1

∑
2≤a<b≤r

(
(T i
ab)

2

+ (T ∗i
ab )

2
)
−

n∑
i=1

∑
2≤a<b≤r

(
T i
aa + T ∗i

aa

) (
T i
bb + T ∗i

bb

)
+
r2

2

(
||H||2 + ||H∗||2

)
. (4.4)

Substituting (4.4) into (4.3), it follows that

c

4
r(r − 1) ≤ 2R− 2r2||H0||2 + r2

2
(||H||2 + ||H∗||2) + 2

n∑
i=1

r∑
a,b=1

(T 0i
ab )

2

−
n∑
i=1

∑
2≤a<b≤r

T i
aaT ∗i

bb − 1

2

n∑
i=1

∑
2≤a<b≤r

[(T i
ab)

2 + (T ∗i
ab )

2]

+ 2

n∑
i=1

∑
2≤a<b≤r

T 0i
aaT 0i

bb − r2

4
(||H||2 + ||H∗||2). (4.5)
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Using (2.5), we derive

c

4
(r − 1)(r − 2) +

∑
2≤a<b≤r

[
− gM (Ub, JUb)gM (Ua, JUa) + gM (Ua, JUb)gM (Ua, JUb)

+ gM (Ua, JUb)gM (Ua, JUb)− gM (Ub, JUa)gM (Ua, JUb)
]

=
∑

2≤a<b≤r

gM (Rie(Ua, Ub)Ub, Ua)−
n∑
i=1

∑
2≤a<b≤r

(T i
aaT ∗i

bb − T i
abT ∗i

ab ).

(4.6)

With the help of (4.6), the equation (4.5) can be written as

c

4
(r(r − 1)) ≤ 2R− 2r2||H0||2 + r2

4
(||H||2 + ||H∗||2) + 2

n∑
i=1

r∑
a,b=1

(T 0i
ab )

2

+ 2

n∑
i=1

∑
2≤a<b≤r

T 0i
aaT 0i

bb −
∑

2≤a<b≤r

gM (Rie(Ua, Ub)Ub, Ua)

− 1

2

n∑
i=1

∑
2≤a<b≤r

(T i
ab + T ∗i

ab )
2 +

c

4
(r − 1)(r − 2)

+
c

4

∑
2≤a<b≤r

[
− gM (Ub, JUb)gM (Ua, JUa) + gM (Ua, JUb)gM (Ua, JUb)

+ gM (Ua, JUb)gM (Ua, JUb)− gM (Ub, JUa)gM (Ua, JUb)
]
. (4.7)

Thus, we have

Ric(U) ≥ c

4
((r − 1)) + r2||H0||2 − r2

8
(||H||2 + ||H∗||2)−

n∑
i=1

r∑
a,b=1

(T 0i
ab )

2

−
n∑
i=1

∑
2≤a<b≤r

[T 0i
aaT 0i

bb − (T 0i
ab )

2], (4.8)

where Ric is the Ricci curvature of each fibre with respect to the induced affine connection.

Again, by the Gauss equation with respect to the Levi-Civita connection, we arrive at

∑
1≤a<b≤r

gM (Rie0(Ua, Ub)Ub, Ua) = 2R
0 − r2||H0||2 +

n∑
i=1

r∑
a,b=1

(T 0i
ab )

2, (4.9)

∑
2≤a<b≤r

gM (Rie0(Ua, Ub)Ub, Ua) =
∑

2≤a<b≤r

gM (Rie
0
(Ua, Ub)Ub, Ua)

−
n∑
i=1

∑
2≤a<b≤r

[T 0i
aaT 0i

bb − (T 0i
ab )

2], (4.10)

where R
0

is the scalar curvature of each fibre with respect to the induced Levi-Civita connection.

On substituting (4.9) and (4.10) into (4.8), we obtain

Ric(U) ≥ 2Ric
0
(U) +

c

4
((r − 1))− r2

8
(||H||2 + ||H∗||2)− 2

r∑
a=2

K0(U ∧ Ua),

where Ric
0

is the Ricci curvature of each fibre with respect to the induced Levi-Civita connection.

By summing up, we have the Chen-Ricci inequality for a Lagrangian statistical submersion as follows:
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Theorem 4.1. Let ψ : (M,∇, g) → (B, ∇̃, gB) be a Lagrangian statistical submersion from Kähler-like statistical
manifold whose curvature tensor Rie is of the form (1.1) onto a statistical manifold. Then, for each unit vector field
U ∈ Vp(M), we have

Ric(U) ≥ 2Ric
0
(U) +

c

4
(r − 1)− r2

8
(||H||2 + ||H∗||2)− 2(r − 1)maxK0(U ∧ ·), (4.11)

where maxK0(U ∧ ·) denotes the maximum of the sectional curvature function of M with respect to ∇ restricted to
2-plane sections of Vp(M), p ∈M , which are orthogonal to U . The equality holds in the inequality (4.11) if and only if

(1) 2TUU = rH(p), TUV = 0, V ∈ Vp(M) orthogonal to U .

(2) 2T ∗
UU = rH∗(p), T ∗

UV = 0, V ∈ Vp(M) orthogonal to U .

An immediate consequence of Theorem 4.1 is the following:

Corollary 4.1. Let ψ : (M,∇, g) → (B, ∇̃, gB) be a Lagrangian statistical submersion from Kähler-like statistical
manifold whose curvature tensor Rie is of the form (1.1) onto a statistical manifold. If

Ric(U) < 2Ric
0
(U) +

c

4
(r − 1)− 2(r − 1)maxK0(U ∧ ·),

then neither H ̸= 0 nor H∗ ̸= 0.

Remark 4.1. Similar inequalities can be stated for the Ricci curvature Ric
∗
.

Now, we give the following non-trivial example of a Kähler-like statistical submersion:

Example 4.1. The Euclidean space R4 =

{
{x1, x2, x3, x4}, x1, x2 > 0

}
is a Kähler-like statistical manifold with

the following almost complex structures:

J =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 , J∗ =


0 0 1

2 0
0 0 0 1

2
−2 0 0 0
0 −2 0 0

 ,

the metric on R4 is defined as

gR4 = (x1)
−1

{
(dx1)

2 + (dx3)
2

}
+ (x2)

−1

{
(dx2)

2 + (dx4)
2

}
and the affine connection ∇R4

is given by

∇R4

∂x1
∂x1 = ∇R4

∂x2
∂x2 = 0, ∇R4

∂x3
∂x3 = ∇R4

∂x4
∂x4 = 0,

∇R4

∂x1
∂x3 = ∇R4

∂x3
∂x1 = (x1)

−1∂x3, ∇R4

∂x2
∂x4 = ∇R4

∂x4
∂x2 = (x2)

−1∂x4.

Now, we define a Kähler-like statistical submersion

ψ : (R4,∇R4

, gR4) → (R2,∇R2

, gR2)

as the projection mapping

ψ(x1, x2, x3, x4) = (x3, x4).

Then ψ has isometric fibers.
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5. Relevant problems

In section 3, we deal with Chen-Ricci inequality for a Lagrangian statistical submersion ψ : (M,∇, g) →
(B, ∇̃, gB), that is, the estimate of the Ricci curvature Ric of each fibre (M,∇, g, J) with respect to the induced
affine connection. And we also consider equality case. As future projects, we can use these results to study
the properties of the total space M and the base space B and also investigate other equality cases and
their applications. We will also estimate Ric by changing M . The results stated here motivate further studies
to obtain similar relationships for many kinds of invariants of similar nature for several statistical submersions.

We have the following question:

1. Is the converse of Theorem 4.1 true ?
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