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ABSTRACT. It is commonly known that integrals containing log-polylog integrands admit representations in terms
of special functions such as the Dirichlet eta and Dirichlet beta functions. We investigate two parameterized families
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1. INTRODUCTION, PRELIMINARIES AND NOTATION

In the recent past many books ([5], [20], [35]) have been published whereby the authors de-
scribe the connection of the representation of some integrals in terms of Euler sums. Like-
wise the following papers investigate certain integrals that can be represented by Euler sums
[7], [17], [27]. In this paper, we consider two parameterized families of log-polylog integrals
that admit solutions dependent on Euler sums, thereby extending the integrals considered by
([3], [6], [14], [23], [36]). We investigate parameterized families of integrals of the type

Ib+,− (a, p, q, t) =

∫
x

xa lnp (x) Lit(x
bq)

1± xb
dx,(1.1)

Kb
+,− (a, p, q, t) =

∫
x

xa lnp (x) Lit(−xbq)
1± xb

dx,

where a ≥ −2, b ∈ R+, p ∈ N0, q ∈ N, t ∈ N0 and for the domain of x ∈ (0, 1) . Here and
elsewhere, let C,R,R+,Z and N denote the sets of complex numbers, real numbers, positive
real numbers, integers and positive integers respectively and let N0 := N∪{0} and Z− := Z\N0.
In the case (a, b) = (0, 2), we also study the integrals

J (p, q, t) =

∫
x

lnp (x) Lit(x
2q)

1− x2
dx,(1.2)

M (p, q, t) =

∫
x

lnp (x) Lit(−x2q)
1− x2

dx
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in the positive half line x ≥ 0. In a particular case of the integral Kb
+ (a, p, q, t), we make a

connection with the Herglotz function [15]. Some other related papers dealing with polylog
integrals and Euler sums are [4], [9], [24], [25], [26] and the excellent books [18] and [34]. We
describe some notation and special functions, to be used in the following, in the analysis of the
integrals (1.1) and (1.2). The generalized harmonic number H(t)

n (α) are defined as

H(t)
n (α) =

n∑
j=1

1

(j + α)
t , α ∈ C\ {−1,−2,−3, ...} , t ∈ C, n ∈ N

and when α = 0, H
(t)
n (0) = H

(t)
n are ordinary harmonic numbers of order t, an empty sum

is designated as H(t)
0 = 0. For complex values of z, z ∈ C\ {0,−1,−2,−3, ...} , ψ(z) is the

digamma (or psi) function defined by

ψ(z) :=
d

dz
{log Γ(z)} =

Γ′(z)

Γ(z)
,

where Γ (z) is the familiar gamma function, (see, e.g. [33], sections 1.1 and 1.3). We know that
for n ≥ 1, ψ(n + 1) − ψ(1) = Hn with ψ(1) = −γ, where γ is the Euler Mascheroni constant
and ψ(n) is the digamma function. The polygamma function

ψ(k)(z) =
dk

dzk
{ψ(z)} = (−1)

k+1
k!

∞∑
r=0

1

(r + z)
k+1

.

The difference of the polygamma functions and generalized harmonic numbers are connected
by the zeta function such that for z ∈ C\ {0,−1,−2,−3, ...}we have the identity

(1.3) H(m+1)
z − (−1)

m

m!
ψ(m)(z + 1) = ζ (m+ 1) .

The Dirichlet lambda function λ (z) ,

(1.4) ζ (z) + η (z) = 2λ (z)

connects the zeta function ζ (z) =
∑∞
n=1

1
nz ,with the alternating zeta function η (z) . It is widely

known that integrals of the type (1.1) may be represented by Euler sums and therefore in terms
of special functions such as the Dirichlet beta function. The following papers [27], [28] and [29]
also examined some integrals in terms of Euler sums. Some examples will be given highlight-
ing specific cases of the integrals, some of which cannot be evaluated by a computer mathe-
matical package such as "Mathematica".

2. POLYLOG INTEGRALS WITH POSITIVE ARGUMENT

Consider the following.

Theorem 2.1. Let (p, q, t) ∈ N0, q 6= 0, a ≥ −2, and denote,

(2.5) I+ (a, p, q, t) =

1∫
0

xa lnp (x) Lit(x
q)

1 + x
dx.

For an even integer q

(2.6) I+ (a, p, q, t) = (−1)
p
p!
∑
n≥1

H(t)
n

q∑
j=1

(−1)
j+1

(qn+ j + a)
p+1 ,



402 Anthony Sofo and Necdet Batır

for an odd integer q

(2.7) I+ (a, p, q, t) = (−1)
p
p!
∑
n≥1

(−1)
n+1

(
H(t)
n −

1

2t−1
H

(t)

[n
2 ]

) q∑
j=1

(−1)
j+1

(qn+ j + a)
p+1 ,

and for q ∈ R+\ {0}

(2.8) I+ (a, p, q, t) =
(−1)

p
p!

2p+1

∑
n≥1

1

nt

(
H

(p+1)
qn+a

2

−H(p+1)
qn+a−1

2

)
,

whereH(t)
n are harmonic numbers of order t and [z] denotes the greatest integer that is less than or equal

to z.

Proof. The alternating harmonic numbers A (n, t) of order t are defined by

(2.9) A (n, t) =

n∑
k=1

(−1)
k+1

kt
, n ∈ N; t ∈ C

then, see [2],

A (n, t) =

n∑
k=1

(−1)
k+1

kt
= H(t)

n −
1

2t−1
H

(t)

[n
2 ]
.

The Dirichlet eta function

η (t) = lim
n→∞

A (n, t) =
∑
n≥1

(−1)
n+1

nt
,Re (t) > 0.

For x ∈ (0, 1) , a Taylor series expansion gives

Lit(x
q) =

∑
n≥1

xqn

nt
,

1

1 + x
=
∑
n≥0

(−1)
n
xn.

By the Cauchy product of two convergent series, then it follows that for q an even integer

xaLit(x
q)

1 + x
=
∑
n≥1

H(t)
n

q∑
j=1

(−1)
j+1

xqn+j+a−1

and therefore, for q an even integer

xa lnp (x) Lit(x
q)

1 + x
=
∑
n≥1

H(t)
n

q∑
j=1

(−1)
j+1

xqn+j+a−1 lnp (x) .

Integrating both sides for x ∈ (0, 1), we have, after reversing the order of summation and
integration, which is justified by the uniform convergence theorem

1∫
0

xa lnp (x) Lit(x
q)

1 + x
dx =

∑
n≥1

H(t)
n

q∑
j=0

(−1)
j+1

1∫
0

xqn+j+a−1 lnp (x) dx

= (−1)
p
p!
∑
n≥1

H(t)
n

q∑
j=1

(−1)
j+1

(qn+ j + a)
p+1 .

For q an odd integer, we have

xa lnp (x) Lit(x
q)

1 + x
=
∑
n≥1

(−1)
n+1

A (n, t)

q∑
j=1

(−1)
j+1

xqn+j+a−1 lnp (x)



Parameterized families of polylog integrals 403

and
1∫

0

xa lnp (x) Lit(x
q)

1 + x
dx = (−1)

p
p!
∑
n≥1

(−1)
n+1

(
H(t)
n −

1

2t−1
H

(t)

[n
2 ]

) q∑
j=1

(−1)
j+1

(qn+ j + a)
p+1 .

By simple expansion, we have

∑
n≥1

(−1)
n+1

H
(t)

[n
2 ]

(qn+ α)
p+1 =

∑
n≥1

H
(t)
n

(q (2n+ 1) + α)
p+1 −

∑
n≥1

H
(t)
n

(2qn+ α)
p+1

and therefore we can also express

(−1)
p

p!

1∫
0

xa lnp (x) Lit(x
q)

1 + x
dx =

∑
n≥1

(−1)
n+1

H(t)
n

q∑
j=1

(−1)
j+1

(qn+ j + a)
p+1 +

1

2t−1

∑
n≥1

H(t)
n

×

 q∑
j=1

(−1)
j+1

(2qn+ j + a)
p+1 −

q∑
j=1

(−1)
j+1

(q (2n+ 1) + j + a)
p+1

 .

For the representation (2.8), we can write
1∫

0

xa lnp (x) Lit(x
q)

1 + x
dx = (−1)

p
p!
∑
n≥1

1

nt

∑
j≥0

(−1)
j

(qn+ j + a+ 1)
p+1

=
(−1)

p
p!

2p+1

∑
n≥1

1

nt

(
ζ

(
p+ 1,

qn+ a+ 1

2

)
− ζ

(
p+ 1,

qn+ a+ 2

2

))

=
(−1)

p
p!

2p+1

∑
n≥1

1

nt

(
ψ(p)

(
qn+ a+ 2

2

)
− ψ(p)

(
qn+ a+ 1

2

))

=
(−1)

p
p!

2p+1

∑
n≥1

1

nt

(
H

(p+1)
qn+a

2

−H(p+1)
qn+a−1

2

)
and the proof is finished. �

The next theorem deals with a related integral similar to (2.5).

Theorem 2.2. For (p, t) ∈ N, a ≥ −2, and for q a positive integer, then

I− (a, p, q, t) =

1∫
0

xa lnp (x)

1− x
Lit(x

q)dx

= (−1)
p
p!
∑
n≥1

H(t)
n

q∑
j=1

1

(qn+ j + a)
p+1 .(2.10)

For q ∈ R+\ {0}

(2.11) I− (a, p, q, t) = (−1)
p
p!
∑
n≥1

1

nt

(
ζ (p+ 1)−H(p+1)

nq+a

)
,

where H(p+1)
nq+a are shifted harmonic numbers of order p+ 1.
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Proof. A Taylor series expansion of

Lit(x
q) =

∑
n≥1

xqn

nt
and

1

1− x
=
∑
j≥0

xj

allows us to write

I− (a, p, q, t) =
∑
n≥1

H(t)
n

q∑
j=1

1∫
0

xqn+j+a−1 lnp (x) dx

= (−1)
p
p!
∑
n≥1

1

nt

q∑
j=1

1

(qn+ j + a)
p+1 .

For the representation (2.11), we notice

I− (a, p, q, t) =
∑
n≥1

1

nt

∑
j≥0

(−1)
p
p!

(qn+ j + a+ 1)
p+1

= (−1)
p
p!
∑
n≥1

1

nt
ζ (p+ 1, qn+ a+ 1)

= (−1)
p
p!
∑
n≥1

(−1)
p+1

p!nt
ψ(p) (qn+ a+ 1) .

From the identity (1.3), we obtain the required representation

I− (a, p, q, t) = (−1)
p
p!
∑
n≥1

1

nt

(
ζ (p+ 1)−H(p+1)

nq+a

)
.

We remark that Coffey [7] obtained solutions of various special cases of I− (0, p, 1, 1) in terms
of Euler sums. �

Remark 2.1. For (p, q) ∈ N0, we see from (2.10) and (2.11) the remarkable Euler sum identity

(2.12)
∑
n≥1

H(t)
n

q∑
j=1

1

(qn+ j + a)
p+1 =

∑
n≥1

1

nt

(
ζ (p+ 1)−H(p+1)

nq+a

)
.

Using the notation developed by [13] and generalized by the authors of the paper [1], we define

S++
p,q (α, β) =

∑
n≥1

H
(p)
n (α)

(n+ β)
q , S

+−
p,q (α, β) =

∑
n≥1

(−1)
n+1

H
(p)
n (α)

(n+ β)
q ,

where

ζ (p, α) = H(p)
n (α) =

n∑
j=1

1

(n+ α)
p , n ∈ N, p ∈ C, α ∈ C\Z−.

In the case α = 0, β = 0, we write S++
p,q (0, 0) = S++

p,q and S+−
p,q (0, 0) = S+−

p,q . For a = 0, upon
rearranging and simplifying we obtain a new Euler identity

∑
n≥1

H(t)
n

q−1∑
j=1

1

(qn+ j)
p+1 +

∑
n≥1

H
(p+1)
qn

nt
+

1

qp+1
S++
t,p+1 = ζ (t) ζ (p+ 1) +

1

qp+1
ζ (t+ p+ 1) .
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If we choose q = 1, a ∈ R, a > −1, then

S++
p+1,t (0, a) + S++

t,p+1 (a, 0) = ζ (t) ζ (p+ 1) +
∑
n≥1

1

nt (n+ a)
p+1 ,

which confirms Theorem 3.1 obtained by [1], using shuffle (or reciprocity) properties of Euler sums. If
we now let a = 0, we recover the well known identity

S++
p+1,t + S++

t,p+1 = ζ (t) ζ (p+ 1) + ζ (t+ p+ 1) .

In the special case p+ 1 = t,∑
n≥1

H(t)
n

q−1∑
j=1

1

(qn+ j)
t +

∑
n≥1

H
(t)
qn

nt
=

(
1− 1

qt+1

)
ζ2 (t) +

1

qt+1
ζ (2t) .

From (2.12) with q = 2, a = 0 (and renaming p+ 1 as p), we have

1

2p
S++
p,t

(
0,

1

2

)
= ζ (t) ζ (p)− 1

2p
ζ (t+ p) +

(
1

2p−1
− 2t−1

)
S++
p,t −

1

2p
S++
t,p + 2t−1S+−

p,t

and when p = t, we can simplify to obtain the new identity

1

2t
S++
t,t

(
0,

1

2

)
− 2t−1S+−

t,t = ζ (t) η (t)− 2t−2η (2t) +

(
3

2t+1
− 2t−2

)
ζ2 (t) .

In terms of the harmonic numbers at an argument of half integer values we have

1

2t
S++
t,t

(
0,

1

2

)
− 2t−1S+−

t,t = 2t−1S++
t,t − 2t−1λ (t) η (t)− 1

2

∑
n≥1

H
(t)
n
2

nt
− 1

2

∑
n≥1

(−1)
n+1

H
(t)
n
2

nt
,

where it has been shown in [29] that

∑
n≥1

(−1)
n+1

H
(t)
n
2

nt
= 2t−1

(
η (2t)− η2 (t)

)
and ∑

n≥1

H
(t)
n
2

nt
= 2t−1

(
η (2t)− η2 (t)

)
+

1

2t
(
ζ (2t) + ζ2 (t)

)
.

Some other log-sine-polylog integrals involving alternating Euler sums have recently been investigated
by [17].

Remark 2.2. For the two cases where b ∈ R+, a+ 1 > −b

Ib+ (a, p, q, t) =

1∫
0

xa lnp (x) Lit(x
bq)

1 + xb
dx =

1

bp+1
I+

(
a+ 1− b

b
, p, q, t

)
(2.13)

=
(−1)

p+1
p!

(2b)
p+1

∑
n≥1

1

nt

(
H

(p+1)
qn
2 + a+1−2b

2b

−H(p+1)
qn
2 + a+1−b

2b

)
and

(2.14) Ib− (a, p, q, t) =

1∫
0

xa lnp (x) Lit(x
bq)

1− xb
dx =

1

bp+1
I−

(
a+ 1− b

b
, p, q, t

)
.
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The following theorem applies.

Theorem 2.3. For p, q, t ∈ N, a = 0 and b = 2 then

J (p, q, t) =

∞∫
0

lnp (x) Lit(x
2q)

1− x2
dx =

∞∫
0

f (x; p, q, t) dx

=

1∫
0

lnp (tanh θ) Lit(tanh2q θ)dθ(2.15)

=
(

1 + (−1)
p+t
)
I2− (0, p, q, t) + (−1)

p+t (2πi)
t

t!

1∫
0

lnp (x)

1− x2
B

(
t,

ln
(
x2q
)

2πi

)
dx,(2.16)

where

f (x; p, q, t) =
lnp (x)

1− x2
Lit(x

2q),

I2− (0, p, q, t) is given by (2.14) and B
(
t,

ln(x2q)
2πi

)
is the Bernoulli polynomial.

Proof. We begin with

J (p, q, t) =

∞∫
0

lnp (x) Lit(x
2q)

1− x2
dx =

∞∫
0

f (x; p, q, t) dx

and put

J (p, q, t) =

∞∫
0

f (x; p, q, t) dx =

1∫
0

f (x; p, q, t) dx+

∞∫
1

f (x; p, q, t) dx.

We notice that f (x; p, q, t) is continuous, bounded and differentiable on the interval x ∈ (0, 1] ,
with lim

x→0+
f (x; p, q, t) = lim

x→1
f (x; p, q, t) = 0. Now we make the transformation xy = 1 in the

third integral so that

(2.17)

∞∫
0

f (x; p, q, t) dx =

1∫
0

f (x; p, q, t) dx+ (−1)
p

1∫
0

lnp (y)

1− y2
Lit(y

−2q)dy.

From Erdělyi et. al. [11], Jonquiěre’s relation states

(2.18) Lis(z) + eiπsLis(
1

z
) =

(
2πeiπ

)s
Γ (s)

ζ

(
1− s, ln z

2πi

)
,

where Lis(z) is a polylogarithm, i =
√
−1, Γ (s) is the gamma function, s ∈ C and ζ

(
1− s, ln z2πi

)
is the Hurwitz zeta function and z is not a member of the real interval [0, 1]. A modified version
of (2.18) is given by Crandall [9] as follows. For integer t and z ∈ C,

(2.19) Lit(z) + (−1)
t
Lit(

1

z
) = − (2πi)

t

t!
B

(
t,

ln (z)

2πi

)
− 2πiΘ (z)

lnt−1 (z)

(t− 1)!
,
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where B
(
t, ln(z)2πi

)
is the Bernoulli polynomial (see, e.g. [33], sections 1.7), and Θ (z) is a time

dependent step function

Θ (z) =

 1, if Im (z) < 0 or z ∈ [1,∞)

0, otherwise
.

The function Θ (z) is intended to provide the conventional behavior in the branch when and
only when z is in the lower half plane union with the real cut [1,∞) . For convenience, we list

B

(
4,

ln (z)

2πi

)
=

1

16π4
ln4 z − i

4π3
ln3 z − i

4π2
ln2 z − 1

30
,

B

(
3,

ln (z)

2πi

)
= − i

4π
ln z +

3

8π2
ln2 z +

i

8π3
ln3 z.

Now, we can substitute (2.19) into (2.17), so that
∞∫
0

f (x; p, q, t) dx =
(

1 + (−1)
p+t
) 1∫

0

f (x; p, q, t) dx+ (−1)
p+t (2πi)

t

t!

1∫
0

lnp (x)

1− x2
B

(
t,

ln
(
x2q
)

2πi

)
dx.

The integral

I2− (0, p, q, t) =

1∫
0

lnp (x) Lit(x
2q)

1− x2
dx

has been evaluated in Theorem 2.1 and therefore

J (p, q, t) =
(

1 + (−1)
p+t
)
I2− (0, p, q, t) + (−1)

p+t (2πi)
t

t!

1∫
0

lnp (x)

1− x2
B

(
t,

ln
(
x2q
)

2πi

)
dx

and the proof is finished. Note that the integral I2− (0, p, q, t) does not contribute to J (p, q, t) in
the case when p+ t is an odd integer. The third integral in (2.15) is obtained by the substitution
x = tanh θ. �

Remark 2.3. Utilizing (2.19) we are able to evaluate the related integral, from Theorem 2.2, (or from
(2.14))

1∫
0

xa lnp (x) Lit(x
−bq)

1− xb
dx = (−1)

t+1
Ib− (a, p, q, t) + (−1)

t+1 (2πi)
t

t!

1∫
0

xa lnp (x)B

(
t,

ln(xbq)
2πi

)
1− xb

dx.

Some examples follow. First we record here the following result, given in [27], that will be
required for the evaluation of some Euler sums.

Theorem 2.4. Let α be a real number α 6= −1,−2,−1, ..., and assume that m ∈ N\ {1} . Then

∑
n≥1

Hn

(n+ α)
m =

(−1)
m

(m− 1)!


(ψ (α) + γ)ψ(m−1) (α)

− 1
2ψ

(m) (α) +
∑m−2
j=1

(
m− 2
j

)
ψ(j) (α)ψ(m−j−1) (α)

 ,
where γ is the Euler Mascheroni constant.
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Example 2.1.
1. For a = −1, q = 2, p = 2m,m ∈ N and t+ p of even weight

I+ (−1, 2m, 2, t) =

1∫
0

x−1 ln2m (x) Lit(x
2)

1 + x
dx

=
(2m)!

22m+1
S++
t,2m+1 −

(2m)!

22m+1
S++
t,2m+1

(
0,

1

2

)
and can be evaluated explicitly in terms of special functions since we have the known Euler sum relations,
S++
t,2m+1 and S++

t,2m+1

(
0, 12
)

defined in Remark 2.1.
2. For t = p = q = 1 and a = − 1

2

I+

(
−1

2
, 1, 1, 1

)
=

1

4

∑
n≥1

Hn(
n+ 1

4

)2 − 1

4

∑
n≥1

Hn(
n+ 3

4

)2 −∑
n≥1

(−1)
n+1

Hn(
n+ 1

2

)2 ,

here, the Euler sums
∑
n≥1

Hn

(n+x)m are evaluated using Theorem 2.4, so that

I+

(
−1

2
, 1, 1, 1

)
= 8G ln 2 + 8Im

(
Li3(

1± i
2

)

)
− 1

4
π ln2 2− 5

16
π3,

where G =
∑
n≥0

(−1)n

(2n+1)2.
is Catalan’s constant. Sofo and Nimbran [32] have shown that the imaginary

part of the trilogarithm:

W (3) :=Im

(
Li3

(
1± i

2

))
=
∑
n≥1

sin
(
nπ
4

)
2

n
2 n3

=
∑
n≥1

(−1)
n+1

22n

(
2

(4n− 3)
3 +

2

(4n− 2)
3 +

1

(4n− 1)
3

)
and Lewin ( [16], p.164, 296) has also given

Re

(
Li3

(
1 + i

2

))
=

1

48
ln3 2 +

35

64
ζ (3)

and therefore

I+

(
−1

2
, 1, 1, 1

)
= 8G ln 2 + 8W (3)− 1

4
π ln2 2− 5

16
π3.

3. For t = q = 1, p = 2 and a = − 1
2

I+

(
−1

2
, 1, 1, 2

)
= 2

∑
n≥1

(−1)
n+1

Hn(
n+ 1

2

)3 − 1

4

∑
n≥1

Hn(
n+ 1

4

)3 +
1

4

∑
n≥1

Hn(
n+ 3

4

)3
=

63

8
πζ (3) + 2π2G+

13

8
π3 ln 2− 102β (4) ,

where the Dirichlet beta function, β (z) or Dirichlet L function is given by, see Finch [12],

β (z) =

∞∑
n=0

(−1)
n

(2n+ 1)
z ; for Re (z) > 0,
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where β (2) = G is Catalan’s constant. From Remark 2.2

Ib−

(
b− 1, t− 1,

1

2
, t

)
=

1∫
0

xb−1 lnt−1 (x) Lit(x
b/2)

1− xb
dx

=
(−1)

t
(t− 1)!

bt
(
2−tζ (2t) +

(
1− 2−t

)
ζ2 (t) + 2t−1

(
η (2t)− η2 (t)

))
.

4. For a = − 1
2 , p = 1, q = 1, t = 2

1∫
0

x−1/2 ln (x) Li2(x)

1− x
dx = 16L (3)− 55

4
ζ (4) ,

where, see [13],

(2.20) L (3) = S+−
1,3 =

11

4
ζ (4)− 7

4
ζ (3) ln 2 +

1

2
ζ (2) ln2 2− 1

12
ln4 2− 2Li4

(
1

2

)
and

1∫
0

x−1/2 ln (x) Li2( 1
x )

1− x
dx =

175

4
ζ (4)− 16L (3) + i14πζ (3) .

5. For b = 1, p = 1, q = 1, t = 2

I2− (−2, 1, 1, 2) =

1∫
0

x−2 ln (x) Li2(x2)

1− x2
dx = 8 ln 2 + 4L (3)− 4ζ (2)− 55

16
ζ (4) .

6. From (2.13)

Ib+ (b− 1, t− 1, 1, t) =
(−1)

t
(t− 1)!

2bt
(
η2 (t)− ζ (2t)

)
.

7. From (2.16)

J (3, 2, 1) =

∞∫
0

ln3 (x) Li1(x4)

1− x2
dx =

21

8
π2ζ (3) +

3

4
π3G+

3

8
π4 ln 2 + 6πβ (4) + i

π5

16
.

In the next section we consider the integral (2.5) with negative polylog argument.

3. POLYLOG INTEGRALS WITH NEGATIVE ARGUMENT

Theorem 3.5. Let (p, q, t) ∈ N0, q 6= 0, a ≥ −2, and denote

(3.21) K+ (a, p, q, t) =

1∫
0

xa lnp (x) Lit(−xq)
1 + x

dx.

For q an odd integer

(3.22) K+ (a, p, q, t) = (−1)
p
p!
∑
n≥1

(−1)
n+1

H(t)
n

q∑
j=1

(−1)
j

(qn+ j + a)
p+1 ,

for q an even integer

(3.23) K+ (a, p, q, t) = (−1)
p
p!
∑
n≥1

(
H(t)
n −

1

2t−1
H

(t)

[n
2 ]

) q∑
j=1

(−1)
j

(qn+ j + a)
p+1 ,



410 Anthony Sofo and Necdet Batır

and for q ∈ R+\ {0}

(3.24) K+ (a, p, q, t) =
(−1)

p
p!

2p+1

∑
n≥1

(−1)
n

nt

(
H

(p+1)
qn+a

2

−H(p+1)
qn+a−1

2

)
,

whereH(t)
n are harmonic numbers of order t and [z] denotes the greatest integer that is less than or equal

to z.

Proof. The results (3.22), (3.23) and (3.24) can be proven Mutatis Mutandis with respect to The-
orem 2.1. �

3.1. Connection to the Herglotz function. From Theorem 3.5, let

Λ (q) = −K+ (0, 0, q, 1) = −
1∫

0

Li1(−xq)
1 + x

dx =

1∫
0

ln(1 + xq)

1 + x
dx.

In the paper [22], Zagier stated that Henri Cohen ([8], Ex. 60, p. 902-903) showed him the
identity

Λ
(

1 +
√

2
)

=
1

2
ln 2

(
ln 2 + ln

(
1 +
√

2
))
− 1

4
ζ (2) .

Radchenko and Zagier [22], evaluated many other cases such as Λ
(
2
5

)
and Λ

(
4 +
√

17
)

and
gave the relation

Λ (q) = F (2q)− 2F (q) + F
(q

2

)
+

1

2q
ζ (2)

in terms of the function

F (q) =
∑
n≥1

1

n
(ψ(nq)− ln (nq)) , q ∈ C\ (−∞, 0] .

The function F (q) was introduced and studied by Zagier [37] and he obtained some functional
equations that F (q) satisfies, namely, for q ∈ C\ (−∞, 0]

F (q)− F (q + 1)− F
(

q

1 + q

)
+ F (1) = Li2

(
1

1 + q

)
and

F (q) + F

(
1

q

)
− 2F (1) =

1

2
ln2 q − (q − 1)

2

q
ζ (2) .

A similar function to F (q) was also studied by Herglotz in [15] and therefore Radchenko and
Zagier [22] named it the Herglotz function. Herglotz [15] also studied the integral−K+ (0, 0, q, 1)

and found explicit values for Λ
(
4 +
√

15
)
, Λ
(
6 +
√

35
)

and Λ
(
12 +

√
143
)
. Many other iden-

tities of this kind were found by Muzzafar and Williams [19], together with some sufficient
conditions on q under which one can evaluate Λ

(
q +

√
q2 − 1

)
. In Section 6, Radchenko and

Zaiger [22] give a systematic account, at special values of quadratic units of these identities and
list two tables with specific solutions. Radchenko and Zagier [22] study, among other things,
the relation of this function with the Dedekind eta-function, functional equations satisfied by
F (q) in connection with Hecke operators, the cohomological aspects of F (q) and its special
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values at positive rationals and quadratic units. Recently, Dixit et al. [10] extended the study
to higher Herglotz functionals. From (3.24) we can see that

Λ (q) =
1

2

∑
n≥1

(−1)
n+1

n

(
H qn

2
−H qn−1

2

)
and from the identity of the multiple argument of polygamma functions,

2Hqn − 2 ln 2 = H qn
2

+H qn
2 −

1
2

implies

Λ (q) = ln2 2−
∑
n≥1

(−1)
n+1

n

(
Hqn −H qn

2

)
= ln2 2−

∑
n≥1

(−1)
n+1

n

(
ψ (qn+ 1)− ψ

(qn
2

+ 1
))

.

In the case q = 1/2

Λ

(
1

2

)
=

1

4
ln2 2 +

1

8
ζ (2) .

Consider the case q = 2m,m ∈ N, then

Λ (2m) = ln2 2 +
∑
n≥1

(−1)
n+1

n
(ψ (mn+ 1)− ψ (2mn+ 1))

and using the known identities, see [31], for the digamma sums, we can write

Λ (2m) =

1∫
0

ln(1 + x2m)

1 + x
dx =

1

2

2m−1∑
j=0

ln2

(
2 sin

(
(2j + 1)π

4m

))

+
1− 2m2

8m
ζ (2) + ln2 2− 1

2

m−1∑
j=0

ln2

(
2 sin

(
(2j + 1)π

2m

))
,

where, in particular

Λ (6) = 2 ln2
(

1 +
√

3
)
− 2 ln 2 ln

(
1 +
√

3
)

+
5

4
ln2 2− 17

24
ζ (2) .

From the functional relationship

ln (1 + xq)− ln
(
1 + x−q

)
= q lnx

we can evaluate the related Λ (−q) integral

Λ (−q) =

1∫
0

ln(1 + x−q)

1 + x
dx = Λ (q)− q

2
ζ (2) ,

here
Λ (−6) = 2 ln2

(
1 +
√

3
)
− 2 ln 2 ln

(
1 +
√

3
)

+
5

4
ln2 2 +

55

24
ζ (2) .

For the case of q odd, we also have the representation (3.22) and for q = 3,

Λ (3) = ln 2 ln 3− 1

2
ln2 2−

∑
n≥1

cos (πn/3)

2n−1n2
.
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Theorem 3.6. Let (p, q, t) ∈ N, q 6= 0, a ≥ −2, and denote

K− (a, p, q, t) =

1∫
0

xa lnp (x) Lit(−xq)
1− x

dx.

Then, for q ∈ N

K− (a, p, q, t) = (−1)
p
p!
∑
n≥1

(
H(t)
n −

1

2t−1
H

(t)

[n
2 ]

) q∑
j=1

1

(qn+ j + a)
p+1 ,

and for q ∈ R+\ {0}

K− (a, p, q, t) = (−1)
p
p!ζ (p+ 1) η (t)− (−1)

p
p!
∑
n≥1

(−1)
n+1

H
(p+1)
qn+a

nt
,

where η (t) is the Dirichlet eta function, or the alternating zeta function.

Proof. The proof follows Mutatis Mutandis with respect to Theorem 2.1. �

Remark 3.4. For the two cases where b ∈ R+, a+ 1 > −b

Kb
+ (a, p, q, t) =

1∫
0

xa lnp (x) Lit(−xbq)
1 + xb

dx =
1

bp+1
K+

(
a+ 1− b

b
, p, q, t

)
and

Kb
− (a, p, q, t) =

1∫
0

xa lnp (x) Lit(−xbq)
1− xb

dx =
1

bp+1
K−

(
a+ 1− b

b
, p, q, t

)
.

In particular

K2
− (0, p, q, t) =

1∫
0

lnp (x) Lit(−x2q)
1− x2

dx =
1

2p+1
K−

(
−1

2
, p, q, t

)
(3.25)

=


(−1)pp!
2p+1

∑
n≥1

(−1)n+1H
(p+1)

qn− 1
2

nt − (−1)pp!
2p+1 ζ (p+ 1) η (t) , for q ∈ R+

(−1)
p+1

p!
∑
n≥1A (n, t)

∑q
j=1

1
(2qn+2j−1)p+1 , for q ∈ N

.

Now, we provide a theorem for the representation of a special case of the integral (3.25) in
the half plane x ≥ 0.

Theorem 3.7. For b = 2, a = 0; p, t ∈ N, q > 0

M (p, q, t) =

∞∫
0

lnp (x) Lit(−x2q)
1− x2

dx =

∞∫
0

g (x; p, q, t) dx(3.26)

=

1∫
0

lnp (tanh θ) Lit(− tanh2q θ)dθ
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=
(

1 + (−1)
p+t
)
K2
− (0, p, q, t)(3.27)

+ 2

[ t
2 ]∑
j=0

(2q)
t−2j

p!

(
p+ t− 2j

p

)
η(2j)λ (p+ t+ 1− 2j) ,

where

(3.28) g (x; p, q, t) =
lnp (x) Lit(−x2q)

1− x2
,

K2
− (0, p, q, t) is given by (3.25), η(2j) is the Dirichlet eta function, λ (·) is the Dirichlet lambda function

(1.4) and
[
t
2

]
is the Floor function.

Proof. Using the same technique as in Theorem 2.3, we arrive at

(3.29)

∞∫
0

g (x; p, q, t) dx =

1∫
0

g (x; p, q, t) dx+ (−1)
p

1∫
0

lnp (y)

1− y2
Lit(−y−2q)dy.

From Lewin ([16], p.299), Jonquiěre’s relation states

(3.30) Lis(−z) + (−1)
t
Lis(−

1

z
) = −2

[ t
2 ]∑
j=0

(ln z)
t−2j

(t− 2j)!
η(2j) = 2

[ t
2 ]∑
j=0

(ln z)
t−2j

(t− 2j)!
Li2j(−1),

where Lis(z) is a polylogarithm. The relation (3.30) can also be written in terms of Bernoulli
numbers so that

Lit(−z) + (−1)
t
Lit(−

1

z
) =

1

t!

t∑
j=0

(
1− 21−j

)( t
j

)
Bj (2πi)

j
(ln z)

t−2j
,

where Bj are the Bernoulli numbers. Now we can substitute (3.30) into (3.29), so that

∞∫
0

g (x; p, q, t) dx =
(

1 + (−1)
p+t
) 1∫

0

g (x; p, q, t) dx

+ 2 (−1)
p+t

[ t
2 ]∑
j=0

(2q)
t−2j

(t− 2j)!
η(2j)

1∫
0

lnp+t−2j (x)

1− x2
dx.

The integral

K2
− (0, p, q, t) =

1∫
0

lnp (x) Lit(−x2q)
1− x2

dx

and
1∫

0

lnp+t−2j (x)

1− x2
dx = (−1)

p+t
(p+ t− 2j)!λ (p+ t− 1− 2j) .

Therefore we obtain (3.27) and the proof is finished. Note that the integral K2
− (0, p, q, t) does

not contribute to M (p, q, t) in the case when p+ t is an odd integer. The third integral in (3.26)
is obtained by the substitution x = tanh θ. �
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Remark 3.5. It can be noted, from Jonquiěre’s relation (3.30) and using the integrals in remark 3.4 that
we are able to determine the value of the integrals

1∫
0

xa lnp (x) Lit(−x−bq)
1− xb

dx = (−1)
t+1

Kb
− (a, p, q, t)(3.31)

+ 2 (−1)
t+1

[ t
2 ]∑
j=0

η(2j)

(t− 2j)!

1∫
0

xa lnp (x) lnt−2j(−xbq)
1− xb

dx.

Some examples follow.

Example 3.2.
1. From (3.22) and (3.24) for q = 1, a = 0,

∑
n≥1

(−1)
n

(n+ 1)
p+1H

(t)
n =

1

2p+1

∑
n≥1

(−1)
n

nt

(
H

(p+1)
n
2

−H(p+1)
n−1
2

)
,

from the polygamma multiplication formula [30]

2p+1H(p+1)
n = 2p+1η (p+ 1) +H

(p+1)
n
2

+H
(p+1)
n−1
2

we can write

S+−
t,p+1 − η (p+ t+ 1) =

∑
n≥1

(−1)
n+1

nt

(
H(p+1)
n − η (p+ 1)− 1

2p
H

(p+1)
n
2

)
and therefore

1

2p

∑
n≥1

(−1)
n+1

H
(p+1)
n
2

nt
= η (p+ t+ 1)− η (p+ 1) η (t) + S+−

p+1,t − S
+−
t,p+1.

If p+ 1 = t, ∑
n≥1

(−1)
n+1

H
(t)
n
2

nt
= 2t−1

(
η (2t)− η2 (t)

)
.

2. From Theorem 3.6 with q = 2, a = 0, we have

ζ (p+ 1) η (t)−
∑
n≥1

(−1)
n+1

H
(p+1)
2n

nt

=
1

2p+1

(
S++
t,p+1

(
0,

1

2

)
+ S++

t,p+1 (0, 1)

)
− 1

21+2p+t

(
S++
t,p+1

(
0,

1

4

)
+ S++

t,p+1

(
0,

1

2

)
+ S++

t,p+1

(
0,

3

4

)
+ S++

t,p+1 (0, 1)

)
.

Simplifying we obtain the new identity∑
n≥1

(−1)
n+1

H
(p+1)
2n

nt
= ζ (p+ 1) η (t) + 2−1−2p−t

(
S++
t,p+1

(
0,

1

4

)
+ S++

t,p+1

(
0,

3

4

))

+
(
2−1−2p−t − 2−1−p

)(
S++
t,p+1 − ζ (p+ t+ 1) + S++

t,p+1

(
0,

1

2

))
.
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In particular, when t = 1 we obtain an analogous identity, (to (5.6) in [1])

∑
n≥1

(−1)
n+1

H
(p+1)
2n

n
= ζ (p+ 1) ln 2 + 2−2−2p

(
S++
1,p+1

(
0,

1

4

)
+ S++

1,p+1

(
0,

3

4

))

+
(
2−2−2p − 2−1−p

)(
S++
1,p+1 − ζ (p+ 2) + S++

1,p+1

(
0,

1

2

))
,

the expression S++
1,p+1 (0, α) =

∑
n≥1

Hn

(n+α)p+1 can be evaluated by Theorem 2.4.
3. For a = 1, p = 4, q = 2, t = 1

K− (1, 4, 2, 1) =

1∫
0

x ln4 (x) Li1(−x2)

1− x
dx

= 24
∑
n≥1

(−1)
n+1

H
(5)
2n+1

n
− 24ζ (5) ln 2

= 48 (1−G)β (4) + 48G− 240 + 12π + 24 ln 2 +
3

2
π3

+
5

32
π5 +

15453

256
ζ (6)− 27

128
ζ2 (3)− 1581

64
ζ (5) ln 2.

4. For a = − 3
2 , p = 0, q = 1, t = 2

1∫
0

x−3/2Li2(−x)

1− x
dx = −2

∑
n≥1

(−1)
n+1

H
(2)
n

2n− 1
=

11

45
ζ (3) + ζ (2)

+
π

4
ln2 2 + 4 ln 2− 2π − 4G ln 2− 8W (3) .

5. For a = 0, p = 0, q = 1
2 , t = 3

1∫
0

Li3(−x1/2)

1 + x
dx = −2

∑
n≥1

(−1)
n+1

n3
(
Hn

2
− ln 2−Hn

4

)
=

65

128
ζ (4)− η (3) ln 2− 3

8
L (3) .

6. For p = t− 1, q > 0, t ∈ N

M (t− 1, q, t) =

∞∫
0

lnt−1 (x) Lit(−x2q)
1− x2

dx

= 2 (t− 1)!

[ t
2 ]∑
j=0

(2q)
t−2j

(
2t− 2j − 1

t− 1

)
η(2j)λ (2t− 2j) ,
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where η(0) = 1
2 .

7. For p = 2m− 1, where m ∈ N, q = 1, t ∈ N

1

(2m− 1)!
M (2m− 1, 1, t) =

1

(2m− 1)!

∞∫
0

ln2m−1 (x) Lit(−x2)

1− x2
dx

=

(
ζ (2m)

22m
+ η(2m)

)
η(t)−

∑
n≥1

(−1)
n+1

nt

(
H

(2m)
2n − 1

22m
H(2m)
n

)

+ 2

[ t
2 ]∑
j=0

(2)
t−2j

(
2m− 1 + t− 2j

2m− 1

)
η(2j)λ (2m+ t− 2j) .

In particular

M (7, 1, 1) =
427

64
π7G+

17

16
π8 ln 2 +

525

8
π5β (4) + 630π3β (6) + 5040πβ (8) .

8. For p = t, q = 1
2 , t ∈ N

1

2
M

(
t,

1

2
, t

)
=

1

2

∞∫
0

lnt (x) Lit(−x)

1− x2
dx =

[ t
2 ]∑
j=0

t!

(
2t− 2j

t

)
η(2j)λ (2t+ 1− 2j)

+ (−1)
t
t!

S+−
t+1,t −

1

2t+1

∑
n≥1

(−1)
n+1

nt
H

(t+1)
n
2


− (−1)

t
t!η(t)

(
η(t+ 1) +

1

2t+1
ζ(t+ 1)

)
and the Euler sum

∑
n≥1

(−1)n+1

nt H
(t+1)
n
2

can be explicitly evaluated by the techniques developed in
[26], [28] and [29]. Other authors have also evaluated particular case of these integrals, Coffey [7] has
evaluated, amongst other results, K+ (0, 1, 1, 2) .
9. For a = 1

2 , p = 2, q = 1, t = 2

K−

(
1

2
, 2, 1, 2

)
=

1∫
0

√
x ln2 (x) Li2(−x)

1− x
dx = 48πβ (4) + 384− 128G− 48π

+ 8ζ (2) + 2π3G− 2π3 − 96 ln 2− 7ζ (2) ζ (3)− 186ζ (5)

and
1∫

0

√
x ln2 (x) Li2(− 1

x )

1− x
dx = 128G− 48πβ (4) + 48π + 8ζ (2)

+ 96 ln 2− 2π3G− 7ζ (2) ζ (3)− 186ζ (5) .
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Remark 3.6. From Theorem 3.7 we can identify a new Euler identity in the case of even weight p + t.
Consider the case p = t, then we can write

2K2
− (0, t, q, t) = M (t, q, t)− 2t!

[ t
2 ]∑
j=0

(2q)
t−2j

(
2t− 2j

t

)
η(2j)λ (2t+ 1− 2j)

from which we extract the Euler identity∑
n≥1

(−1)
n+1

nt

(
H

(t+1)
2qn − 1

2t+1
H(t+1)
qn

)
=

(−1)
t

2t!
M (t, q, t)(3.32)

+ (−1)
t

[ t
2 ]∑
j=0

(2q)
t−2j

(
2t− 2j

t

)
η(2j)λ (2t+ 1− 2j) + η(t)

(
η(t+ 1) +

1

2t+1
ζ(t+ 1)

)
.

Since for q = 1 Flajolet and Salvy [13] give explicit values for S+−
t+1,t, then we can obtain an explicit

identity for
∑
n≥1

(−1)n+1H
(t+1)
2n

nt . Iterating for values q = 1, 2, 3... allows us to obtain new Euler sum

identities for
∑
n≥1

(−1)n+1H
(t+1)
2qn

nt , t ∈ N. Let

S+−
p,t (α, β; q) =

∑
n≥1

(−1)
n+1

H
(p)
qn (α)

(n+ β)
t ,

then from (3.32) we offer the following examples.

S+−
2,1 (0, 0; 2) = 2ζ (3)− 1

2
πG− 1

8
ζ (2) ln 2.

S+−
3,2 (0, 0; 2) = 3πβ (4) +

1

8
π3G− 2997

256
ζ (5) +

3

32
ζ (2) ζ (3) .

S+−
3,2 (0, 0; 4) =

π2

512
√

2

 3π
(
ψ′
(
1
8

)
+ ψ′

(
3
8

)
− ψ′

(
5
8

)
− ψ′

(
7
8

))
−ψ′′

(
1
8

)
+ ψ′′

(
3
8

)
+ ψ′′

(
5
8

)
− ψ′′

(
7
8

)


+
π

512
√

2

(
ψ′′′

(
1

8

)
+ ψ′′′

(
3

8

)
− ψ′′′

(
5

8

)
− ψ′′′

(
7

8

))
+

1

8

(
3πβ (4) +

1

8
π3G− 2997

256
ζ (2) +

3

32
ζ (2) ζ (3)

)
− 186ζ (5) .

In the case where p = 2, q = 2, t = 3, we can evaluate the result

S+−
2,3 (0, 0; 2) =

1973

128
ζ (5) +

61

32
ζ (2) ζ (3)− 6πβ (4) .

The case p = t+ 1, t ∈ N and β = 1 results in

S+−
t+1,t (0, 1; q) + S+−

t+1,t (0, 0; q) =
η (2t+ 1)

qt+1
+

q−1∑
j=1

t−1∑
r=0

qr
(
t+ r
r

)
η (t− r)
jt+r+1

+

q−1∑
j=1

t∑
r=0

(−1)
r

(
t+ r − 1

r

)
qt

jt+r

∑
n≥1

(−1)
n+1

(qn− j)t+1−r .(3.33)
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The result (3.33) follows from the consideration

S+−
t+1,t (0, 1; q) + S+−

t+1,t (0, 0; q) =
∑
n≥1

(−1)
n+1

qt+1nt
(
n− j

q

)t+1

and by the known decomposition formula, originally due to Euler ([21], p.48, Eq.(9))

1

nt (n− α)
t+1 =

t−1∑
r=0

(−1)
t+1

(
t+ r
r

)
1

nt+rαt+r+1

+

t∑
r=0

(−1)
r

(
t+ r − 1

r

)
1

αt+r (n− α)
t+1−r .

The classical identity follows, upon putting q = 1, in which case

S+−
t+1,t (0, 1; 1) + S+−

t+1,t (0, 0; 1) = η (2t+ 1) .

Concluding Remarks. We have extended the current available knowledge for the representation
of Euler sums. Moreover, we have demonstrated two parameterized families of log-polylog
families that admit solutions dependent on Euler sums and in a particular case have demon-
strated a connection with the Herglotz function. As a result of this line of research we expect
further studies in the areas of polylog integrals and generalized Herglotz functions.

Acknowledgement. We are indebted to the anonymous referees for their constructive and helpful
remarks.
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