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ABSTRACT

The purpose of the study is to present some new criteria for the asymptotic behavior of nonlinear fractional
differential equations.
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1. INTRODUCTION

Recently, it has been realized that the fractional calculus has numerous applications in signal
processing, geology, dynamics of earthquakes, economics and finance, probability and statistics,
chemical engineering, physics, thermodynamics and neural networks and so forth; see [1-3] and
the references therein. Due to their widespread applications in the field of engineering, the
investigations of fractional differential equations have attracted many researchers during the last
decades. A lot of study about the oscillatory behavior for integer order differential equations
including the existence of oscillatory and nonoscillatory solutions are presented, see [4-13].
Recently, many articles have discussed the oscillation of fractional differential equations [14-23].
However, we notice that very little attention is paid to asymptotic behavior of nonoscillatory
solutions of fractional differential equations. In [14], the authors established some oscillation
criteria for the following fractional differential equation

(Dg“y)(t)+ p(t)(Ds.y)(t)+a(t) f (G(t)) =0,
where t>1, >0 and ae(O,l). In [15], the authors considered the oscillation of the
following fractional damped differential equation

(r(O)w (x(©) D&y (1)) + Pt (x(1) Dy (t)+F (1.6 (1) =0

for t>t;>0 and & €(0,1).
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Motivated by the idea in the above research papers, in this study, we consider the asymptotic
behavior of solutions of following equations

(r(t)w(G(1)Dsy(t)) +p(t)Dsy(t)+a(t) f (G(t))=0, t=t,>0. @

where Dy, denotes the ¢ —th Riemann-Liouville fractional ~derivative, ae(O,l),
reC([tp»),R')} weC(RR'): p.geC([t,o).R): G(t)=[,(t—s) " y(s)ds:
f eC'(R,R) and xf (x)>0 for X #0.

2. PRELIMINARIES

Definition 2.1. [3,14] The Riemann-Liouville fractional integral of order & >0 of a function
y : [0,00) >R is defined by
a . 1 t a-1
(15y)(1) -—mjo(t—s) y(s)ds,

provided the right-hand side is pointwise defined on [0, oo) ,where I is the gamma function.

Definition 2.2. [3,14] The Riemann-Liouville fractional derivative of order & > 0 of a function
y 1 [0,00) >R is defined by

dn

(D5Y)(t) =g (13:¥)(V),

provided the right-hand side is pointwise defined on [O,w),where n-l<a<n and
n >1 isan integer.

Lemma 2.1. [14] Let y (t) be a solution of (1), and

G(t) = (t-s) " y(s)ds for «=(0), >0,
Then
G'(t)=T(1-a)DLy(t).
3. MAIN RESULTS

Theorem 3.1. Let p(t) =0, and suppose that

f'(X)
t)>0and ——2>0, forx =0, 2
w(t) v (%)

© ds

B (3)
I%r(s)<oo'
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v @
J T—a)f(u) =™
!Lr]gsupjo r _f 7)dzds = oo, ®)

Then for every nonoscillatory solution y of (1), we have lim,_,_ inf |y |

Proof. Let y( )be a nonoscillatory solution of (1), we may assume that y( )7& 0 for t>t

Define

Then w is well defined and satisfies

(r®w(s(1)Dy(1)) f(G(1)-r (v (G(1)Diy () f(G(1)e'(t)

@ ( )_ fz(G(t)
o T e
Wty Y
Using (2), we have
o'(t)<-q(t). ®)

Integrating (6) from t, to t, we get

((Oy(GM)D5Y)_
: (G(t)) _w(to)—jtoq(s)ds,

i.e.
rOw(G(t)c'(t) SERIC ™
feO)raa) -
Dividing (7) by r(t) and then integrating from t; to t we obtain
G(t) l//(u) tﬁ_ ti s
ot @ay ry =@ rig L latodes
From (3) and (5), we get

T LA C) B, @®)
t 6 M(1-a) f (u)

If lim,_,, inf y(t)> 0, then there exist C, and C, positive constants such that y (t) > ¢, and
G(t)=c, forall t >t,. Consequently, by (4)
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du < oo,

J-G(t) w(u) ! <J~G(t) v (u)
6w (1-a)f(u) | ‘e T(l-a)f(u)
which contradicts (8). Thus we must have lim__inf y(t)>0. The proof for the case

lim,_,,,inf y(t) <0 for t >, is similar and hence is omitted.

Theorem 3.2. Let (4) holds and

w(x)=c>0and f(x)2k>0forx¢0. 9)

w(x)

If there exists a positive differentiable function ¢ on [to ) oo) such that

#'(t)p(t)<0fort>t, (10)
and

[ d __, (1)
r(s)e(s)
and

imsup [ —~_[* @@ [60) PO g "
!EESUPI%r(s)¢(s)j%[¢(f)q(7) 4kr(1—12){¢(7) CF(T)} JdeS—- (12)
then for every solution Y of (1), we have lim,___ inf |y(t)| =0.

Proof. Let y(t) be a nonoscillatory solution of (1), we may assume that y(t) #0 for t >t Let

(t)‘/’(G(t))DSiy(t)_ (13)
f(G(1))

Differentiating (13), we have

o(t)=4(t)-

Using (9) and (10), we get
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e r(©4() (¢ _p©)Y
@/ (1)< q(t)¢(t)+4kr(l—a)[¢(t) CF;(t)J' e

Integrating (14) fromt, to t, we obtain

‘IL[Q(SW(S) ()9(s) [MS)— p(s)j ]ds.

4T (1-a)| 4(s) cr(s)

Dividing (15) by ¢(t)r(t) and then integrating from t, to , we get
&(1) y/(u) t ds
—————du< ot _—
eoTa-ayr =0 5wmm)

1 [(0)4(r) (¢(5)_p(e)Y
. ¢(s)r(s)f{q“)¢(f)‘4kr(1_a)[¢(r) ‘CF;(T)J }"ds'

By (11) and (12), we obtain

L. G(t u

liminf (®) L
e Jel) [ (1-a) f (u)

The rest of the proof is similar to that of Theorem 3.1., hence is omitted

If we choose ¢(t) =1 in Theorem 3.2., then we obtain the following result.

du = —o0.

Corollary 3.1. Let (4) holds and suppose that

w(x)=c>0and w2k>0forx¢0, (16)
v(x)
» ds
= 7)
I r(s)<oo’

2
[ @]
!l_)rgsupft()@jto[“r)—?[w—(f) dzds = oo (18)
Then for every solution y of (1), we have lim,__inf |y(t)| =0.

4. APPLICATIONS

Example 1. Consider the fractional differential equation for t >1,
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(e‘( [{(t-s) y(s)ds)2 Dgiy(t)j +e21( [f(t-s) y(s)ds)4 —0, (19)

with ¢ =1/2. This corresponds to (1) with r(t) =g, .//(x) =x?, q(t) =e?and
f (X) =x*. All conditions of Theorem 3.1 are satisfied. Then for every nonoscillatory solutions

Y of (19), we have lim,_,,, inf|y (t)|=0.

Example 2. Consider the fractional differential equation for t >0
(t3 exp(j';(t—s)fa y(s)ds) Dgiy(t)) +Dgy(t)+t*? exp(z.[;(t—s)fa y(s)ds) =0, (20)

with ¢ (0,1), This corresponds to (1) with r(t) =t3, W(X) =g, p(t) =1 (t) =t¥?
and f (x) =e?*, All conditions of Corollary 3.1 are satisfied. Then for every solutions y(t) of
(20), we have [im,_,,inf |y(t)|=0.
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