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ABSTRACT

In this study, firstly, new proofs of the theorems which characterize the generalized helices, slant helices
and relatively-normal slant helices are presented by using the Darboux vectors of these helices. Also,
a characterization of a generalized helix lying on an oriented surface is given in terms of its geodesic
curvature, geodesic torsion and normal curvature. Secondly, by defining Bi-slant helix in Euclidean
4-space, we give its characterization.
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1. INTRODUCTION

This paper includes characterizations of some helical curves in Euclidean 3-space E3 and Euclidean 4-
space E*. Helical curves have been defined by their Frenet vector fields which make constant angles
with fixed directions. Such curves have always been of interest and have been studied and characterized
not only in Euclidean spaces but also in non-Euclidean spaces either in 3-space or in higher dimensional
spaces. The most encountered helical curve is a generalized helix. Generalized helices which have an
important place not only in differential geometry but also in CAGD can also be seen in nature such as a
tool of designing highways [15]. One can see such helices also in fractal geometry and in the structure of
DNA [2, 13]. Another most attractive helical curve is a slant helix [5]. These curves are the geodesics of
helix surfaces [6] and are applied in some applications of quaternion algebra which plays an important
role in several areas of physics, such as simulation of particle motion [16]. A slant helix is also related
with a special surface curve called isophotic curve. An isophotic curve which plays an important role
in visual psychophysics and vision theory is a geodesic if and only if it is a slant helix [4, 7]. Another
helical curve which have been recently defined as a relatively-normal slant helix [8] is also related with
generalized and slant helices.

Generalized helix [10] and slant helix [5] have been defined by the unit tangent vector and principal
normal vector of a regular curve in E3, respectively. Besides, a relatively-normal slant helix [8] has been
defined as a surface curve by the tangent normal vector field of the surface curve. The characterizations
of generalized helices, slant helices and relatively-normal slant helices in E? are well-known. The char-
acterizations of slant helices and relatively-normal slant helices in E3 have been proved by using their
principal normal and relatively-normal indicatrices, respectively. However, a proof for the sufficiency
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part of the characterization of generalized helices given by [14] identifies a vector field which is linearly
dependent with Darboux vector field of the curve. This easy proof led us to look for similar proofs for
slant helices and relatively-normal slant helices in E3.

In addition, generalized (or cylindrical) helix [9, 12], slant helix [1], and Bg-slant helix [11] have been
defined by the unit tangent vector, principal normal vector, and second binormal vector of a regular curve
in E4, respectively. However, similar to such helices in E?*, the notion Bi-slant helix in E* is missing.

The aim of this paper is, firstly, to give the characterizations of generalized helix, slant helix, and
relatively-normal slant helix in E? by using their Darboux vectors. It is also aimed to present a charac-
terization of a generalized helix lying on an oriented surface in terms of its geodesic curvature, geodesic
torsion and normal curvature. The second aim is to define Bi-slant helix in E* and to give its charac-
terization.

2. PRELIMINARIES

2.1. Curves in E?

Let us consider a curve a : I — E3, where I C R is an open interval. Let {t,n, b} denotes the Frenet
frame of c. The Frenet formulas are then given by

t'=kn, n =-xt+7b, b = —7n, (1)

where k and 7 are curvature and torsion of «, respectively.
It is well-known that d = 7t + kb is called as the Darboux vector field of the curve. The Darboux
vector field enables us to rewrite the Frenet formulas as [10]

t'=dxt, n=dxn, b =dxb. (2)

Let us now consider a regular surface S in E3. Let 8 : J — S be a unit speed curve on S, where J
denote an open real interval, and U denote the unit surface normal along 5. Let T= 4" and V=UxT
(the vector V is called as tangent normal vector of ). The frame field {T,V, U} is called as Darboux
frame. The Darboux formulas are given by

T =k, V + £, U,
V' = —k,T+7,U, (3)
U =—k,T-1,V,

where k4 is the geodesic curvature, k,, is the normal curvature and 7, is the geodesic torsion of 3 [10].
Similarly, the Darboux vector field of 3 is defined by D = 7,T — £,V +4U, and it enables us to rewrite
the Darboux formulas as

T=DxT, V =DxV, U=DxU. (4)
The vector fields
D, =-k,V+x,U, D,=71T+xk,U, D,=7T-k,V

along [ are called the normal Darboux vector field, the rectifying Darboux vector field and the osculating
Darboux vector field, respectively [4].

Definition 1 (Generalized helix). Let a regular curve be given in E3. If its tangential direction makes
a constant angle with a fized direction, then the curve is called a generalized helix.

Generalized helices are characterized as follows (see [10, 14] for the proof):

Theorem 1. A curve with £ > 0 in E? is a generalized heliz if and only if the ratio of its torsion to the
curvature is a non-zero constant, i.e.

-
— = constant.
K
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Definition 2 (Slant helix). Let a regular curve be given in E3. If its principal normal direction makes
a constant angle with a fized direction, then the curve is called a slant helixz [5].

Slant helices are characterized as follows (see [3, 5] for the proof):

Theorem 2. A space curve with k > 0 is a slant heliz if and only if

K2 T\’
m (;) = constant.

Definition 3 (Relatively-normal slant helix). A regular curve in E3 lying on a regular surface S is called
a relatively-normal slant heliz if its tangent normal vector makes a constant angle with a fized unit vector

[8]-
Relatively-normal slant helices are characterized as follows (see [8] for the proof):

Theorem 3. A unit speed curve on a surface S with (14, kq) # (0,0) is a relatively normal-slant heliz if
and only if

1
444““‘75(7259 "“;7b“'ﬂn(H§4F7§)> = constant.
(3 +73)

2.2. Curves in E*

Let v be a regular curve in E* and {T,N, By, B} denote its Frenet frame. Then, Frenet formulas along
v is given by

T’ = IilN, NI = —KllT -+ I{2B1, Bll = —I€2N + I<L3B2, BIQ = —I€3B1,

where T, N, B, and Bs denote the tangent, principal normal, first binormal and second binormal vector
fields, respectively, and x;, i = 1, 2,3 denotes the i-th curvature function of the curve.

Definition 4. Let v be a reqular curve in E*, {T,N,B1,By} denote its Frenet frame and r;,i =1,2,3
denote the i-th curvature. If T,N, and By make a constant angle with a fized direction, then the curve
v is called a generalized helix, slant heliz, and Ba-slant helix, respectively [1, 9, 11, 12].

Such curves have been characterized as follows:

A regular curve in E* with non-vanishing curvatures is a

e generalized helix if and only if

2

2 /
i [1 ("ﬁ) 1 = constant, [9], (5)
K K3 K2

e slant helix if and only if

N2 2 2
{“2 4 i (KE1 /nlds) } + (KE1 /nlds) + (/ /<;1ds> = constant, [1], (6)
K3 K3 \ K2 R2

e Bs-slant helix if and only if

2
/
A ll <H3) 1 = constant, [11]. (7)
K K1 \ K2
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3. CHARACTERIZATIONS OF HELICES BY USING THEIR DARBOUX
VECTORS

In this section, we reobtain the above given characterizations by using the Darboux vectors of the
mentioned helices. The following new proofs show again how important the Darboux vector of a curve
is.

3.1. New proof of Theorem 1

(=:) Let a be a unit speed generalized helix in E3. Let {t,n, b} denote the Frenet frame, and d = 7t+xb
denote the Darboux vector of a. Then, by the definition, there exists a constant angle 6 and a fixed
unit vector g such that (t,g) = cosf. If we differentiate this equation according to arc-length, we get
(n,g) =0,ie n L g. Since we also have n L t, we obtain n is parallel to g x t. This means

gxt 1 ( )
n=d=+ == x t 8
lgxtl] ~ smo\® ") ®
where || - || denotes the norm of a vector. Since g and 6 are constant, differentiating (8) with respect to

arc-length and using Frenet formulas, we get

(5 ¢) = =" (gxm). )

Combining n’ = d x n with (9) yields

n =+

sin 6 sin 6

d::lzi."i g =71t + Kkb.
sin 0
By taking the inner product of both hand sides of the last equation with t implies that

T_ =+ cot 6 = constant.
K
(«<:) See [14].

Slant helices are characterized by using the geodesic curvature function of the principal normal
indicatrix of the curve. Now, let us give a new method for finding the characterization of a slant helix.

3.2. New proof of Theorem 2

(=:) Let o be a unit speed slant helix with x > 0 in E?. Let {t,n,b} denote the Frenet frame and
d = 7t+kb denote the Darboux vector of a. Then, by the definition of slant helix, there exists a constant
angle ¢ and a fixed unit vector h such that (n,h) = cosp. Differentiating this equation according to
arc-length of « yields (n’,h) = 0, i.e. n’ L h. Since we also have n’ | d, we obtain n’ = d x n is parallel
to d x h. This means d,n, and h are planar. Since (d,n) = 0, we may write

d
h:cosganj:singow. (10)

Differentiating (10) with respect to arc-length and using Frenet formulas gives

/1(/@7" - H/T) T(H/T - /ir’)

0= | —Kcosp=* 5 sing | t+ | Tcosp £ ————5singp | b.
(o) )

Thus, we obtain

/i(m"—fi’T) ) T(FCIT—FLT/) )
————5sinp=0, Tcospxr ——5sinp=0

(52 +72)2 (,{2 _,_72)2

—KCOosp *
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2

I
which yields “;{W (%) = =4 cot ¢ = constant.
K2+ T
K2 T\’ .
(«<:) Let’s assume that o = W (7) is constant. Let
K+ T K
d
H=0on+ -—

Idil

Thus, ||H|| = 1+ 0? is constant. If we differentiate H according to arc-length and employ Frenet formu-
las, we obtain H' = 0. Then, H is a nonzero constant vector, and (n, H) = ¢ = constant which means
that n makes a constant angle with H, i.e. « is a slant helix.

Similar to slant helices, relatively-normal slant helices are characterized by using the constancy of
the geodesic curvature function of the spherical image of tangent normal vector. Now, let us give a new

method for finding the characterization of a relatively-normal slant helix lying on a regular surface in
E3.

3.3. New proof of Theorem 3

(=) Let 8 be a unit speed relatively-normal slant helix with (74, x,) # (0,0) on a regular surface S C E3.
Let {T,V,U} denote the Darboux frame and D = 7,T — k,V + £,U denote the Darboux vector of 3.
Then, by the definition of relatively-normal slant helix, there exists a constant angle ¥ and a fixed unit
vector r such that (V,r) = cosv. If we differentiate this equation according to arc-length of 8, we get
(V')r) =0,ie. V' Lr. Since we also have V' L D, we obtain V' = D,. x V is parallel to r x D,.. This
means r,D,., and V are planar. Since (D,, V) = 0, we may write

D,

r :COST/JViSiHl//HD T

(11)
Differentiating (11) with respect to arc-length of 8 and using Darboux formulas gives

Ko (ReT! — KTy — K (K2 + T2
0= | —rgcostp = g(gg 99 3<g g>)sinw T

(4+78)
Ty (Iilng — /@gT; + lin(lﬁg + 7'92))

(s3+7)

+ | Tgcosyp £

(N
2.
=

<
c

from which we have

ko (RoT! — KTy — K (K2 + T2
—Kg COSY E g( 79 99 né( g g)) siny = 0,
2
(/@'3 + 7'3)
To (K Ty — KoT! + Kp (K2 + 72
Tgcosy £ g( 99 79 né( g g)) siny = 0.
2 2)?
(55 +72)
The assumption (74, kg) # (0,0) yields
1
_— (T;I{g — Ky Ty — nn(n§ + 792)) = + cot 1) = constant
)
which completes the proof.
1
(«:) Let’s assume that p = ——— (T;Iig — KTy — kin (KD + 7’92)) is constant. Let
)’
D
R=pV+ ——

D"
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Thus, ||R|| = 1+p? is constant. Differentiating R according to arc-length and employing Frenet formulas
yields R’ = 0. Then, R is a nonzero constant vector, and (V,R) = p = constant which means that V
makes a constant angle with R, i.e. § is a relatively-normal slant helix.

Now, by using the Darboux vector, let us give a characterization of a generalized helix lying on an
oriented surface in terms of its geodesic curvature, geodesic torsion and normal curvature.

Theorem 4. A unit speed curve on a surface S with (kn,kq) # (0,0) is a generalized heliz if and only if

1
_— (Iﬂ?;lin — kgl — Ty (K2 + H3)> = constant.
R

Proof. (=) Let (8 be a unit speed generalized helix with (k,,k4) # (0,0) on a regular surface S C E3.
Let {T,V,U} denote the Darboux frame of 3. Then, by definition of generalized helix, there exists a
constant angle ¢ and a fixed unit vector ¢ such that (T,c) = cos¢. If we differentiate this equation
according to arc-length of 8, we get (T,c) = 0, i.e. T/ L c. Since we also have T L D,,, we obtain
T' = D,, x T is parallel to ¢ x D,,. This means ¢,D,,, and T are planar. Since (D,,T) = 0, we may
write

D,
c:cosqﬁTj:Sinqﬁm. (12)

Differentiating (12) with respect to arc-length and using Darboux formulas gives

/

Ko (knk! — K. kg — T (K2 + K2
0= |rgcosp* g( "9 ng 93( g ")) sing | V
5
(5 +#2)
b (Fnk! — KL Ky — T4 (K2 + K2
+ | kKpcoso + n( A ng 93( g n)) sing | U.

A

Thus, the assumption (ky, kg) 7 (0,0) yields the desired result.

(«<:) Let’s assume that £ = (H;nn — Kghky, — g (K2 + ni)) is constant. Let

(k2 +r2)

D,
C=¢T - .
1D
Thus, the rest of the proof follows as previously. O
Remark 1. The constant function given in Theorem 4 is equal to ———=——, where J,, is defined by [4].

2
/12 2
Ky + ki

4. B;-SLANT HELIX IN E*

In Euclidean 4-space, generalized helix, slant helix, and Bs-slant helix have been defined by the unit
tangent vector, principal normal vector, and second binormal vector of a regular curve, respectively.
However, similar to these curves, a new type of curve which is missing in the literature can be defined
by using the first binormal vector of a regular curve.

Definition 5. Let v be a reqular curve with nonzero curvatures ki, Ko, K3 in E4. v is called a B1-slant
helixz if its first binormal vector B1 makes a constant angle with a fized direction.

1304
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Theorem 5. Let v be a reqular curve with nonzero curvatures K1, ko, k3 in E*. v is a Bi-slant heliz if
and only if

{:i + % (:z/ﬁgds>/}2 + (:z/ﬁgdsy + (/Rgds)Q (13)

is a constant function.

Proof. (=) Let vy be a Bj-slant helix and s denote its arc-length. Then, there exists a fixed unit vector
w and a constant angle £ such that (By,w) = cos&. Differentiating this equation according to s and
using Frenet formulas in E* gives (—koN + k3B, w) = 0 or

(N, w) = 2 (By, w). (14)
R2
On the other hand, by using (By,w) = cos¢, we may write
(—k3B1, W) = —kgcosé or (B, w)= —rgcost
which yields
(Ba, W) = — cos€ / ds. (15)

Then, from (14) and (15), we obtain

(N,w) = —cos£:—z /mg,ds. (16)

Furthermore, by using (B, w) = cos{, we may also write (koBq,w) = Ky cos{ or (N’ 4+ kT, w) =
ko cos €. This equation yields

(T, w) = :;f cosé — %(N’,w}. (17)

If we differentiate (16) with respect to s and substitute the result into (17), we get

1 /
(T,w) = {@ +— <I€3 /K}gdS) }cosf. (18)
K1 K1 Ko
If we differentiate (18) according to s and consider (16), we also have
d 1 '
— {@ + — (Iig//sgds> } — s //{gds. (19)
ds | k1 K1 \ K2 K2

Thus, since w has unit length, by using

(T, w)? + (N, w)2 + (B;,w)? + (By,w)? =1,

we may write

N 2 2 2
K 1 (kK K
{2 + — <3/H3d8> } + <3/H3d8> + (/ I<63d8> = tan2§ = constant.
K1 K1 \ K2 R2
(«=:) We assume that the function given in (13) is constant. We denote this constant with tan?¢. Let
us consider the unit vector

i
cos & HW‘#l (“/ngds> }T+ <”‘°’/ngds)N+Bl+ </H3ds> B,
K1 K1 \ K2 Ko

defined along the curve 7. Differentiating this vector with respect to s and using (19) shows that it is
a fixed vector which makes the constant angle £ with the first binormal vector B; of 7. Then 7 is a
B;-slant helix. O
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Remark 2. By using the same method presented above, we can obtain the characterizations of generalized
heliz, slant heliz and Bo-slant heliz in E* easier than the earlier given proofs in [1, 9, 11].

Theorem 6. Let v be a space curve in E* with r1(s) = r3(s). Then vy is a By-slant heliz if and only if
v is a slant heliz.

Proof. The proof can be seen easily by using the characterizations of these curves given by (6) and

(13). O
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