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ABSTRACT

In this paper, Galerkin method based on the Ultraspherical wavelets expansion together with operational
matrix of integration is developed to solve linear and nonlinear Klein Gordon (KG) equations with the given
initial and boundary conditions. Firstly, we present the ultraspherical wavelets, then the corresponding
operational matrix of integration is presented. To transform the given PDE into a system of linear-nonlinear
algebraic equations which can be efficiently solved by suitable solvers, we utilize the operational matrix of
integration and both properties of Ultraspherical wavelets. The applicability of the method is shown by two
test problems and acquired results show that the method is good accuracy and efficiency.

Keywords: Ultraspherical wavelets, Klein-Gordon equation, Galerkin method, operational matrix of
integration.

1. INTRODUCTION

The goal of this paper is to present a numerical solution by means of the Ultraspherical
wavelet Galerkin method for the following Klein Gordon (KG) equation which has the nonlinear
term as [1]:

o%u(n,t o%u(n,t
(727 ) . ” (f72 )
ot on
subject to initial and boundary conditions
u(,0)=0, u/(r0)=0 776[0,1]

+um ) +rui ()= (1), ne[01], te[01]

and
u(0,t) =h(t), u@t)=h,(t), t<[0,1]

where hl(t) and h2 (® are known functions, 71:72 and 73 are constants . The Klein-Gordon
(KG) equation is basically a relativistic wave equation version of the Schrodinger equation. It has
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wide applications in many scientific fields, such as nonlinear optics, fluid dynamics, solid state
physics, and quantum mechanics [2].

As a kind of essential n onlinear PDEs, the KG type equations have been studied to get both
analytical and numerical solutions in different studies. Analytical and numerical solutions of KG
equations were presented by using the taylor matrix method [3], the the Adomian's
decomposition and variational iterative methods [4], the lattice boltzmann method, the
exponential cubic b-spline collocation method [5], the perturbation iteration technique and
optimal perturbation iteration method [6], the variational iteration method [7], the finite-
difference method [8], the decomposition method [9], the transformation and Exp-function
method and comparison with Adomian’s method [10], the variational iteration method combined
with the Exp-function method [11].

Methods based on wavelets have been used to obtain numerical solutions of differential
equations over the past 30 years. Up to now, a large number of papers focus on this topic. Some
of methods used these paper are the Gegenbauer wavelets based on methods [12,13], the
Legendre Wavelet Operational Matrix Method [14], the Cheybshev wavelet collocation method
[15], the Legendre wavelet method [16], wavelets Galerkin method [17], the modified Laguerre
wavelet based Galerkin method [18], Genocchi wavelet method [19] and the discontinuous
Legendre wavelet Galerkin method [20]. In this study, Galerkin method based on ultraspherical
wavelets was used to obtain the numerical solution of linear and nonlinear KG equations. The
proposed method presents an understandable algorithm to reduces KG equations and transforms
such equations to a system of algebraic equations, which is the most important advantage of the
proposed method.

2. ULTRASPHERICAL POLYNOMIALS AND ULTRASPHERICAL WAVELETS

Ultraspherical polynomials Cnﬁ (n) is defined on the interval [—Ll] and Ultraspherical
polynomials can be obtained by the following recurrence relations [21]:

Cy(m) =1,C/ () =2pn,

CLuln) == (2(n+ A)nCL ()~ (1 +25 -DCL,(0). N1 >~

Some properties of Ultraspherical polynomials are

k

4 (G (m)=26C0 (n). o (CE () =2 0L (m).n 21
(n+8)Cy (n)=B(CI™ (n)-C (n)), n=2

S (Ch 1)L 1)~ 28(C2 ()L 0) 20 )

The equation given as

p+112

S \A-L2 23(1-7? .
.[(1—’7 )ﬂ Cnﬂ(n)dﬂ=—ﬁ051 (77), n>1.

is obtained from Rodrigues formula [21].
Ultraspherical polynomials are orthogonal with respect to the weight function

sz .
a)(77) = (1—772) 2 ; that is,
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1 1
[@=r) = et (ndn =Ko~

727 T(n+2)
ni(n+B)(T(B))

Kronecker delta function.

Legendre polynomials and Chebyshev polynomials are special types of Ultraspherical
polynomials. For =0, 8=1/2and S =1, we obtain the first- kind Chebyshev polynomials,
Legendre polynomials, the second- kind Chebyshev polynomials, respectively.

The basic wavelet (Mother wavelet) is given on the basis of scaling and translation parameters
as:

in which K/ =

is called the norm alizing factor, and O, is the

1 —
l//p,q (n):ﬁ!//[n_qu' P,qe Ra p 7501

in which p and ( are the scaling and translation parameters, respectively. By restricting

P, q to discrete values as: p = p,*,q=nq,p,*. where p,>10q,>0 and K,neN, the
following discrete wavelets are obtained:

Ve =( po)g v (pkn-ng,)

in which an orthogonal basis of L, (R) is formed. If p, =2 and g, =1, then v,  forms

an orthonormal basis.
The discrete wavelet transform is defined as

Vien (7) = (2)2 v (27 —n).

Ultraspherical wavelets are defined on the interval [0,1] by

A

1 X .. A-1 A+1
2°n—n), <n<

W.fm (77): Kﬁ ( 77 ) 2k 77 2k 7

0, elsewhere

in which C” (2k77— ﬁ) is Ultraspherical polynomials of degree m, k=1,2,3,..., is the level

of resolution, n=123,...,2 A=2n-1, is the translation parameter, and

m=0,12,...,M —1 is the order of the Ultraspherical polynomials, M >0 . Corresponding to
1 1

each > _E , a different wavelet family is obtained, i.e., when L= E, Ultraspherical wavelets

are identical with Legendre wavelets. For £ =0 and £ =1, we get the Chebyshev wavelets of
the first kind and the Chebyshev wavelets of the second kind, respectively. In this study, we use

i 1
the Ultraspherical wavelets at the values f = E and f=—.

2

Ultraspherical wavelets’ the weight function is given as follows:
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3. FUNCTION APPROXIMATION

u(7) e L?[0,1] can be expanded in terms of Ultraspherical wavelets as:
=> >’ () )
n=0 m=0

where ¢/ values are wavelet coefficients, and Cnﬂ n Wavelet coefficients are calculated by

o/ =(u(n).v (),

We approximate infinite series expansion in equation (1) by truncated series as:

2im

)=> > chaw’ (m)=(C") ¥ (n) 2

n=1 m=0

in which the matrices ¥/ (17) and C are of order 2*M x1.
Equation (2) can be also expressed as:

u(n) = ici” vl (n) (3)

T

where m=(2k71M) c’ = [Cl 21 :Cm],

T

W ()2 [ (1) wh (1) ] @)

and we use the relation i =M (n—1)+m+1 to find the index i .

Similarly, u(r,t)e? ([O,l]x[O,l]) can be approximated in terms of Ultraspherical
wavelet as:

W)= 230wl vl (6= (1) (U’ (1) ©)

i-1 j-1

in which U, ; wavelets coefficients can be calculated by
v =<u/iﬁ(n),<U(f7,t),t//f’ (t)>wn>

2i-1 . .
By substituting the collocation points 7, =2—~,I =1,2,...,M into equation (4), we obtain
m

the following Ultraspherical wavelet matrix @, . :
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o Lo o (52
i 2m )’ 2m ) 2m

Theorem 2.2 (Convergence  Theorem) A function u(7,t)e®(RxR) defined on
[O,l]x[O,l] can be expanded as an infinite series of Ultraspherical wavelets, which converges
uniformly to u(#,t), provided u(7,t) has bounded mixed fourth partial derivative
o'u(n,t

Tun)
on‘ot

Proof: See([12]).
4. BLOCK PULSE FUNCTIONS(BPFS)

Block pulse functions (BPFs) constitute a complete set of orthogonal functions [22], which
are defined on the interval [0,b) by
i—-1

i
b ()= L WS”<Eb,i —1,2,....1.

0,  otherwise
An arbitrary function u(z) on the interval [0, b) can be represented by BPFs as:
u(77)=<"By (1)
where
¢ =[ug, Uy, Uy
By = [bl(n)vbz (7). by (77)]

in which u; variables are the coefficients of the block pulse function which are calculated by
using the following relation:

o =2 ulmn (man=""T" u(n) (r)an.
0 ((i-1)/m)b

Lemma 1. Suppose that f(r) and g(r) are two absolutely integrable functions, and these
functions may be represented in terms of block pulse functions as:

f(7)=F"B(n)
9(n) =G"B(n).
Then,
f(7)9(n7) = F'B(17)B' (17)G = HB(%))

where H=F" ®G' [23].
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Lemma 2. Suppose that f(7,t) and g(7,t) are two absolutely integrable functions, and these
functions may be represented in terms of block pulse functions as:

f(17.1)9(72,t) = BT (;7)HB(7)
where H=F ®G [23].

4.1. Nonlinear Term Approximation by Ultraspherical Wavelets

Ultraspherical wavelets may be represented [23] with an M -set of block pulse functions as:
W (t) =D, B, (). U]

The operational matrix of the product of Ultraspherical wavelets can be calculated by using
the properties of BPFs. The absolutely integrable f (;,t) and f,(5,t) functions can be

represented by Ultraspherical wavelets as:

f,(nt)=(¥*) (7)F¥” (1) )
and

f,(m.t)=(¥*) (n) F,¥” (1).

9)

From equation (7), equations (8)- (9) are rewritten as:
fl (ﬂ,t) = (qjﬁ )T (77) l:1\11/3 (t) = BT (n)(D;xm qu)mxmB(t) = BT (77) FaB(t)
f, (77"[) = (‘Pﬁ )T (77) Ry’ (t) =B’ (U)q)rTﬁxm F®,,B(t) =B (77) FB(t)

where F, =®] FEd,  and F =d Fd, . Let F,=F ®F,then

mxm mxm

f,(.0)f,(.t) = B" (17) K, B(t)
=B (17) D i V(P 1) FinV (@ ) D s B (1)

=(¥*) (n)F¥” (1)

where F, =inv(®}, ) Rinv(D . )-

5. OPERATIONAL MATRIX OF THE GENERAL-ORDER INTEGRATION

The integration of the vector ¥# (z) , which is given in (4), can be approximated as:

n

[w’(£)dé~Pw’ (n)

0

where P is called the operational matrix of integration for Ultraspherical wavelets. As given
in [15], the matrix P is defined as:

P=®; ﬁ@%{(m
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where the MxM matrix P is called the operational matrix of integration for BPFs and is
taken in references in [24-25] as:

000 01

6. ULTRASPHERICAL WAVELET GALERKIN METHOD (UWGM)

The Ultraspherical wavelet expansion, together with the operational matrix of integration, is
used to solve the following Klein-Gordon equation:

ocu@.t) ,  ou@mt)
atz 7/1 8772
with initial and boundary conditions
u@0)=0, u((n0=0 7ne[01]]

+,um ) +r,ui(m )= (1), ne[01], te[01]

and
u(0,t) =h(t), u@t)=h,(t), t<[0,1].

For solving this system, by integrating this equation two times with respect to U and consider
initial conditions, the integral form of the Klein-Gordon is obtained as follows:

ou(,t)  ou(nt L o2u(n, b b i
(7.) _ou(r )| _71J'#dr—yzju(q,r)dr—ysjuz(ry,r)dr+J.f(n,r)dr
at & lo 3 om 0 g 0

u(n,t) :—}/lj.jazg(—y;l’r)dr—yzjju(n,r)dr—ysj.j-uz (n,r)dr+j.j‘ f(n,7)dz (1)

_du(x.t) _
Now, we approximate ? by the Ultraspherical wavelets as follows:
n

gutnd) ii 2 (n)w? () =(¥" () U’ b). (12)

Here, U :I:uij:|rﬁ R is an unknown matrix which should be found. When we integrate

Equation (12) two times with respect to 77, we obtain:

ou(n,t) ou(n,t) T
o~ oy ot (¥@) PUE) 19
and
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_ ou(n,t) ¥ T (52\T Y

u(m,t)= u(o,t)+77(7|n_0 +(¥’ () (P?) UW’(1). (14)
When we put 77 =1 in Equation (14) and the boundary conditions is used, we have:

ou(n,t) T

7|W:0=hz(t)—hl(t)—‘{!/’(l)T(PZ) UW” (t). (15)
h(t) and h,(t) can be expressed by a terminated Ultraspherical wavelet series at the value

M as follows:

h) = HIW()

h(t) = H}¥"(1) (16)

in which H, and H, are the Ultraspherical wavelet coefficients vectors. If we substitute
Equation (16) into Equation (15), we obtain:

ou(n,t ~

_“2’777 )|”:0=(H2T —H] - (P) u)\Pﬂ (t)=U"” (t). an
By substituting Equation (17) into Equations (13) and (14), we get:

%’;t):‘fﬂ(ﬁ (EU+PTU)¥” (1) =" (1) A (1) (18)

u(mt)= (" (n))' (EH] + XU +(P*)'U )9 (©)=(¥" ()" A% (1) (19)

in which 7=Y¥(;)"X and 1=W(y)"E. Furthermore, we can be expressed by a

terminated Ultraspherical wavelet series at the value M as follows:
T
fo.0) =(¥" () F¥ () (20)

where F is the Ultraspherical wavelet coefficient matrix.
Now by substituting Equations (12), (19) and (20) into Equation (11) , then using operational

matrices of integration, we obtain the residual function R(X,t) for this equation as follows:

Rt = (W7 (1)) [ A, +7UP? +7,A P + 7, AP — FP? |97 (t)

in which
(7 () A ()] (¥ () A7 (1) = (7 () A (1)

As in Galerkin method [26], for Uj,, i=12,...,M we obtain M* non-linear algebraic

equations as follows:

j.j.R(n,t)l//i'B (m)w? (t)@, (7)o, (t)dpdt =0, i,j=12,.,m
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Eventually, by solving this system for the unknown matrix U , approximate solution for the
Klein-Gordon equation is obtained.

7. ILLUSTRATIVE EXAMPLES

In this section, two test problems were examined to show the accuracy and efficiency of the
presented method. Such type of problems that have exact solutions wase selected. In order to
measure the difference between the analytic and numerical solutions, we used the following error
function defined as

E(?]I 'ti) = |uexactsol (77| 'ti) - unumsol (77| ’ti )l .
The obtained errors are shown in tables.
Example 1. Suppose the following Linear Klein-Gordon equation as

o%u(n,t o%u(n,t
(727 ) . 7 (z )
ot on
subject to the initial and boundary conditions
u(7,0)=0,u,(7,0)=0

+7,u(m )+ Ul () = f(1.1),

and

u(0,t) =0, u(Lt)=t>.
Here f (17,t) = 677°t + (17° —6m)t° and », =—1,, =1 ve », =0.
The exact solution of this problem is u(z,t) =7°t® [27].

Table 1. Absolute error at different values of (7,t)

|ueXactsoI (77| 'ti ) - unumsol (77| lti )l
(%) f=Y% M=10k=1 =34 M=10k=1

) 3.91257122448327 %10 4.73644590538997 x10™*
( ) 8.30695799578360x10°° 5.74906482856706 x10°°
( ) 4.03940390231403x10°° 1.44138344344434 107
( ) 1.23945768756534 x10™ 5.95056528304065 x10°
(0.5,0.5) 2.93440091529318x10* 5.98350532921694 x10™
( )
( )
(0.8,0.8)
( )

5.56942460131049 x10™* 7.34183981250411x10°°
7.80649978712467 x10™* 1.07737555560637 x10 2
8.81314297932367x10™" 1.95158399595203 %10
5.63384785369325x10™* 5.42959117653197 x10™°
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Table 1 shows the maximum errors obtained by the Ultraspherical wavelet Galerkin method
1 3
for M =10,k =1,,8=E ve ,B:E.

Example 2. Consider the following Klein-Gordon equation with quadratic nonlinearity:
ou(n,t)  d%u(n,t)
2 th 2
ot on
The above problem is associated with the initial and boundary conditions
lKnﬂ)=0uAmO)=QOSnS1

+7,U(m.t) + Ui (1) = f(,t),7 €[0,1],0<t <T

and

u(0,t) =0, u(Lt)=t>.
Here f(1,t) =6nt(n° —t*)+7r%° and y, =—1,7, =0 ve y, =1.
The exact solution of this problem is u(z,t) =7°t® [28].

Table 2. Absolute error at different values of (7,t)

|uexactsol (77| ’ti ) - l"lnumsol (77| !ti )l
(m.1) B=Y M=5k=1 B=3M=4k=1
(0-1, 0-1) 5.15210321495812x10™° 2.41458877189035x10™°
(0-2, 0-2) 4.56256704309143x10°° 3.86845800750016x10°°
(0-3, 0-3) 7.01936225233186x10™° 1.84576025220513x10~*
(0-4, 0-4) 3.50160067745614x10™* 9.83339405666225x10™*
(0.5,0.5) 9.01264539172070%x107* 2.22640732044785x10™
(0-6, 0-6) 1.64215612239218x10°° 3.43938435342541x1073
(0-7, 0-7) 1.89581244001211x1073 4.00740592116726 %102
(0-8, 0-8) 0.81767510053244x10™* 3.31446792402951x103
(0-9, 0-9) 4.58661367632618x10™* 1.80231079429083x10°
Table 2 shows the maximum errors obtained by the Ultraspherical wavelet Galerkin method
1 3
for M =10,k =1,8== =—.
or g > ve >
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u(x, 1)

3
Figure 3. Wavelet solution using UWG £ = E
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8. CONCLUSION

In the present study, a scheme to get numerical solutions of linear and nonlinear KG equations
using the Ultraspherical wavelet Galerkin method ,which is combined Ultraspherical wavelets
with their operational matrices of integration, is presented. The method is very convenient for
solving boundary value problems, because the boundary conditions are taken into account
automatically. Also the implementation of the method is very simple and as the numerical results
indicate the method is very useful technique to find numerical solutions of such type of problems .
As a result, the presented method can be employed to obtain numerical solutions of various partial
differential equations in the literature.
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