
Results in Nonlinear Analysis 5 (2022) No. 1, 42�61.
https://doi.org/10.53006/rna.1007501
Available online at www.nonlinear-analysis.com

Research Article

Coupled system of ψ�Caputo fractional di�erential

equations without and with delay in generalized

Banach spaces

Choukri Derbazia, Zidane Baitichea, Mou�ak Benchohrab

aLaboratoire Equations Di�érentielles, Department of Mathematics, Faculty of Exact Sciences, Frères Mentouri University

Constantine 1, P.O. Box 325, Ain El Bey Way, Constantine, Algeria, 25017.
bLaboratory of Mathematics, Djillali Liabes University of Sidi-Bel-Abbès, P.O. Box 89, 22000, Sidi Bel-Abbès Algeria.

Abstract

The main objective of this research manuscript is to establish various existence and uniqueness results as well
as the Ulam�Hyers stability of solutions to a Coupled system of ψ�Caputo fractional di�erential equations
without and with delay in generalized Banach spaces. Existence and uniqueness results are obtained by
applying Krasnoselskii's type �xed point theorem, Schauder's �xed point theorem in generalized Banach
spaces, and Perov's �xed point theorem combined with the Bielecki norm. While Urs's approach is used to
analyze the Ulam�Hyers stability of solutions for the proposed problem. Finally, Some examples are given
to illustrate the obtained results.
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1. Introduction

Nonlinear fractional di�erential equations (NFDEs) play an important role in describing many phenomena
in applied sciences and engineering applications the reader can consult [20, 29, 34, 43]. Some recent results
on the topic can be found in the following monographs [1, 2, 3, 24, 34, 47]. During the last few years, di�erent
variant of fractional di�erential operators have been introduced [7, 9, 14, 22, 27, 41]. Existence and uniqueness
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of solutions as well as the Ulam stability for fractional di�erential equations without and with delay in scalar
and abstract Banach spaces have been wildly considered; see for instance [4, 5, 8, 10, 11, 12, 13, 16, 17, 21,
23, 25, 28, 30, 39, 40, 42, 44]. In this regard, di�erent methods have been employed to verify the qualitative
properties of their solutions. Moreover, the study of coupled systems of fractional order is also important in
various problems of applied sciences, see [15, 18, 19, 26, 33]. Additionally, in papers [6, 31, 32, 35, 36, 38, 46],
the authors studied the existence and uniqueness of solutions for a system of ordinary or fractional di�erential
equations using some well-known �xed point theorems in generalized Banach spaces. As far as we know, there
are no contributions associated with the solutions of a system of fractional di�erential equations without and
with delay in generalized Banach spaces in the frame of ψ�Caputo derivative. Therefore, this paper comes
to �ll this gap in the literature. Motivated by aforementioned reasons, in this research article �rst, we deal
with the existence and uniqueness results as well as the Ulam�Hyers stability of solutions for the following
system of di�erential equations involving the ψ-Caputo derivative of fractional order:{

( cDν;ψ
a+
x)(τ) = A1x(τ) +G1(τ, x(τ), y(τ)),

( cDµ;ψ
a+
y)(τ) = A2y(τ) +G2(τ, x(τ), y(τ)),

τ ∈ J := [a, b], (1)

subject to the initial conditions {
x(a) = ϕ1,

y(a) = ϕ2,
(2)

where cDν;ψ
a+
, cDµ;ψ

a+
are the ψ-Caputo fractional derivative of order ν, µ ∈ (0, 1], respectively which was

recently proposed by Almeida[7]. G1,G2 : J×Rn×Rn −→ Rn are a given continuous functions, a and b are
positive constants such that a < b, ϕ1, ϕ2 ∈ Rn and A1,A2 ∈ Rn×n.

Next, we turn our attention to study the existence and uniqueness of solutions to the following delayed
coupled system of the form: {

( cDν;ψ
a+
x)(τ) = F1(τ, xτ , yτ ),

( cDµ;ψ
a+
y)(τ) = F2(τ, xτ , yτ ),

τ ∈ J, (3)

along with the initial conditions {
x(τ) = α(τ),

y(τ) = β(τ),
τ ∈ [a− δ, a], (4)

where δ > 0 is a constant delay and F1,F2 : J×C([−δ, 0],Rn)×C([−δ, 0],Rn) −→ Rn, are given continuous
functions and α, β : [a − δ, a] −→ Rn are two continuous functions. For any function z de�ned on [a − δ, a]
and any τ ∈ J, we denote by zτ the element of C([−δ, 0],Rn) de�ned by

zτ (ρ) = z(τ + ρ), ρ ∈ [−δ, 0].

Hence zτ (·) represents the history of the state from times τ − δ up to the present time τ .
Our paper is organized as follows: In Section 2, we provide some basic de�nitions needed for our work.

In Section 3, we prove the existence and uniqueness of solutions for problem (1)�(2) by using Perov's and
Krasnoselskii's �xed point theorems in generalized Banach spaces together with the Bielecki norm. Further,
the Ulam�Hyers's stability of the above-mentioned problem is also investigated. In Section 4, we discuss
the existence and uniqueness of solutions for problem (3) subjected to initial conditions (4) via �xed point
techniques of Schauder's and Perov's in generalized Banach spaces. Finally, we close up this paper by
providing some examples to illustrate the applicability of the obtained results.

2. Background material

In this section, we provide some fundamental material about fractional calculus, matrix analysis, and
�xed-point theorems that will be used throughout this paper.
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First, we introduce the essential functional spaces that we will adopt in this paper. We denote by
C([a, b],Rn) the Banach space of all continuous functions z from [a, b] into Rn with the supremum norm

∥z∥[a,b] = sup
τ∈[a,b]

∥z(τ)∥.

Let C = C([a − δ, b],Rn), denote the Banach space of functions from [a − δ, b] into Rn equipped with the
supremum norm ∥z∥C. In addition, Let us denote by Cδ := C([−δ, 0],Rn) the Banach space of functions w
from [−δ, 0] into Rn, endowed with the norm

∥w∥Cδ
= sup

ρ∈[−δ,0]
∥w(ρ)∥.

Now, we present some facts from the theory of fractional calculus.

De�nition 2.1 ([7, 24]). For ν > 0, the left-sided ψ�Riemann�Liouville fractional integral of order ν for
an integrable function z : [a, b] −→ R with respect to another function ψ : [a, b] −→ R that is an increasing
di�erentiable function such that ψ′(τ) ̸= 0, for all τ ∈ J is de�ned as follows

Iν;ψ
a+
z(τ) =

1

Γ(ν)

∫ τ

a
ψ′(s)(ψ(τ)− ψ(s))ν−1z(s)ds, (5)

where Γ(·) is the (Euler's) Gamma function de�ned by

Γ(ν) =

∫ +∞

0
τν−1e−τdτ , ν > 0.

De�nition 2.2 ([7]). Let n ∈ N and let ψ, z ∈ Cn([a, b],R) be two functions such that ψ is increasing and
ψ′(τ) ̸= 0, for all τ ∈ J. The left-sided ψ�Riemann�Liouville fractional derivative of a function z of order ν
is de�ned by

Dν;ψ
a+
z(τ) =

(
1

ψ′(τ)

d

dt

)n
In−ν;ψ
a+

z(τ)

=
1

Γ(n− ν)

(
1

ψ′(τ)

d

dt

)n ∫ τ

a
ψ′(s)(ψ(τ)− ψ(s))n−ν−1z(s)ds,

where n = [ν] + 1.

De�nition 2.3 ([7]). Let n ∈ N and let ψ, z ∈ Cn([a, b],R) be two functions such that ψ is increasing and
ψ′(τ) ̸= 0, for all τ ∈ J. The left-sided ψ-Caputo fractional derivative of z of order ν is de�ned by

cDν;ψ
a+
z(τ) = In−ν;ψ

a+

(
1

ψ′(τ)

d

dt

)n
z(τ),

where n = [ν] + 1 for ν /∈ N, n = ν for ν ∈ N.
For the sake of brevity, let us take

z
[n]
ψ (τ) =

(
1

ψ′(τ)

d

dt

)n
z(τ).

From the de�nition, it is clear that

cDν;ψ
a+
z(τ) =

{∫ τ
a
ψ′(s)(ψ(τ)−ψ(s))n−ν−1

Γ(n−ν) z
[n]
ψ (s)ds , if ν /∈ N,

z
[n]
ψ (τ) , if ν ∈ N.

Some basic properties are listed in the following Lemma.

Lemma 2.4 ([7]). Let ν, β > 0, and z ∈ C([a, b],R). Then for each τ ∈ J we have
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(1) cDν;ψ
a+

Iν;ψ
a+
z(τ) = z(τ),

(2) Iν;ψ
a+

cDν;ψ
a+
z(τ) = z(τ)− z(a), 0 < ν ≤ 1,

(3) Iν;ψ
a+

(ψ(τ)− ψ(a))β−1 = Γ(β)
Γ(β+ν)(ψ(τ)− ψ(a))β+ν−1,

(4) cDν;ψ
a+

(ψ(τ)− ψ(a))β−1 = Γ(β)
Γ(β−ν)(ψ(τ)− ψ(a))β−ν−1,

(5) cDν;ψ
a+

(ψ(τ)− ψ(a))k = 0, for all k ∈ {0, . . . , n− 1}, n ∈ N.

The following lemma has an important role in proving our main results.

Lemma 2.5 ([11]). Let ω, θ > 0. Then for all τ ∈ [a, b] we have

Iω;ψ
a+

eθ(ψ(τ)−ψ(a)) ≤ eθ(ψ(τ)−ψ(a))

θω
.

Remark 2.6 ([40, 42]). On the space C(J,Rn) we de�ne a Bielecki type norm ∥ · ∥B as below

∥z∥B := sup
τ∈J

∥z(τ)∥
eθ(ψ(τ)−ψ(a))

, θ > 0. (6)

Consequently, we have the following proprieties

1.
(
C(J,Rn), ∥ · ∥B

)
is a Banach space.

2. The norms ∥ · ∥B and ∥ · ∥∞ are equivalent on C(J,Rn), where ∥ · ∥∞ denotes the Chebyshev norm on
C(J,Rn), i.e;

ι1∥ · ∥B ≤ ∥ · ∥∞ ≤ ι2∥ · ∥B,

where
ι1 = 1, ι2 = eθ(ψ(b)−ψ(a)).

For more properties on Bielecki type norm see [16, 40, 42]

Let x, y ∈ Rm with x = (x1, x2, . . . , xm), y = (y1, y2, . . . , ym).
By x ≤ y we mean xi ≤ yi, i = 1, . . . ,m. Also,

|x| = (|x1|, |x2|, . . . , |xm|),
max(x, y) = (max(x, y),max(x̄, ȳ), . . . ,max(xm, ym)),

and
Rm+ =

{
x ∈ Rm : xi ∈ R+, i = 1, . . . ,m

}
.

If c ∈ R, then x ≤ c means xi ≤ c, i = 1, . . . ,m.

De�nition 2.7 ([31]). Let X be a nonempty set. By a vector-valued metric on X we mean a map d : X×X →
Rm with the following properties:

(i) d(x, y) ≥ 0 for all x, y ∈ X, and if d(x, y) = 0, then x = y;

(ii) d(x, y) = d(y, x) for all x, y ∈ X;

(iii) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.
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We call the pair (X,d) a generalized metric space with

d(x, y) :=


d1(x, y)
d2(x, y)

...
dm(x, y)

 .

Notice that d is a generalized metric space on X if and only if di, i = 1, . . . ,m, are metrics on X.

De�nition 2.8 ([45]). A square matrix A of real numbers is said to be convergent to zero if and only if its
spectral radius ρ(A) is strictly less than 1. In other words, this means that all the eigenvalues of A are in
the open unit disc, i.e., |λ| < 1 for every λ ∈ C with det(A − λI) = 0, where I denotes the unit matrix of
Am×m(R).

Theorem 2.9 ([45]). For any nonnegative square matrix A, the following properties are equivalent

(i) A is convergent to zero;

(ii) ρ(A) < 1;

(iii) the matrix I− A is nonsingular and

(I− A)−1 = I+ A+ · · ·+ An + · · · ;

(iv) I− A is nonsingular and (I− A)−1 is a nonnegative matrix.

Example 2.10 ([35]). The matrix A ∈ A2×2(R) de�ned by

A =

(
a b
c d

)
converges to zero in the following cases:

(1) b = c = 0, a, d > 0, and max{a, d} < 1.

(2) c = 0, a, d > 0, a+ d < 1, and −1 < b < 0.

(3) a+ b = c+ d = 0, a > 1, c > 0, and |a− c| < 1.

De�nition 2.11 ([36, 37]). Let (E,d) be a generalized metric space. An operator T : E → E is said to be
contractive if there exists a matrix A convergent to zero such that

d(T(x),T(y)) ≤ Ad(x, y), for all x, y ∈ E.

We close this section by introducing the following �xed-point theorems that will be employed in the
sequel.

Theorem 2.12 ([32, 36]). Let (E,d) be a complete generalized metric space and T : E → E be a contractive
operator with Lipschitz matrix A. Then T has a unique �xed point x0, and for each x ∈ E, we have

d(Tk(x), x0) ≤ Ak(I− A)−1d(x,T(x)) for all k ∈ N.

Theorem 2.13 ([31]). Let Ω be a closed, convex, non-empty subset of a generalized Banach spaces X.
Suppose that U and V map Ω into X and that

(i) Ux+ Vy ∈ Ω for all x, y ∈ Ω;



C. Derbazi, Z. Baitiche and M. Benchohra, Results in Nonlinear Anal. 5 (2022), 42�61. 47

(ii) U is compact and continuous;

(iii) V is an A-contraction mapping.

Then the operator equation Uz + Vz = z has at least one solution on Ω.

Theorem 2.14 ([31]). Let X be a generalized Banach space, D ⊂ X be a nonempty closed convex subset of
X, and K : D → D be a continuous operator with relatively compact range. Then K has at least a �xed point
in D.

3. Existence, uniqueness and stability results for problem (1)�(2).

In this section, we prove the existence and uniqueness of solutions for the given problem (1)�(2). We also
study the Ulam�Hyers stability of the mentioned system.

Before starting and proving our main result, let us de�ne what we mean by a solution of the problem
(1)�(2).

De�nition 3.1. By a solution of problem (1)�(2) we mean a coupled function (x, y) ∈ C(J,Rn)× C(J,Rn)
that satis�es the system {

( cDν;ψ
a+
x)(τ) = A1x(τ) +G1(τ, x(τ), y(τ)),

( cDµ;ψ
a+
y)(τ) = A2y(τ) +G2(τ, x(τ), y(τ)),

τ ∈ J,

and the initial conditions {
x(a) = ϕ1,

y(a) = ϕ2.

For the existence of solutions for the problem (1)�(2), we need the following lemma:

Lemma 3.2. Let ω ∈ (0, 1] be �xed, A ∈ Rn×n and h ∈ C(J× Rn,Rn). Then the Cauchy problem{
( cDω;ψ

a+
z)(τ) = Az(τ) + f(τ, z(τ)), τ ∈ J,

z(a) = ϕ ∈ Rn,
(7)

is equivalent to the following integral equation,

z(τ) = ϕ+

∫ τ

a

ψ′(s)(ψ(τ)− ψ(s))ω−1

Γ(ω)
(Az(s) + f(s, z(s)))ds. (8)

Proof. Let z(τ) be a solution of the problem (7). De�ne h(τ) = Az(τ) + f(τ, z(τ)). Then

( cDω;ψ
a+

z)(τ) = h(τ), 0 < ω ≤ 1,

that is

( cDω;ψ
a+

z)(τ) = I1−ω;ψ
a+

(
1

ψ′(τ)

d

dt
z

)
(τ) = h(τ), 0 < ω ≤ 1.

Taking the ψ�Riemann�Liouville fractional integral of order ω to the above equation, we get

I1;ψ
a+

(
1

ψ′(τ)

d

dτ
z

)
(τ) = Iω;ψ

a+
h(τ), 0 < ω ≤ 1.

Since

I1;ψ
a+

(
1

ψ′(t)

d

dτ
z

)
(τ) = I1a+

(
d

dτ
z

)
(τ) = z(τ)− z(a),
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we get
z(τ) = ϕ+ Iω;ψ

a+
h(τ).

Using the de�nition of h(τ), we obtain (8). Conversely, suppose that z(τ) is the solution of the Eq. (8).
Then it can be written as

z(τ) = ϕ+ Iω;ψ
a+

h(τ), (9)

where h(τ) = Az(τ) + f(τ, z(τ)). Since h(τ) is continuous and ϕ is a constant vector, operating the the

ψ�Caputo fractional di�erential operator cDω;ψ
a+

on both sides of Eq. (9) we obtain

( cDω;ψ
a+

z)(τ) = cDω;ψ
a+

ϕ+ ( cDω;ψ
a+

z)Iω;ψ
a+

h(τ).

Using Lemma 2.4, it yields
( cDω;ψ

a+
z)(τ) = Az(τ) + f(τ, z(τ)).

From (9), we get z(a) = ϕ. This proves that z(τ) is the solution of Cauchy problem (7) which completes the
proof.

As a consequence of Lemma 3.2 we have the following result which is useful in our main results.

Lemma 3.3. Let ν, µ ∈ (0, 1] be �xed, A1,A2 ∈ Rn×n and G1,G2 ∈ C(J× Rn × Rn,Rn). Then the coupled
systems (1)�(2) is equivalent to the following integral equations{

x(τ) = ϕ1 +
∫ τ
a
ψ′(s)(ψ(τ)−ψ(s))ν−1

Γ(ν)

(
A1x(s) +G1(s, x(s), y(s))

)
ds,

y(τ) = ϕ2 +
∫ τ
a
ψ′(s)(ψ(τ)−ψ(s))µ−1

Γ(µ)

(
A2y(s) +G2(s, x(s), y(s))

)
ds,

, τ ∈ J. (10)

Our �rst result on the uniqueness is based on the Perov's �xed point theorem combined with the Bielecki
norm.

Theorem 3.4. Let the following assumptions hold:

(H1) G1,G2 : J× Rn × Rn −→ Rn are continuous functions.

(H2) There exist continuous functions pi, qi : J → R+, i = 1, 2, such that

∥Gi(τ, x1, y1)−Gi(τ, x2, y2)| ≤ pi(τ)∥x1 − x2∥+ qi(τ)∥y1 − y2∥,

for all τ ∈ J and each x1, y1, x2, y2 ∈ Rn.

Then the coupled system (3)�(4) has a unique solution.

For computational convenience, we introduce the following notations:

p∗i := sup
τ∈J

pi(τ), q
∗
i := sup

τ∈J
qi(τ), ϕ

∗
i := ∥ϕi∥, A∗

i = ∥Ai∥,

G∗
i := sup

τ∈J
∥Gi(τ, 0, 0)∥, ℓνψ :=

(ψ(b)− ψ(a))ν

Γ(ν + 1)
, ℓµψ :=

(ψ(b)− ψ(a))µ

Γ(µ+ 1)
.

Proof. Consider the Banach space C(J,Rn) equipped with a Bielecki norm type ∥ · ∥B de�ned in (6). Con-
sequently, the product space X := C(J,Rn) × C(J,Rn) is a generalized Banach space, endowed with the
Bielecki vector-valued norm

∥(x, y)∥X,B =

(
∥x∥B
∥y∥B

)
.
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We de�ne an operator T =
(
T1,T2

)
: X → X by:

T(x, y) =
(
T1(x, y),T2(x, y)

)
. (11)

Where

(T1(x, y))(τ) = ϕ1 +

∫ τ

a

ψ′(s)(ψ(τ)− ψ(s))ν−1

Γ(ν)

(
A1x(s) +G1(s, x(s), y(s))

)
ds, (12)

and

(T2(x, y))(τ) = ϕ2 +

∫ τ

a

ψ′(s)(ψ(τ)− ψ(s))µ−1

Γ(µ)

(
A2y(s) +G2(s, x(s), y(s))

)
ds. (13)

Now, we apply Perov's �xed point theorem to prove that T has a unique �xed point. Indeed, it enough
to show that T is Aθ-contraction mapping on X via the Bielecki's vector-valued norm. For this end, given
(x1, y1), (x2, y2) ∈ X and τ ∈ J, using (H2), and Lemma 2.5, we can get∥∥(T1(x1, y1)

)
(τ)−

(
T1(x2, y2)

)
(τ)
∥∥

≤
∫ τ

a

ψ′(s)(ψ(τ)− ψ(s))ν−1

Γ(ν)
(p1(s)∥x1(s)− x2(s)∥+ q1(s)∥y1(s)− y2(s)∥) ds

+ ∥A1∥
∫ τ

a

ψ′(s)(ψ(τ)− ψ(s))ν−1

Γ(ν)
∥x1(s)− x2(s)∥ds

≤
∫ τ

a

ψ′(s)(ψ(τ)− ψ(s))ν−1

Γ(ν)

p1(s)∥x1(s)− x2(s)∥+ q1(s)∥y1(s)− y2(s)∥
eθ(ψ(s)−ψ(a))

eθ(ψ(s)−ψ(a))ds

+ ∥A1∥
∫ τ

a

ψ′(s)(ψ(τ)− ψ(s))ν−1

Γ(ν)

∥x1(s)− x2(s)∥
eθ(ψ(s)−ψ(a))

eθ(ψ(s)−ψ(a))ds

≤
(
(p∗1 + A∗

1)∥x1 − x2∥B + q∗1∥y1 − y2∥B
) ∫ τ

a

ψ′(s)(ψ(τ)− ψ(s))ν−1

Γ(ν)
eθ(ψ(s)−ψ(a))ds

≤e
θ(ψ(τ)−ψ(a))

θν
(
(p∗1 + A∗

1)∥x1 − x2∥B + q∗1∥y1 − y2∥B
)
.

Hence ∥∥T1(x1, y1)− T1(x2, y2)
∥∥
B
≤ p∗1 + A∗

1

θν
∥x1 − x2∥B +

q∗1
θν

∥y1 − y2∥B.

By the same technique, we can also get∥∥T2(x1, y1)− T2(x2, y2)
∥∥
B
≤ p∗2
θµ

∥x1 − x2∥B +
q∗2 + A∗

2

θµ
∥y1 − y2∥B.

This implies that ∥∥T(x1, y1)− T(x2, y2)
∥∥
X,B ≤ Aθ∥(x1, y1)− (x2, y2)∥X,B,

where

Aθ =

(
p∗1+A∗

1
θν

q∗1
θν

p∗2
θµ

q∗2+A∗
2

θµ

)
. (14)

Taking θ large enough it follows that the matrix A is convergent to zero and thus, an application of Perov's
theorem shows that T has a unique �xed point. So the coupled system (1)�(2) has a unique solution in
X.

Now we give our existence result for problem (1)�(2). The arguments are based on the Krasnoselskii's
type �xed point theorem in generalized Banach spaces.
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Theorem 3.5. Let the assumptions (H1) and (H2) are satis�ed. Then the coupled system (1)�(2) has at
least one solution.

Proof. In order to use the Krasnoselskii's �xed point theorem to prove our main result, we de�ne a subset
Bξ of X by

Bξ = {(x, y) ∈ X : ∥(x, y)∥X,B ≤ ξ} ,

with ξ := (ξ1, ξ2) ∈ R2
+ such that {

ξ1 ≥ γ1M1 + γ2M2,

ξ2 ≥ γ3M1 + γ4M2,

where M1,M2 and γi, i = 1, 4 are positive real numbers that will be speci�ed later. Moreover, notice that
Bξ is closed, convex and bounded subset of the generalized Banach space X, and construct the operators
U = (U1,U2) and V = (V1,V2) on Bξ as{

U1(x, y)(τ) =
∫ τ
a
ψ′(s)(ψ(τ)−ψ(s))ν−1

Γ(ν) G1(s, x(s), y(s))ds,

U2(x, y)(τ) =
∫ τ
a
ψ′(s)(ψ(τ)−ψ(s))µ−1

Γ(µ) G2(s, x(s), y(s))ds,

and {
V1(x, y)(τ) = ϕ1 +

∫ τ
a
ψ′(s)(ψ(τ)−ψ(s))ν−1

Γ(ν) A1x(s)ds,

V2(x, y)(τ) = ϕ2 +
∫ τ
a
ψ′(s)(ψ(τ)−ψ(s))µ−1

Γ(µ) A2y(s)ds.

Obviously, both U and V are well de�ned due to (H1) and (H2). Furthermore, by Lemma 3.3 the operators
form of system (10) may be written as

(x, y) = (U1(x, y),U2(x, y)) + (V1(x, y),V2(x, y)) := T(x, y). (15)

Thus, the �xed point of operator T coincides with the solution of the coupled system (1)�(2). We shall
prove that U and V, satisfy all conditions of Theorem 2.13. For better readability, we break the proof into
a sequence of steps.
Step 1 : U(x, y) + V(x̄, ȳ) ∈ Bξ, for any (x, y), (x̄, ȳ) ∈ Bξ. Indeed, for (x, y), (x̄, ȳ) ∈ X and for each τ ∈ J,
from the de�nition of the operator U1 and assumption (H2), we can get

∥U1(x, y)(τ)∥

≤
∫ τ

a

ψ′(s)(ψ(τ)− ψ(s))ν−1

Γ(ν)

(∥∥G1(s, x(s), y(s))−G1(s, 0, 0)
∥∥+∥∥G1(s, 0, 0)

∥∥)ds
≤ eθ(ψ(τ)−ψ(a))

θν
(p∗1∥x∥B + q∗1∥y∥B) +G∗

1

∫ τ

a

ψ′(s)(ψ(τ)− ψ(s))ν−1

Γ(ν)
ds

=
eθ(ψ(τ)−ψ(a))

θν
(p∗1∥x∥B + q∗1∥y∥B) +G∗

1ℓ
ν
ψ.

Hence

∥U1(x, y)∥B ≤ p∗1
θν

∥x∥B +
q∗1
θν

∥y∥B +G∗
1ℓ
ν
ψ.

By similar procedure, we get

∥U2(x, y)∥B ≤ p∗2
θµ

∥x∥B +
q∗2
θµ

∥y∥B +G∗
2ℓ
µ
ψ.
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Thus the above inequalities can be written in the vectorial form as follows

∥∥U(x, y)∥∥X,B :=

( ∥∥U1(x, y)
∥∥
B∥∥U2(x, y)
∥∥
B

)
≤ Bθ

(
∥x∥B
∥y∥B

)
+

(
G∗

1ℓ
ν
ψ

G∗
2ℓ
µ
ψ

)
, (16)

where

Bθ =

(
p∗1
θν

q∗1
θν

p∗2
θµ

q∗2
θµ

)
.

In a similar way, we get∥∥V(x̄, ȳ)∥∥X,B :=

( ∥∥V1(x̄, ȳ)
∥∥
B∥∥V2(x̄, ȳ)
∥∥
B

)
≤ Dθ

(
∥x̄∥B
∥ȳ∥B

)
+

(
ϕ∗1
ϕ∗2

)
, (17)

where

Dθ =

( A∗
1
θν 0

0
A∗
2
θµ

)
.

Combining (16) and (17), it follows that

∥∥U(x, y)∥∥X,B +
∥∥V(x̄, ȳ)∥∥X,B ≤ Bθ

(
∥x∥B
∥y∥B

)
+ Dθ

(
∥x̄∥B
∥ȳ∥B

)
+

(
ℓνψG∗

1 + ϕ∗1
ℓµψG

∗
2 + ϕ∗2

)
. (18)

Now we look for ξ = (ξ1, ξ2) ∈ R2
+ such that U(x, y) + V(x̄, ȳ) ∈ Bξ for any (x, y), (x̄, ȳ) ∈ Bξ. To this end,

according to (18), it is su�cient to show

Aθ
(
ξ1
ξ2

)
+

(
M1

M2

)
≤
(
ξ1
ξ2

)
,

where (
M1

M2

)
=

(
ℓνψG∗

1 + ϕ∗1
ℓµψG

∗
2 + ϕ∗2

)
.

Equivalently (
M1

M2

)
≤ (I− Aθ)

(
ξ1
ξ2

)
. (19)

For a su�ciently large θ, matrix Aθ is convergent to zero. It yields, from Theorem 2.9 that the matrix
(I− Aθ) is nonsingular and (I− Aθ)−1 has nonnegative elements. Therefore, (19) is equivalent to(

ξ1
ξ2

)
≥ (I− Aθ)−1

(
M1

M2

)
.

Moreover, if we denote

(I− Aθ)−1 =

(
γ1 γ2
γ3 γ4

)
,

then we obtain {
ξ1 ≥ γ1M1 + γ2M2,

ξ2 ≥ γ3M1 + γ4M2.

Which means that G(x, y) +H(x̄, ȳ) ∈ Bξ.
Step 2 : V is Dθ-contraction mapping on Bξ. In fact for each τ ∈ J and for any (x1, y1), (x2, y2) ∈ Bξ. By
the same way of the proof of Theorem 3.4, we can easily show that∥∥V(x1, y1)− V(x2, y2)

∥∥
X,B ≤ Dθ∥(x1, y1)− (x2, y2)∥X,B.
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Taking θ large enough it follows that the matrix Dθ is convergent to zero and thus, V is an Dθ-contraction
mapping on Bξ with respect to the Bielecki norm.
Step 3 : U is compact and continuous. Firstly, the continuity of U follows from the continuity of G1 and
G2. Next we prove that U is uniformly bounded on Bξ. From (16), and for each (x, y) ∈ Bξ we can get

∥∥U(x, y)∥∥X,B :=

( ∥∥U1(x, y)
∥∥
B∥∥U2(x, y)
∥∥
B

)
≤ Bθ

(
ξ1
ξ2

)
+

(
G∗

1ℓ
ν
ψ

G∗
2ℓ
µ
ψ

)
<∞.

This proves that U is uniformly bounded.
Finally, it remains to show that U(Bξ) is equicontinuous. Let (x, y) ∈ Bξ and any τ1, τ2 ∈ J, with τ1 ≤ τ2.

Taking assumption (H2), into consideration, together with Remark 2.6, we can �nd

∥U1(x, y)(τ2)− U1(x, y)(τ1)∥

≤
∫ τ1

a

ψ′(s)
[
(ψ(τ2)− ψ(s))ν−1 − (ψ(τ1)− ψ(s))ν−1

]
Γ(ν)

∥G1(s, x(s), y(s))∥ds

+

∫ τ2

τ1

ψ′(s)(ψ(τ2)− ψ(s))ν−1

Γ(ν)
∥G1(s, x(s), y(s))∥ ds

≤(p∗1∥x∥∞ + q∗1∥y∥∞ +G∗
1)

∫ τ1

a

ψ′(s)
[
(ψ(τ2)− ψ(s))ν−1 − (ψ(τ1)− ψ(s))ν−1

]
Γ(ν)

ds

+ (p∗1∥x∥∞ + q∗1∥y∥∞ +G∗
1)

∫ τ2

τ1

ψ′(s)(ψ(τ2)− ψ(s))ν−1

Γ(ν)
ds

≤p
∗
1ι2∥x∥B + q∗1ι2∥y∥B +G∗

1

Γ(ν + 1)
[(ψ(τ1)− ψ(a))ν + 2(ψ(τ2)− ψ(τ1))

ν − (ψ(τ2)− ψ(a))ν ]

≤2
p∗1ι2ξ1 + q∗1ι2ξ2 +G∗

1

Γ(ν + 1)
(ψ(τ2)− ψ(τ1))

ν .

Similarly,

∥U2(x, y)(τ2)− U2(x, y)(τ1)∥ ≤ 2
p∗2ι2ξ1 + q∗2ι2ξ2 +G∗

2

Γ(µ+ 1)
(ψ(τ2)− ψ(τ1))

µ.

Therefore,

∥U(x, y)(τ2)− U(x, y)(τ1)∥ :=

(
∥U1(x, y)(τ2)− U1(x, y)(τ1)∥
∥U2(x, y)(τ2)− U2(x, y)(τ1)∥

)
≤ 2

(
p∗1ι2ξ1+q

∗
1 ι2ξ2+G∗

1
Γ(ν+1) (ψ(τ2)− ψ(τ1))

ν

p∗2ι2ξ1+q
∗
2 ι2ξ2+G∗

2
Γ(µ+1) (ψ(τ2)− ψ(τ1))

µ

)
.

As τ1 → τ2, the right-hand side of the above inequalities tends to zero independently of (x, y) ∈ Bξ. Hence,
we conclude that T(Bξ) is equicontinuous. By Arzelà�Ascoli's theorem, we deduce that U is a compact
operator. Thus all the assumptions of Theorem 2.13 are satis�ed. As a consequence of Krasnoselskii's
�xed point theorem, we conclude that the operator T = U + V de�ned by (15) has at least one �xed point
(x, y) ∈ Bξ, which is just the solution of system (1)�(2). This completes the proof of the Theorem. 3.5.

Now, We close this section by studying the Ulam�Hyers stability for problem (1)�(2) by means of integral
representation of its solution given by x(τ) = T1(x, y)(τ), y(τ) = T2(x, y)(τ), where T1 and T2 are de�ned
by (12) and (13).

De�ne the following nonlinear operators S1,S2 : X → C(J,R):{
( cDν;ψ

a+
x̃)(τ)− A1x̃(τ)−G1(τ, x̃(τ), ỹ(τ)) = S1(x̃, ỹ)(τ),

( cDµ;ψ
a+
ỹ)(τ)− A2ỹ(τ)−G2(τ, x̃(τ), ỹ(τ)) = S2(x̃, ỹ)(τ),

τ ∈ J.
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For some ε1, ε2 > 0, we consider the following inequality:{∥∥S1(x̃, ỹ)(τ)∥∥ ≤ ε1,∥∥S2(x̃, ỹ)(τ)∥∥ ≤ ε2,
τ ∈ J. (20)

De�nition 3.6 ([38? ]). The coupled system (1)�(2) is Ulam�Hyers stable if we can �nd a positive constants
ωi, i = 1, 4 such that for every ε1, ε1 > 0 and for each solution (x̃, ỹ) ∈ X of inequality (20), there exists a
solution (x, y) ∈ X of (1)�(2) with{∥∥x̃(τ)− x(τ)

∥∥ ≤ ω1ε1 + ω2ε2,∥∥ỹ(τ)− y(τ)
∥∥ ≤ ω3ε1 + ω4ε2,

τ ∈ J.

Theorem 3.7. Let the assumptions of Theorem 3.4 hold. Then problem (1)�(2) is Ulam�Hyers stable with
respect to the Bielecki's norm.

Proof. Let (x, y) ∈ X be the solution of problem (1)�(2) satisfying (12) and (13). Let (x̃, ỹ) be any solution
satisfying (20): {

( cDν;ψ
a+
x̃)(τ) = A1x̃(τ) +G1(τ, x̃(τ), ỹ(τ)) + S1(x̃, ỹ)(τ),

( cDµ;ψ
a+
ỹ)(τ) = A2ỹ(τ) +G2(τ, x̃(τ), ỹ(τ)) + S2(x̃, ỹ)(τ).

τ ∈ J.

So

x̃(τ) =T1(x̃, ỹ)(τ) +

∫ τ

a

ψ′(s)(ψ(τ)− ψ(s))ν−1

Γ(ν)
S1(x̃, ỹ)(s)ds, (21)

and

ỹ(τ) =T2(x̃, ỹ)(τ) +

∫ τ

a

ψ′(s)(ψ(τ)− ψ(s))µ−1

Γ(µ)
S2(x̃, ỹ)(s)ds. (22)

It follows from (21) and (22) that∥∥x̃(τ)− T1(x̃, ỹ)(τ)
∥∥ ≤

∫ τ

a

ψ′(s)(ψ(τ)− ψ(s))ν−1

Γ(ν)

∥∥S1(x̃, ỹ)(s)∥∥ds ≤ ℓνψε1, (23)

and ∥∥ỹ(τ)− T2(x̃, ỹ)(τ)
∥∥ ≤

∫ τ

a

ψ′(s)(ψ(τ)− ψ(s))µ−1

Γ(µ)

∥∥S2(x̃, ỹ)(s)∥∥ds ≤ ℓµψε2. (24)

Thus, by (H2), Lemma 2.5 and inequalities (23), (24), we get∥∥x̃(τ)− x(τ)
∥∥ =

∥∥x̃(τ)− T1(x̃, ỹ)(τ) + T1(x̃, ỹ)(τ)− x(τ)
∥∥

≤
∥∥x̃(τ)− T1(x̃, ỹ)(τ)

∥∥+ ∥∥T1(x̃, ỹ)(τ)− T1(x, y)(τ)
∥∥

≤ ℓνψε1 +

(
p∗1 + A∗

1

θν
∥x̃− x∥B +

q∗1
θν

∥ỹ − y∥B
)
eθ(ψ(τ)−ψ(a)).

Hence we get

∥x̃− x∥B ≤ ℓνψε1 +
p∗1 + A∗

1

θν
∥x̃− x∥B +

q∗1
θν

∥ỹ − y∥B. (25)

Similarly, we have

∥ỹ − y∥B ≤ ℓµψε1 +
p∗2
θµ

∥x̃− x∥B +
q∗2 + A∗

2

θν
∥ỹ − y∥B. (26)
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Inequalities (25) and(25) can be rewritten in matrix form as

(I− Aθ)
(

∥x̃− x∥B
∥ỹ − y∥B

)
≤
(
ℓνψε1
ℓµψε2

)
, (27)

where Aθ is the matrix given by (14). Since the matrix Aθ is convergent to zero for su�ciently large θ, it
yields, from Theorem 2.7 that the matrix (I− Aθ) is nonsingular and (I− Aθ)−1 has nonnegative elements.
Therefore, (27) is equivalent to (

∥x̃− x∥B
∥ỹ − y∥B

)
≤ (I− Aθ)−1

(
ℓνψε1
ℓµψε2

)
,

which yields that {
∥x̃− x∥B ≤ γ1ℓ

ν
ψε1 + γ2ℓ

µ
ψε2,

∥ỹ − y∥B ≤ γ3ℓ
ν
ψε1 + γ4ℓ

µ
ψε2,

where γi, i = 1, 4 are the elements of the matrix (I− Aθ)−1.
Hence, the coupled system (1)�(2) is Ulam�Hyers stable with respect to Bielecki's norm ∥ · ∥B.

4. Existence and uniqueness solutions for problem (3)�(4).

In this section, we focus on the existence and uniqueness of solutions for the given problem (3)�(4).
Before proceeding to the main results, we start by the following de�nition.

De�nition 4.1. By a solution of problem (3)�(4) we mean a coupled function (x, y) ∈ C([a − δ, b],Rn) ×
C([a− δ, b],Rn) that satis�es the system{

( cDν;ψ
a+
x)(τ) = F1(τ, xτ , yτ ),

( cDµ;ψ
a+
y)(τ) = F2(τ, xτ , yτ ),

τ ∈ J,

and the initial conditions {
x(τ) = α(τ),

y(τ) = β(τ),
τ ∈ [a− δ, a].

To prove the existence of solutions to (3)�(4), we need the following lemma that was proven in the recent
work of Almeida [8].

Lemma 4.2 ([8]). Let g : [a, b]×C([−δ, 0],Rn) −→ Rn be a continuous function. Then z ∈ C([a− δ, b],Rn)
is the solution of {

cDν;ψ
a+
z(τ) = g

(
τ, zτ

)
, , τ ∈ [a, b],

z(τ) = α(τ) , τ ∈ [a− δ, a],

if and only if it is the solution of the integral equation

z(τ) =

{
α(a) +

∫ τ
a
ψ′(s)(ψ(τ)−ψ(s))ν−1

Γ(ν) g
(
s, zs

)
ds , τ ∈ [a, b],

α(τ) , τ ∈ [a− δ, a].
(28)

As a consequence of Lemma 4.2 we have the following result which will be used in the sequel in the proofs
of the main results.



C. Derbazi, Z. Baitiche and M. Benchohra, Results in Nonlinear Anal. 5 (2022), 42�61. 55

Lemma 4.3. Let ν, µ ∈ (0, 1] be �xed and F1,F2 : J × C([−δ, 0],Rn) × C([−δ, 0],Rn) −→ Rn are a given
continuous functions. Then the coupled systems (3)�(4) is equivalent to the following integral equations

x(τ) =

{
α(a) +

∫ τ
a
ψ′(s)(ψ(τ)−ψ(s))ν−1

Γ(ν) F1(s, xs, ys)ds , τ ∈ [a, b],

α(τ) , τ ∈ [a− δ, a],
(29)

and

y(τ) =

{
β(a) +

∫ τ
a
ψ′(s)(ψ(τ)−ψ(s))µ−1

Γ(µ) F2(s, xs, ys)ds , τ ∈ [a, b],

β(τ), , τ ∈ [a− δ, a].
(30)

We assume that the conditions given below stands hold throughout the remainder of the paper:

(C1) F1,F2 : J× C([−δ, 0],Rn)× C([−δ, 0],Rn) −→ Rn are continuous functions.

(C2) There exist positive constants Li,Mi, i = 1, 2, such that

∥Fi(τ, x, y)− Fi(τ, x̄, ȳ)∥ ≤ Li∥x− x̄∥Cδ
+Mi∥y − ȳ∥Cδ

for all τ ∈ J and each (x, y), (x̄, ȳ) ∈ Cδ × Cδ.

For the sake of brevity, we set
F∗
i := sup

τ∈J
∥Fi(τ, 0, 0)∥.

De�ne a square matrix Aψ as

Aψ =

(
ℓνψL1 ℓνψM1

ℓµψL2 ℓµψM2

)
. (31)

Firstly, we prove the uniqueness result by means of the Perov's �xed point theorem.

Theorem 4.4. If the assumptions (C1) and (C2) are true along with the matrix Aψ de�ned in (31) converges
to zero. Then the coupled system (3)�(4) possesses a unique solution in the space C([a− δ, b],Rn)× C([a−
δ, b],Rn)

Proof. Consider the Banach space C = C([a− δ, b],Rn) equipped with the norm

∥z∥C := sup
τ∈[a−δ,b]

∥z(τ)∥.

Consequently, the product space X := C× C is a generalized Banach space, endowed with the vector-valued
norm

∥(x, y)∥X =

(
∥x∥C
∥y∥C

)
.

We de�ne an operator K =
(
K1,K2

)
: X → X by:

K(x, y) =
(
K1(x, y),K2(x, y)

)
. (32)

where

K1(x, y)(τ) =

{
α(a) +

∫ τ
a
ψ′(s)(ψ(τ)−ψ(s))ν−1

Γ(ν) F1(s, xs, ys)ds , τ ∈ [a, b],

α(τ) , τ ∈ [a− δ, a].
(33)

and

K2(x, y)(τ) =

{
β(a) +

∫ τ
a
ψ′(s)(ψ(τ)−ψ(s))µ−1

Γ(µ) F2(s, xs, ys)ds , τ ∈ [a, b],

β(τ), , τ ∈ [a− δ, a].
(34)
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Now, we apply Perov's �xed point theorem to prove that K has a unique �xed point. To do this, it enough
to show that K is Aψ-contraction mapping on X . In fact, for all τ ∈ [a − δ, b], (x, y), (x̄, ȳ) ∈ X . When
τ ∈ [a− δ, a], we have

∥K1(x, y)(τ)−K1(x̄, ȳ)(τ)∥ = 0.

On the other hand, keeping in mind the de�nition of the operator K1 on [a, b] together with assumption
(C2), we can get ∥∥K1(x, y)(τ)−K1(x̄, ȳ)(τ)

∥∥
≤
∫ τ

a

ψ′(s)(ψ(τ)− ψ(s))ν−1

Γ(ν)
∥F1(s, xs, ys)− F1(s, x̄s, ȳs)∥ds

≤
∫ τ

a

ψ′(s)(ψ(τ)− ψ(s))ν−1

Γ(ν)

(
L1∥xs − x̄s∥Cδ

+M1∥ys − ȳs∥Cδ

)
ds

≤
(
L1∥x− x̄∥C +M1∥y − ȳ∥C

) ∫ τ

a

ψ′(s)(ψ(τ)− ψ(s))ν−1

Γ(ν)
ds

≤(ψ(b)− ψ(a))ν

Γ(ν + 1)

(
L1∥x− x̄∥C +M1∥y − ȳ∥C

)
=ℓνψ

(
L1∥x− x̄∥C +M1∥y − ȳ∥C

)
.

Hence ∥∥K1(x, y)−K1(x̄, ȳ)
∥∥
[a,b]

≤ ℓνψ
(
L1∥x− x̄∥C +M1∥y − ȳ∥C

)
.

By similar procedure, we get{
∥K2(x, y)−K2(x̄, ȳ)∥[a−δ,a] = 0∥∥K2(x, y)−K2(x̄, ȳ)∥[a,b] ≤ ℓµψ

(
L2∥x− x̄∥C +M2∥y − ȳ∥C

)
.

Consequently, ∥∥K(x, y)−K(x̄, ȳ)
∥∥
X :=

(
∥K1(x, y)∥C
∥K2(x, y)∥C

)
≤ Aψ∥(x, y)− (x̄, ȳ)∥X ,

where Aψ is the matrix given by (31). Since the matrix Aψ converges to zero, then Theorem 2.12 implies
that coupled system (3)�(4) has a unique solution in X .

Next, the following result is based on Schauder's type �xed point theorem in generalized Banach spaces.

Theorem 4.5. Let the assumptions (C1) and (C2) are satis�ed. Then the coupled system (3)�(4) has at
least one solution, provided that the spectral radius of the matrix Aψ is less than one.

Proof. In order to apply Schauder's �xed point theorem type in a generalized Banach space, we need to
construct a nonempty closed bounded convex set Br ⊂ X such that

K(Br) ⊆ Br, (35)

where the operator K : X → X de�ned in (11). Let us consider the set

Br = {(x, y) ∈ X : ∥(x, y)∥X ≤ r} ,

where r := (r1, r2) ∈ R2
+ will be speci�ed later. Now we try to �nd r1, r2 ≥ 0 such that (35) holds. Indeed,

for all τ ∈ [a− δ, b], (x, y),∈ X . When τ ∈ [a− δ, a], we have

∥K1(x, y)(τ)∥ ≤ ∥α∥[a−δ,a],
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which yields

∥K1(x, y)∥[a−δ,a] ≤ ∥α∥[a−δ,a], (36)

and if τ ∈ [a, b], we have

∥K1(x, y)(τ)∥ ≤∥α(a)∥+
∫ τ

a

ψ′(s)(ψ(τ)− ψ(s))ν−1

Γ(ν)

(
∥F1(s, xs, ys)− F1(s, 0, 0)∥

+ ∥F1(s, 0, 0)∥
)
ds

≤∥α(a)∥+ ℓνψ
(
L1∥x∥C +M1∥y∥C + F∗

1

)
.

Hence, we get

∥K1(x, y)∥[a,b] ≤ ∥α(a)∥+ ℓνψ
(
L1∥x∥C +M1∥y∥C + F∗

1

)
. (37)

So from (36) and (37), we get

∥K1(x, y)∥C ≤ ∥K1(x, y)∥[a−δ,a] + ∥K1(x, y)∥[a,b]
≤ ∥α∥[a−δ,a] + ∥α(a)∥+ ℓνψ

(
L1∥x∥C +M1∥y∥C + F∗

1

)
.

In a similar way, we get

∥K2(x, y)∥C ≤ ∥β∥[a−δ,a] + ∥β(a)∥+ ℓνψ
(
L2∥x∥C +M2∥y∥C + F∗

2

)
.

Thus the above inequalities can be written in the vectorial form as follows

∥K(x, y)∥X :=

(
∥K1(x, y)∥C
∥K2(x, y)∥C

)
≤ Aψ

(
∥x∥C
∥y∥C

)
+

(
P1

P2

)
, (38)

where Aψ is the matrix given by (31), and(
P1

P2

)
=

(
ℓνψF∗

1 + ∥α(a)∥+ ∥α∥[a−δ,a]
ℓµψF

∗
2 + ∥β(a)∥+ ∥β∥[a−δ,a]

)
.

Now we look for r = (r1, r2) ∈ R2
+ such that ∥K(x, y)∥C ≤ r, for any (x, y) ∈ Br. To this end, according to

(38), it is su�cient to show

Aψ
(
r1
r2

)
+

(
P1

P2

)
≤
(
r1
r2

)
.

Equivalently (
P1

P2

)
≤ (I− Aψ)

(
r1
r2

)
. (39)

Since the matrix Aψ is convergent to zero. It yields, from Theorem 2.7 that the matrix (I−Aψ) is nonsingular
and (I− Aψ)−1 has nonnegative elements. Therefore, (39) is equivalent to(

r1
r2

)
≥ (I− Aψ)−1

(
P1

P2

)
. (40)

Furthermore, if we denote

(I− Aψ)−1 =

(
κ1 κ2
κ3 κ4

)
.

Then (40) becomes {
r1 ≥ κ1P1 + κ2P2,

r2 ≥ κ3P1 + κ4P2.

Which means that K(Br) ⊆ Br. Moreover, by a similar process used in [8], it is easy to show that the operator
K is continuous and, K(Br) is relatively compact. Combining this facts, with Arzelà�Ascoli's theorem, we
conclude that K is a compact operator. Invoking Theorem 2.14 we get a �xed point of K in Br, which is just
a solution of system (3)�(4). This completes the proof of the Theorem 4.5.
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5. Applications

In this section, we provide some examples to illustrate our results constructed in the previous two sections

Example 5.1. Consider the following fractional relaxation di�erential systems{
( cD0.5

0+x)(τ) = 0.5x(τ) +G1(τ, x(τ), y(τ)),

( cD0.5
0+y)(τ) = 0.5y(τ) +G2(τ, x(τ), y(τ)),

τ ∈ J := [0, 1], (41)

with initial conditions {
x(0) = 1,

y(0) = 1,
(42)

where

ν = µ = 0.5,A1 = A2 = c = 0.5, a = 0, b = 1, ψ(τ) = τ, n = 1.

and

G1(τ, x(τ), y(τ)) = (τ + 1) ln(1 + |x(τ)|) + eτ arctan y(τ),

G2(τ, x(τ), y(τ)) =
τ2

1 + |x(τ)|+ |y(τ)|
.

Clearly, the functions G1,G2 : J× R2 −→ R are continuous. Moreover, for any x1, y1, x2, y2 ∈ R and τ ∈ J
we have

|G1(τ, x1, y1)−G1(τ, x2, y2)| ≤ p1(τ)|x1 − x2|+ q1(τ)|y1 − y2|
|G2(τ, x1, y1)−G2(τ, x2, y2)| ≤ p2(τ)|x1 − x2|+ q2(τ)|y1 − y2|,

where

p1(τ) = τ + 1, q1(τ) = eτ , p2(τ) = q2(τ) = τ2.

Obviously,
p∗1 := 2, q∗1 := e2, p∗2 = q∗2 := 1,

Furthermore, the matrix Aθ given by (14) has the following form

Aθ =
1√
θ

(
2.5 e2

1 1.5

)
.

Taking θ large enough it follows that the matrix Aθ is convergent to zero and thus, an application of Theorem
4.4 shows that the coupled system (41)�(42) has a unique solution and is Ulam�Hyers stable.

Example 5.2. Let us consider problem (3)�(4) with speci�c data:

ν = 0.8, µ = 0.9, a = 0, b = 1, n = 2,

A1 =

(
2.5 e2

1 1.5

)
, A2 =

(
2.5 e2

1 1.5

)
.

(43)

In order to illustrate Theorem 3.5, we take ψ(τ) = σ(τ) where σ(τ) is the Sigmoid function [27] which can
be expressed as in the following form

σ(τ) =
1

1 + e−τ
, (44)
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and a convenience of the Sigmoid function is its derivative

σ′(τ) = σ(τ)(1− σ(τ)).

Taking also G1,G2 : J× R2 × R2 −→ R2 such that, x = (x1, x2), y = (y1, y2) with

G1(τ, x(τ), y(τ)) =

(
(x1(τ) + x2(τ))e

τ

τ ln(1 + |y1(τ)|+ |y2(τ)|)

)
. (45)

G2(τ, x(τ), y(τ)) =

(
(1 + τ)e−(y1(τ)+y2(τ))

e2τ sin(x1(τ) + x2(τ))

)
.

Clearly, the functions G1,G2 are continuous. Moreover, for any x, y, x̄, ȳ ∈ R2 and τ ∈ J we have

∥G1(τ, x, y)−G1(τ, x̄, ȳ)∥1 ≤ p1(τ)∥x− x̄∥1 + q1(τ)∥y − ȳ∥1
∥G2(τ, x, y)−G2(τ, x̄, ȳ)∥1 ≤ p2(τ)∥x− x̄∥1 + q2(τ)∥y − ȳ∥1,

where ∥ · ∥1 is a norm in R2 de�ned as follows

∥x∥1 = |x1|+ |x2|, x = (x1, x2).

Hence the hypothesis (H2) is satis�ed with

p1(τ) = eτ , q1(τ) = τ, p2(τ) = τ + 1, q2(τ) = e2τ .

It follows from Theorem 3.5 that the system (1)�(2) with the data (43), (44) and (45) has at least one
solution.

Example 5.3. Consider the following fractional delayed coupled system of the form:{
( CHD0.5

1+x)(τ) = F1(τ, xτ , yτ ),

( CHD0.5
1+y)(τ) = F2(τ, xτ , yτ ),

τ ∈ J := [1, e], (46)

with initial conditions {
x(τ) = α(τ) = (α1(τ), α2(τ)),

y(τ) = β(τ) = (β1(τ), β2(τ)),
τ ∈ [1− δ, 1], (47)

where

ν = µ = 0.5, ψ(τ) = ln τ, a = 1, b = e, ℓνψ = ℓµψ =
2√
π
.

and

F1(τ, xτ , yτ ) =

(
|x1,τ |+|x2,τ |

eτ+1

sin(|y1,τ |+|y2,τ |)
τ+9

)
.

F2(τ, xτ , yτ ) =
1

(τ + 1)2

(
ln(1 + |y1,τ |+ |y2,τ |)

|x1,τ |+ |x2,τ |

)
.

Clearly, the functions F1,F2 are continuous. Moreover, for any x, y, x̄, ȳ ∈ Cδ and τ ∈ J we have

∥F1(τ, x, y)− F1(τ, x̄, ȳ)∥1 ≤ L1∥x− x̄∥Cδ
+M1∥y − ȳ∥Cδ

∥F2(τ, x, y)− F2(τ, x̄, ȳ)∥1 ≤ L2∥x− x̄∥Cδ
+M2∥y − ȳ∥Cδ

,

Hence the hypothesis (C2) holds with

L1 = e−2, M1 = 0.1, L2 = M2 = 0.25.

Furthermore, the matrix Aψ given by (31) has the following form

Aψ =
2√
π

(
e−2 0.1

0.25 0.25

)
.

Using the Matlab program we can get the eigenvalues of Aψ as follows σ1 = 0.0276, σ2 = 0.4072, which show
that Aψ is converging to zero. Therefore, by Theorem 4.5 the coupled system (46)�(47) has a unique solution.
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6. Conclusion

The present work addressed some basic results on the existence, uniqueness, and Ulam�Hyers stability
of solutions for a new problem of FDEs containing ψ�Caputo fractional derivative without and with delay
in generalized Banach spaces. The results are obtained through the techniques of �xed point theory and
nonlinear analysis. At the last, we yielded some examples that ful�ll our �ndings. It will be also interesting
to look for some qualitative properties of solutions for a coupled system of nonlinear fractional di�erential
equations involving ψ�Riesz-Caputo fractional derivatives. This case will be taken into account in our future
work.
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