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Abstract
In this research paper, the author studies some problems which are relating to harmonic summability
of double Fourier series on Nörlund summability. These results constitute substantial extension and
generalization of related works of F. Moricz and B.E Rhodes [1] and H.K. Nigam and K. Sharma [2].
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1. Introduction
Let f(α, β) be Lebesgue integral in the square R(−π, π;−π, π) and be of period 2π in each of the variables α and

β. Then the series
∞∑
m=0

∞∑
n=0

γmn

{
rmncos mα cos nβ + smn sin mα cos nβ + tmn cos mα sin nβ + qmnsin mα sin nβ

}
(1.1)

is called the double Fourier series associated with the function f(α, β)( [2],[3]) where

γmn =


1
4 for m = 0, n = 0
1
2 for m = 0, n > 0 or m > 0, n = 0

1 for m,n > 0

rmn =
1

π2

∫ ∫
R

f(α, β) cos mα cos nβ dα dβ (1.2)
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smn =
1

π2

∫ ∫
R

f(α, β) sin mα cos nβ dα dβ (1.3)

tmn =
1

π2

∫ ∫
R

f(α, β) cos mα sin nβ dα dβ (1.4)

qmn =
1

π2
=

∫ ∫
R

f(α, β) sin mα sin nβ dα dβ. (1.5)

We have

χ(α, β) = χx,y(α, β) =
1

4

{
f(x+ α, y + β) + f(x− α, y + β) + f(x+ α, y − β) + f(x− α, y − β)− 4f(α, β)

}
. (1.6)

1.Definition( [4],[5])
Let{p(1)m }and {p(2)n } are two sequence of constants, real or complex.

Let

P (1)
m = p

(1)
0 + p

(1)
1 + p

(1)
2 + ...+ p(1)m

P (2)
n = p

(2)
0 + p

(2)
1 + p

(2)
2 + ...+ p(2)n .

We shall also consider a double Nörlund transform of {amn}. Then the double Nörlund transform is

Vmn =
1

P
(1)
m P

(2)
n

m∑
l=0

n∑
g=0

p
(1)
m−lp

(2)
g−nalg. (1.7)

2. Definition([4],[5])
The double sequence {αlg} is said to be Nörlund summable to a limit V if

Vmn → V, (m,n)→ (∞,∞). (1.8)

It is also known as summable(N, p(1)m , p
(2)
n ).

3. Definition([1], [2], [4], [5], [6])
If

p(1)m = 1 for m = 0, 1, 2, ...

p(2)n = 1 for m = 0, 1, 2, ...

}
(1.9)

then the double Nörlund transform reduces to double Cesàro transform of order one. This summability method is
known as Cesàro summability (C,1,1).

4.Definition([1], [2], [5], [6])

p(1)m =
1

m+ 1
,m = 0, 1, 2, ... and p(2)n =

1

n+ 1
, n = 0, 1, 2, ...

then the double Nörlund summability (N, p
(1)
m , p

(2)
n becomes Harmonic summability and is denoted by (H, 1, 1).

5. Definition([5])
If, for any γ ≥ 1, V mn → V, (m,n) → (∞,∞)in such a manner that γ ≥ m

n , γ ≥
n
m then the sequence {αlg} is

said to be restrictedly summable Np at(x, y) to the same limit.

There are several results on Nörlund summability of Fourier series. Nörlund summability of Fourier series
has been studied by the authors[1–16]. This motivates us to study on the Nörlund summability of Fourier series in
more generalized as particular cases. Therefore, an attempt to make an advance in this research work, we study on
the double Fourier series and its conjugate series by Nörlund method. T. Sing [7] proved the following theorem:
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Theorem 1.1. If ∫ v

0

∣∣∣∣χ(y)∣∣∣∣dy = O

(
v

log v−1

)
,

where χ(y) = f(v + y) + f(v − y)− 2f(y) a s v → 0, then the Fourier series of f(u) at v = y is summable (N, pn) to f(y)
where {pn} is real non-increasing sequence such that

n∑
a=2

(
pa

a log a

)
= o(Pn).

In this present research paper, we established the following theorem which is the extended forms of Singh [7]
and also the generalized results of [2].

2. Main Results
Theorem 2.1. If (α, β)→ (0, 0), ∫ α

0

∫ β

0

∣∣∣∣χ(s, t)∣∣∣∣dsdt = o

(
α

logα−1
β

log β−1

)
(2.1)

∫ π

δ

ds

∫ β

0

∣∣∣∣χ(s, t)∣∣∣∣dt = o

(
β

log β−1

)
, (0 < δ < π) (2.2)

and ∫ π

δ

dt

∫ α

0

∣∣∣∣χ(s, t)∣∣∣∣ds = o

(
α

logα−1

)
, (0 < δ < π) (2.3)

then the double Fourier series of f(α, β) at α = x, β = y is summable
(
N, p

(1)
m p

(2)
n

)
to f(x, y) where {p(v)n } are real

non-negative, non-increasing sequence of constants such that

n∑
k=2

(
p
(v)
k

k log k

)
= o

(
P (v)
n

)
, (v = 1, 2). (2.4)

The following lemmas are required in the proof of our theorem.

Lemma 2.1. If {pn} is non-negative and non-increasing, then for 0 ≤ a ≤ b ≤ ∞, 0 ≤ t ≤ π and for any n, we have∣∣∣∣ b∑
k=a

pke
i(n−k)t

∣∣∣∣ ≤ AP[t−1]. (2.5)

Lemma 2.2. Under the condition of lemma 2.1,∣∣∣∣ b∑
k=a

Pksin
(
n− k + 1

2

)
t

sin t2

∣∣∣∣ = o (nPn) , 0 ≤ t ≤
1

n
. (2.6)

Lemma 2.3. Under the condition of lemma 2.1,∣∣∣∣ b∑
k=a

pk
sin
(
n− k + 1

2

)
t

sin t2

∣∣∣∣ = o

[
1

t
P[t−1]

]
for

1

n
≤ t ≤ δ. (2.7)
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Lemma 2.4. Under the condition of lemma 2.1,∣∣∣∣ n∑
k=0

pk
sin
(
n− k + 1

2

)
t

sin t2

∣∣∣∣ = o(1) for 0 ≤ δ < t ≤ π. (2.8)

They are uniformly in each of the intervals.

Proof. Let Umn(x, y; f) = Umn denotes the rectangular (m,n)th partial sum of the series (1.1), then we must have

Umn(x, y; f)− f(x, y) =
1

π2

∫ T

0

∫ π

0

χ(α, β)D1
m(α)D2

n(β)dαdβ (2.9)

where

D1
m(α) =

sin
(
m+ 1

2

)
α

2sinα2
(2.10)

and

D2
n(β) =

sin
(
n+ 1

2

)
β

2sinβ2
(2.11)

where D1
m(α) and D2

n(β) are respectively denote the Dirichlet kernels.

Let
{
Vmn(x, y)

}
denote the double Nörlund transform of the sequence

{
Vmn − f(x, y)

}
then

Vmn(x, y) =
1

P
(1)
m P

(2)
n

m∑
l=0

n∑
g=0

p
(1)
m−l p

(2)
n−g

{
Ulg − f(x, y)

}
,

=
1

P
(1)
m P

(2)
n

m∑
l=0

n∑
g=0

{
p
(1)
m−lp

(2)
n−g

1

π2

∫ π

0

∫ π

0

χ(α, β)D1
l (α)D

2
g(β)dαdβ

}

=

∫ π

0

∫ π

0

χ(α, β)

{
1

2πP
(1)
m

m∑
l=0

p
(1)
m−l

sin
(
l + 1

2

)
l

sinα2

}{
1

2πP
(2)
n

n∑
g=0

p
(2)
g−n

sin
(
g + 1

2

)
β

sinβ2

}
dαdβ (2.12)

=

∫ π

0

∫ π

0

χ(α, β)N (1)
m (α)N (2)

n (β)dαdβ (2.13)

where

N (1)
m (α) =

1

2πP
(1)
m

m∑
l=0

p
(1)
m−l

sin
(
m− l + 1

2

)
α

sinα2
(2.14)

and

N (2)
n (β) =

1

2πP
(2)
n

n∑
g=0

p
(2)
g−n

sin
(
n− g + 1

2

)
β

sinβ2
. (2.15)

Also equation (2.13) can be written as

Umn(x, y)− f(x, y) =

∫ π

0

∫ π

0

χ(α, β)N (1)
m (α)N (2)

n (β)dαdβ

=

(∫ π

0

∫ τ

0

+

∫ δ

0

∫ π

τ

+

∫ π

δ

∫ τ

0

+

∫ π

δ

∫ π

τ

)
χ(α, β)N (1)

m (α)N (2)
n (β)dαdβ

= I1 + I2 + I3 + I4 say (2.16)
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by hypothesis and using the results of equations (2.6) and equations (2.7), we easily obtain

|I4| =

∣∣∣∣ ∫ π

δ

∫ π

τ

χ(α, β)N (1)
m (α)N (2)

n (β)dαdβ

∣∣∣∣
= o

(
1

P
(1)
m P

(2)
n

∫ π

δ

∫ π

τ

∣∣∣∣χ(α, β)N (1)
m (α)N (2)

n (β)

∣∣∣∣dαdβ)

=

(
1

P
(1)
m P

(2)
n

∫ π

0

∫ π

0

∣∣∣∣χ(α, β)∣∣∣∣dα.dβ)(as N (2)
n (β), N (1)

m (α) are even function
)

= o(1). (2.17)

Also, for I3,

I3 =

∫ π

δ

N (1)
m (α)dα

∫ τ

0

χ(α, β)N (2)
n (β)dβ

=

∫ π

δ

N (1)
m (α)dα

{∫ 1
n

0

+

∫ δ

1
n

}
χ(α, β)N (2)

n (β)dβ

= I3,1 + I3,2 say. (2.18)

Thus

|I3,1| = o

(
n

P
(1)
m

∫ π

0

∫ 1
n

0

∣∣∣∣χ(α, β)∣∣∣∣dβ
)

= o

(
n

Pm

)
o

( 1
n

log n

)
= o(1). (2.19)

Again by equation (2.6) and equation (2.7) and hypothesis,∣∣∣∣I3,2∣∣∣∣ = o

 1

P
(1)
m

∫ π

0

dα

∫ τ

1
n

∣∣∣∣χ(α, β)∣∣∣∣ 1

P
(2)
n

P
(2)
[β−1]

β
dβ


= o

 1

P
(1)
m P

(2)
n

∫ π

δ

dα

{
P[β−1]

β
χ1(α, β)

}τ
1
n

−
∫ τ

1
n

χ1(α, β)d

[P (2)
[β−1]

β

]
= (|I3,2,1|) + o (|I3,2,2|) say (2.20)

where

χ1(α, β) =

∫ β

0

|χ(αβ)|dw

and I3,2,1 and I3,2,2 stands for two inner integrals.

|I3,2,1| = o

 1

P
(1)
m P

(2)
n

∫ π

δ

dα

{P (2)
[τ−1]

τ
φ1(α, τ)− n P (2)

n φ1(α,
1

n
)

}
= o

 1

P
(1)
m P

(2)
n

p
(2)
[τ−1]

τ

∫ π

δ

dα

∫ τ

0

|χ(α, β)|dβ

+ o

(
n

P
(1)
m

∫ π

δ

dα

∫ 1
n

0

|χ(α, β)|dβ

)

= o(1) + o

(
n

P
(1)
m

1
n

log n

)
= o(1) (2.21)
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and

|I3,2,2| = o

 1

P
(1)
m P

(2)
n

∫ π

δ

dα

[P (2)
[β−1]

β

]
χ(α, β)


= o

 1

P
(1)
m P

(2)
n

∫ τ

1
n

d

[P (2)
[β−1]

β

] ∫ π

δ

dα

∫ β

0

|χ1(α,w)|dw


= o

 1

P
(1)
m P

(2)
n

∫ τ

1
n

d
P

(2)
[β−1]

β

β

log( 1β )

 . (2.22)

Also, ∫ τ

1
n

β

log( 1β )
d

[P (2)
[β−1]

β

]
=

∫ n

1
τ

1

y log y
d

[
y P

(2)
[y]

]
for ∫ j+1

j

1

y log y
d

[
yP

(2)
[y]

]
<

1

j log j

∫ j+1

j

d

[
yP

(2)
[y]

]
=

1

j log j

[
yP

(2)
[y]

]j+1

j

=
1

j log j

{
(j + 1)P

(2)
j+1 − k P

(2)
j

}
<

1

j log j

{
P

(2)
j + P

(2)
j + P

(2)
j

}
for

p
(2)
k+1 ≤ p

(2)
k and kp

(2)
k ≤ p

2
k ≤

2p
(2)
j

j log j
+

p
(2)
j

j log j

thus, ∫ n

1
τ

1

y log y
d

[
xP

(2)
[x]

]
< A+

n∑
j=c

(
2P

(2)
k

j log j
+

P
(2)
j

j log j

)

= o
(
P (2)
n

)
. (2.23)

Now, by hypothesis equation (2.4) and using the equation (2.23) and equation (2.13), we get

|I3,2,1| = o(1). (2.24)

Combining equations (2.18), (2.19),(2.20), (2.21), (2.22), (2.23) and (2.24), we get

|I3| = o(1). (2.25)

Similarly, we can show that

|I2| = o(1). (2.26)

Now, for I1,

I1 =

∫ δ

0

∫ τ

0

χ(α, β)N (1)
m (α)N (2)

n (β)dαdβ

=

(∫ 1
m

0

∫ 1
n

0

+

∫ 1
n

0

∫ δ

1
n

+

∫ δ

1
m

∫ 1
n

0

+

∫ δ

1
m

∫ τ

1
n

)
χ(αβ)N (1)

m (α)N (2)
n (β)dαdβ

= I1,1 + I1,2 + I1,3 + I1,4 say. (2.27)
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Then by (2.6) and (2.7)

|I1.1| = o

(∫ 1
m

0

∫ 1
n

0

|χ(α, β)|mn dαdβ

)

= o(mn)o

( 1
m

logm

1
n

log n

)
= o(1). (2.28)

Similarly,

|I1,2| = o(1)

|I1,3| = o(1)

}
(2.29)

and ∫ δ

1
m

∫ τ

1
n

∣∣∣∣χ(α, β)∣∣∣∣P[α−1]

α

P[β−1]

β
dαdβ = χ(δ, τ)

1

δ
P

(1)
[δ−1]

1

τ
P

(2)
[τ−1] −

1

τ
P

(2)
[τ−1]

−1

τ
P

(2)
[τ−1]

∫ δ

1
m

φ(α, τ)d
P

(1)
[α−1]

α
− 1

δ
P

(1)
[δ−1]

∫ τ

1
n

χ(α, β)d

[P (2)
[β−1]

β

]
.

Thus,

|I1,4| = o

∫ δ

1
m

∫ τ

1
n

∣∣∣∣χ(α, β)∣∣∣∣ 1

P
(1)
m P

(2)
n

P
(1)
[α−1]

α

P
(2)
[β−1]

β
dαdβ


= o(1) + o

(
1

P
(1)
m P

(2)
n

(C1 + C2 + C3)

)
(2.30)

where o(1) corresponds to the integrated part in (2.29) and C1, C2 and C3 are repetitively denote the remaining
there integrals

C2 = o(1)

C3 = o(1)

}
. (2.31)

Again for C4

C4 = o

∫ δ

1
m

α

log( 1
α )
d

P (1)
[α−1]

α

∫ τ

1
n

β

log( 1β )
d

[P (2)
[β−1]

β

]
= o

(
P (1)
m P (2)

n

)
(2.32)

as in (2.23), using the estimate (2.31), we get from (2.30) that

|I1,4| = o(1) (2.33)

thus

|I1| = O(1). (2.34)

Combining equations (2.17),(2.23),(2.24),(2.34), we get equation (2.16). Which competes the proof of the theorem.
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Conclusion
Mathematical analysis is primarily concerned with the notion of limit of a sequences of real or complex number

which forms the basis for study of infinite series. The general theory of the convergence and Summability of a
double Fourier series has also been discussed by [1–16]. In 1913, in connection with the study of summation by
arithmetic means of double Fourier series corresponding to function having discontinuities along a curve Moore [16]
was led to the introduction of the notion of restricted summability of a double series. This differs from summability
in the general sense in that the indices of the sequences whose limit is involved, become infinite in such a manner
that there ratios remain bounded by two ordinary positive constants.
Corresponding to the classical tests for convergence of ordinary Fourier series, tests for pringsheim convergence of
the double fourier series have been given by a number of writers. A main point of difference in which double, or
multiple, Fourier series differ from ordinary series is the fact that the behavior of the former, as regards convergence,
divergence, or oscillation, at a point, does not, as in the later case, depend only on the nature of the function in a
neighborhood of the point, but upon its nature in cross-neighborhood of the point. The purpose of this research
paper is to formulate the least conditions for Nörlund summability of double Fourier series. The main theorem for
Nö"rlund summability of double Fourier series provide more stability to the system. Summability methods are
used to decrease error. In this research we may find that our main theorem is a extended version by which many
well known results on summabilities, can be obtained that is shown in above part. A function of two variables may
be associated with a double fourier series.
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