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ABSTRACT

In this paper, the quintic B-spline method is employed to calculatenumerical solution of the initial-boundary
value problem of Rosenau-Burgersequation. This scheme is based on the Crank—Nicolson formulation for
time integration and quintic B—spline functions for space integration. The unconditional stability of the
method is proved using Von—Neumann approach. A priori bound and the error estimates of the approximate
solutions are discussed with a numerical example.
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1. INTRODUCTION

One of the most important nonlinear partial differential equations (PDEs) is Korteweg—de
Vries (KdV) equation, which describes the vibrations of a uni—dimensional inharmonic lattice
associated with the birth of the soliton. But KdV equation does not represent wave to wave
interaction and wave to wall interaction. To overcome this shortcoming of the KDV equation,
Rosenau [4, 5] proposed the so-called Rosenau equation:

U +U,. +U, +UU, =0, xeQ te(0T], (1.1)

There are some articles and some collected works that has been focused to study the classical
Rosenau equation from various points of view. M. A. Park [3] was proved he existence and the
uniqueness of the solution for (1.1). However, by this time, the analytical solution for (1.1) is
unknown. Since then, much work has been done on the numerical solution of (1.1) ([6, 7, 8, 9]
and also the references therein). On the other hand, recently and more for the further onsideration

XXXXt

of the nonlinear wave, by adding the viscous term U the Rosenau equation (1.1) leads to

XX !

U, +U,. U, +UU, -U, =0, xeQ te(0T], (1.2)

XXXXt
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which is usually called the Rosenau—Burgers equation. There are a great of work that has been
studied about the Cauchy problem of Rosenau—Burgers equation [1, 2, 10, 11]. While there are a
few works that has been devoted to approximate the numerical solutions to the initial-boundary
value problem of Rosenau—Burgers equation. In this paper, a B-spline algorithm based on the
collocation method with trial functions taken as quintic B-spline functions over the elements will
be constructed. The present algorithm will be used first to model the Rosenau—Burgers equation
(1.2) and then its results will implement to approximate the numerical solution of (1.2) with the
boundary conditions

u(x,t)=u, (x,t)=0, xeaQ, te(0T], (1.3)
and an initial condition

u(x,0)=u,(x), x eQ, (1.4)

whereUO(X) is sufficiently smooth and satisfies the compatibility condition,

Q=(0,L),L >0, and 0<T < +o0. For more physical significance of the Rsenaue-Burgers

equation (1.2), we refer to Rosenau [1, 2, 10, 11].

The quintic B-spline basis has been used to approximate numerical solutions for some
nonlinear differential equations. For instance, numerical solution of the Burger equation has been
found by quintic B-spline collocation method in [1]. An algorithm based on quintic B-spline
Galerkin method was devoted to obtain the solutions of the RLW equation in [2]. Numerical
solutions of the KdV-Burgers equation and Korteweg—de Vries (KdV) equation was obtained
using collocation of quintic B-spline interpolation functions over finite elements in [10, 11],
respectively. The Kuramoto-Sivashinsky equation is also approximated by quintic B-spline in
[12].

The organization of this paper is as follows. In Section 2, quintic B-spline collocation scheme
is explained. In Sections 3, the quintic B-spline collocation method is applied to the Rosenau—
Burgers equation (1.2). In Section 4, the stability analysis of the method is discussed. In Section
5, one examples are presented. Also the global relative error at different time is obtained for the
example. A summary about overall the present work is given at the end of the paper in Section 6.

2. DESCRIPTION OF THE QUINTIC B-SPLINE METHOD

The solution domain O <X <1 s partitioned in to a mesh of uniform length
h= Xy —X, by the knotsX;where | = 0,12,---,N such  that
0=X, <X, <--<X,; <Xy =1 our numerical treatment for Rosenau-Burgers

equation using the collocation method with quintic B-spline is to find an approximate solution
U, (X,t) to the exact solution U(X,t) in the form:

N +2

U, (x,t)= D6 (t)B; (x), @.1)

i=-2
where 5, (t) are time-dependent quantities to be determined from the boundary conditions

and collocation form of the differential equations, and Bi(X) are the quintic B-spline basis
functions at knots, given by [13, 14, 15].
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5

(X =X;5)", X €[X; 35X )
(X =X;_5)° —6(x =X, _,)’, X €[X; 5% )
1 (X =X, 5)° =6(x =X, )" +15(x =%, ;)°, X €[x; 1,X;)
Bi(X):F (Xi+3_x)5_6(Xi+2_x)5+15(xi—l_x)51 X E[Xivxnl) ! @2
(Xi+3_x)5_6(xi+2_x)5' X €[X;,1,X.,)
(Xi+3_X)5’ X €[X;,5:%.3)
0, otherwise

where {B ,, B, B,,B;,B,,..., By.1, By.o} forms a basis over the region 0 < X <1
. Each quintic B-spline covers six elements so that an element is covered by six quintic B-splines
[16]. Over the element [X., X,,,;] the variation of the function U (X, 1) is formed from

m+3

Ux,t)= > 5t)B;(x), @.3)

j=m-2

In terms of a local coordinate system & given by h& = X — X, » where h= X1 — X
and 0< f <1, expressions for the element splines are [10]
B, _,(x)=1-5£+10£* -10£° +5&* - £,
B, (x)=26-50&+20£° +20&° - 20£* +5¢°,
B, (X) = 66-60&2+30&* ~10&°,
B, .,(X) = 26+50& +20£% — 20£° - 20&* +10¢°,
B, .,(X) =1+5£+10&% +10£° +5£* -5&°,
B,.5(x)=¢".

Using approximate function (2.1) and quintic spline (2.2), the approximate values at the knots
of U (X) and its derivatives up to fourth order are determined in terms of the time parameters

0, as

2.4)

U, =5,,+265  +665 +265, ,+3 .

hU,, =5(3,., +106,,,-106, , = J,.,),

hU! =20(5,,,+26,,-60, +25, ,+6,,), (2.5)
haUr;]”: 60(,,,, = 26,426, 1 =0, 5),

h'u ™) =120(5, ,,~ 40, ., +65, —45, ,+6. ),

where dashes represent differentiation with respect to space variable.
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3. SOLUTION OF ROSENAU-BURGERS EQUATION
The Rosenau—Burgers equation can be rewritten as

(U +u,,,, ), +uu, +u, —u, =0, (x,t)e[0,x(0,T] 3.2)
with the boundary conditions

u(0,t)=u(1,t) =0,

3.2

uXX (O’t):uxx (1!t):O, ( )
and initial condition

1x,0) =0o(x) (3.3)

We discrete the time derivative of Eq. (3.1) by a first order accurate forward difference
formula and apply the & -weighted scheme, (0 <& <1), to the space derivative at two
adjacent time levels to obtain the equation

(U " +(Uxxxx)n+lz_(u " +(Uxxxx)n)+0
+1-0){UU,)" +U,)" -U,)"} =0,

(LU +U )™ -V, (3.4)

where k is time step and the superscripts N and N +1 are successive time levels. In this

1
work we take @ = E, . Hence, Eq. (3.4) takes the form

UM+ 00)"™) = (V" +0)") U, +0U,)" U, +W,)"
k 2 2 (3.5)
_(Uxx)n+1+(Uxx)n =0
2

The nonlinear term in Eq. (3.5) is approximated by the following formula based on Taylor
series:

(UUX)n+1:U n+1(UX)n +U n(UX)n+l_(UUX)n’ 356)

Putting values from Eq. (3.6) in Eq. (3.5) we get,

(U 4+ U000 ) (U +(Umx)")+u U)LY, )
K 2 2 (3.7)
UL

2
Rearranging the terms and simplifying we get,
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n+. n+ k n+ n n n+ n+ n+
U U™ 42 {070, U UL U0 -, )

(3.8)

n n k n k n
=U +(Uxxxx) _E(Ux) +E(Uxx) ’

Substituting the approximate solution U for U and putting the values of the nodal values
U , its derivatives using Egs. (2.5) at the knots in Eq. (3.8) yields the following difference

equation with the variables o; and for m=0,1,2,...,N:

C,0m L +C, A" +C 0 +C 5" +C 0" =C 18", +C 18", +C o8 +C 18" +C 26 ,,  (39)
where
k 120 5k k
C,=|1+=U] |+—+=-—U"+1)-10—;,
2( 2*)h4 2h(U ) h?
ky k k
C,=26/1 +25=(U" +1)-20—,
oot {5 -
00:66(1+5u;j+6( ]eoﬁz, (3.10)
2 h
k 120 k
C,=26[1+—~U"|-4 255 U +1)-208
e {22) sk
k 120 5k k
C,=|1+=Um [+52 -2 -10—,
‘2[ 2*jh“2(U b= h?
and
Eo=14120 5K ok
h* 2h ~ h?
C1=26- 4(120j 25K, 20%,
h h " h
(3.12)

W o
Co=1+220, 5K ok
e "2 h

The systems (3.10)-(3.11) consists of (N +1) linear equationsin (N +5) unknowns

(82181186, e Sy 16y 1 Oy 10 By )'
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To obtain a unique solution to the systems (3.10) and (3.11), four additional constraints are
required. These are obtained from the boundary conditions (3.2). Imposition of the

boundary conditions enables us to eliminate the parameters 572,571 and 5N+1,§N+2 from

the system. In order to eliminate the parameters 572,571 and 5N+1,§N+2 from the system
(3.9), we have used the boundary conditions

u(Xy,t)=u(x,,t)=0,
u, (Xy,t)=u, (x,,t)=0,
Expanding U in terms of approximate quintic B-spline formula from (2.5) at Xy = 0, and
putting M = O in (2.5) we get,
0, + 2606, +665, +260 ,+0 , =0,

5, +25,—68,+25 ,+5, =0, G40
then

§,=-38-5,

5,=128,-5, 12
Similarly at X, =1, putting m = N in (2.5) we get,

Oy ., +260, ,, +660, +260, ,+6, , =0,

8y, +28, ., 66, +28, ,+8,, =0, 19
where leads to

5N = _35N - 5N -1 (3.14)

5N 2= 125N _§N 21

Eliminating parameters & ,,d ; and 5N+1, 5N+2 , the system (3.9) is reduced to a penta-

diagonal system of (N +1) linear equations with (N +1) unknowns, given by
AX ., =AX where
— n+l n+l n+l n+l1 n+1\T
X1 =8 676, 6y, 00 )
—_— n n n n n\T
X, =(0,0,0, 0y 1,08 )

where T stands for transpose. The coefficient matrix Ais given by
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12c ,- ,+C, C,-C, C,-C, 0 0 0 0
C,—C, c,-C, C, ¢, 0 0 0
c, C,0 c, C, G, 0 0
0 c, c, ¢, ¢C, c, 0
A= 0 0 g : g 0
0 0 c, C, ¢, c, c,

0 0 o ¢, ¢, c¢,-C, cC,-;,

0 0 0 0 C,-C, C,-C, C,-3C,+1xC,

12C ,—-3C 4+Co C:-Co C:-C.> O 0 0 0
Co—-3C., Co—Co Ci C, 0 0 0
C- C. Co C: C, 0 0
0 Co- Ci. Co C: C> 0
A= 0 0 0
0 0 C: Cau Co C. C,
0 0 0 C, Cai Co-C, C.-3C,
0 0 0 0 672 *62 60 761 60*:51+1262

where C 2,C 1,C0,C1and C2 arealso given in (3.10). This penta-diagonal system can
be solved by a modified form of Thomas algorithm. The time evolution of the approximate

solution UN (X,t) is determined by the time evolution of the vector X,r\] which is found
repeatedly by solving the recurrence relation, once the initial vectors XS, have been computed

from the initial and boundary conditions.

3.1. The initial state

The initial vector X can be determined from the initial condition U(X,0) = U, (X)

which gives (N +1) equation in (N +5) unknowns. For the determination of the

unknowns relations at the knot are used the boundary conditions (3.2).
The initial wvector is then determined as the solution of the matrix equation

AIX S =Uy(X), where
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54 60 6 0 O 0 0
101185 105 o o
4 2 4
1 26 66 26 1 0 0
0 0 1 26 66 26 1 0
Ay = S : :
0 S P . 0
0 1 26 66 26 1
o o o 1 10513 10
4 2 4
0 0 0 0 6 60 54

XN =(65,00,5), .04 1,0\ )
UO(X) = (UO(XO)'UO(Xl)’“"UO(XN—I)’UO(XN ))T 1
where Uy(X;),1 =0,1,2,....Ncan be obtained by initial condition (3.3).

4. STABILITY OF THE PROPOSED SCHEME

The Von-Neumann stability method (Fourier mode method) is used for the stability of
scheme developed in the previous section. To apply this method, we have linearized the non-
linear term UU,, by considering U as a constant in (3.9), therefore U, ,U ,... = 0.

Theorem 4.1. The quintic B-spline method (3.8) for the solution of Rosenau-Burgers equation
(3.1) is unconditionally stable.

Proof. We implement the Von—Neumann stability method (Fourier mode method) in which the
growth factor of a typical Fourier mode is defined as é}; = fn exXp (ipmh) ,where 0 and h

are the mode number and element size, respectively, and i=+—=1. Now substituting 5£ into
linearized form of (3.9), the formulae (3.9) leads to

HCL M +Ce"" +C,+C 7™ +C £ ¥ }=C L™ +C'™ +Co+C £ M +C £, (4.)

Here C; and C j, for J =—-2,—1,0,1,2 have their predefined definition given in (3.10)-

(3.11). Set X :1hz_‘?’ Y :kEUX", Z :g%U” and W :g% Simplifying
Eq. (4.1), we get
_a-—ib,
=—1, (4.2)
a+ib,
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where
a=(2+2X)cos(2ph)+(52—-8X )cos(ph) +66+6X ,
b, = 2W sin(2ph)+20W sin(ph), (4.3)

b, = 2(Z +W )sin(2ph)+20(Z +W )sin(ph),
From (4.3), we get
b, =b, +2Z sin(2ph)+20Z sin(ph),

therefore a° +b? < a®+bZ. This implies ||§|| <1, which is the condition for scheme to
be unconditionally stable.

5. NUMERICAL COMPUTATIONS
Consider the following initial-boundary problem of Rosenau—Burgers equation [17]
(u+u,,, ), +uu, +u, -u,, =0, (x,t)<[0,1]x(0,T ], (.1)
with the boundary conditions
u(0,t)=u(l,t)=0,
u, Ot)=u,(1t)=0,
and initial condition
ux,0)=x*(1-x%, x e[01], (5.3)

We divide the domain [0,1] into N, =5,10,20,40,80 intervals with each of equal

te[0T], (5.2)

1 .
intervals h, , respectto K = —, , where h, = —, for 1 =1,2,3,4,5.
20 N,
Since we do not know the exact solution of (5.1)-(5.3), a comparison between the
numerical solutions on a coarse mesh and those on a refine mesh is made [13]. Since the

numerical solution U . Of Quintic B-spline collocation method (2.5) is zero at boundaries

X =0,1, we can compute ratios of convergence at each time step 1N, by the following relation

Up -Ugl+A Uy -Up)
Rr:]: 5 E ,
Up —Up|+[a, 00 U

2 4 2 4
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n n n
Vig = +viy

n — . . . .
where AhVi = h2 The maximum time step size used in all
calculations is k = i The average ratio of convergence R,? , based on both infinite norm and
L -norm is

M
= i on 0<X<1and O<t<1 aregiven in Tables 1 and 2. Here U." is
av M ) h
n=1

a numerical solution of (5.1) at tn =nk with step size h , which shown in the Figures 1, 2, 3
and Figure 4.

Table 1. The ratios of convergence Rr? , based on infinite norm when | — 1 .

20
Ry
1 Y N _ 1
n t "“5 " 1o 20 "%
2 0.1 5.1154 4.1669 4.0346 4.0079
4 0.2 5.1226 4.1668 4.0343 4.0078
6 0.3 5.1299 4.1667 4.0340 4.0076
8 0.4 5.1372 4.1665 4.0336 4.0074
10 0.5 5.1446 4.1664 4.0333 4.0072
12 0.6 5.1520 4.1663 4.0330 4.0070
14 0.7 5.1594 4.1662 4.0327 4.0068
16 0.8 5.1669 4.1661 4.0324 4.0066
18 0.9 5.1743 4.1660 4.0321 4.0064
20 1 5.1818 4.1659 4.0318 4.0062
R., 5.1484 4.1664 4.0332 4.0071
. n L2 1
Table 2. The ratios of convergence R, , based on L -normwhen | - 1 .
20
Rr

_1 =1 -1 =1
n t "=5 10 "2 40
2 0.1 4.9909 4.1757 4.0393 4.0094
4 0.2 4.9939 4.1752 4.0388 4.0091
6 0.3 4.9969 4.1747 4.0384 4.0088
8 0.4 4.9999 4.1742 4.0379 4.0085
10 0.5 5.0025 4.1737 4.0374 4.0082
12 0.6 5.0057 4.1732 4.0369 4.0079
14 0.7 5.0087 4.1728 4.0365 4.0076
16 0.8 5.0116 4.1723 4.0360 4.0073
18 0.9 5.0145 4.1718 4.0356 4.0070
20 1 5.0174 4.1714 4.0351 4.0067
R 5.0042 4.1735 4.0372 4.0081
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——t=1
-=-1=5

U(x.t)

0 0.2 0.4 0.6 0.8 1
00 X X

Figure 1. The approximation solution (left) and its concentration (right) of solution U (x,t) , for

_land 1 plotted as a functionof X =0:h:1and t=0:k:10.

h =
5 20

——i=1
-=-t=5

0.3

0.2

U(x,t)

7
7 W
=7
4
74

Figure 2. The approximation solution (left) and its concentration (right) of solution U (x,t), for

h=1 and i = L plotted as a function of x=0:h:1and t=0:k:10.
10 20
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——t=1

U(x.t)

0 02 0.4 06 0.8 1

Figure 3. The approximation solution (left) and its concentration (right) of solution U (x,t) , for

h=L and _ 1 plotted asa function of x=0:h:1and t=0:k:10.
20 20

0.3

——t=1

025} B t=5

U(x.t)

0 0.2 0.4 0.6 0.8 1
00 X x

Figure 4. The approximation solution (left) and its concentration (right) of solution U (x,t) , for

h= L and | _ 1 plotted asafunctionof X=0:h:1land t=0:k:10.
40 20

6. CONCLUSIONS

In this paper, a numerical algorithm for the nonlinear Rosenau—Burgers equation is proposed
using a collocation method with the quintic B—spline functions. This scheme is based on the
Crank—Nicolson formulation for time integration and quintic B—spline functions for space
integration. By the application point of view the quintic B—spline method considered in this work
is simple and straight forward. The algorithm described above works for a large class of linear
and nonlinear problems. The solution obtained is presented graphically at various time steps
which show the same characteristics as given in the literature. Since we do not know the exact
solution of the nonlinear (KdV-like) Rosenau-Burgers equation, a comparison between the
numerical solutions on a coarse mesh and those on a refine mesh is made. The ratios of

s 2 . .
convergence R,? , based on infinite norm and L -norm, mentioned in the Tables 1 and 2, show
that the simulating results are in excellent agreement with the analytical solutions.
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