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Abstract. In this work, q-analogue of the telegraph differential equation is

investigated. The approximation solution of q-analogue of the telegraph differ-
ential equation is founded by using the Laplace transform collocation method

(LTCM). Then, the exact solution is compared with the approximation solu-

tion for q-analogue of the telegraph differential equation. The results showed
that the method is useful and effective for q-analogue of the telegraph differ-

ential equation.

1. Introduction

Quantum calculus (q-calculus) was initiated at the beginning of the 18th century
by Euler [1]. The q-calculus is often called calculus without limits. It allows the
substitution of the classical derivative with the q-derivative operator to deal with
sets of non-differentiable functions. The q-calculus has an unexpected role in sev-
eral mathematical areas such as fractal geometry, quantum theory, hypergeometric
functions, orthogonal polynomials, the calculus of variation and theory of relativity.
The works [2], [3] can be cited for some results related to the history of quantum
calculus, its basic concepts and q-differential equations. In [4], [5], a q-analogue of
Sturm-Liouville problems are investigated.

Partial differential equations are ubiquitous in mathematically-oriented scien-
tific fields, such as physics and engineering. For instance, they are foundational in
the modern scientific understanding of sound, heat, diffusion, electrostatics, elec-
trodynamics, fluid dynamics, elasticity, general relativity, and quantum mechanics.
In [6], an expansion theorem was proved for the analytic function in several variables
which satisfies a system of q-partial differential equations by using the theory of
functions of several variables and q-calculus. In [7], using the theory of functions of
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several complex variables, it was proved that if an analytic function in several vari-
ables satisfies a system of q-partial differential equations then, it can be expanded
in terms of the product of the Rogers-Szegő polynomials. In [8], identities and eval-
uate integrals by expanding functions in terms of products of the q-hypergeometric
polynomials was proved by homogeneous q-partial difference equations.

In [9], with the use of Laplace transform technique, a new form of trial func-
tion from the original equation is obtained. The unknown coefficients in the trial
functions are determined using collocation method. In [10], using the Laplace
transform collocation method (LTCM) and Daftar-Gejii-Jafaris method (DGJM),
the fractional order time-varying linear dynamical system was investigated.

In this paper, the following the telegraph differential equation defined by q-
difference operator which we call the q-analogue of the telegraph differential equa-
tion is studied



D2
q,ηφ(η, ξ) +Dq,ηφ(η, ξ) + φ(η, ξ) = D2

q,ξφ(η, ξ) + f(η, ξ),

0 < η < L 0 < ξ < L 0 < q ≤ 1,

φ(0, ξ) = h(ξ), Dq,ηφ(0, ξ) = g(ξ)

φ(η, 0) = φ(η, L) = 0,

(1)

where h, g and f are known continuous functions and the function φ is unknown

function. Dq,ηφ(η, ξ) =
∂qφ(η,ξ)

∂qη
, Dq,ξφ(η, ξ) =

∂qφ(η,ξ)
∂qξ

are q-difference of φ(η, ξ)

respect to η and ξ, respectively. If α = 1, and q = 1 then the equation (1) is called
telegraph partial differential equation.

LTCM method is used for numerical solution of the problem (1). Using the
Laplace transform method, the exact solution of the problem (1) and a new form
of trial function from the basic equation are obtained.

2. Preliminaries

We first recall some basic definition in q-calculus.
Let parameter q be a positive real number and n a non-negative integer. [n]q

denotes a q integer, defined by

[n]q =

{
1−qn

1−q , q ̸= 1

n, q = 1.

Let q > 0 be given. We define a q-factorial, [n]q! of k ∈ N, as

[n]q! =

{
[1]q[2]q...[n]q, n = 1, 2, ...
1, n = 0.
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The q-binomial coefficient

[
n
r

]
q

by[
n
r

]
q

=
[n]q!

[n− r]q![r]q!
.

The q-shifted factorials (q-Pochhammer symbol) are defined for a ∈ C by

(a; q)n =

n−1∏
j=0

(1− aqj)

and

(a; q)∞ = lim
n→∞

(a; q)n =

∞∏
j=0

(1− aqj).

The q-exponential function is given by

Eq(−z) = ((1− q)z; q)∞ =

∞∑
n=0

(−1)nq
n(n−1)

2

[n]q!
zn.

For t, x, y ∈ R and n ∈ Z ≥ 0, the q-binomial formula is given by

(x+ y)nq =

n−1∏
j=0

(x+ qjy) =

n∑
j=0

[
n
j

]
q

xn−jq
n(n−1)

2 yj .

Let q be a positive number with 0 < q < 1. Let f be a real or complex valued
function on A (A is q-geometric set (see [4])). The q-difference operator Dq (the
Jackson q-derivative) is defined as

Dqf(x) =:
∂qf(x)

∂qx
=

f(x)− f(qx)

x(1− q)
, x ̸= 0.

Let f and g are defined on a q-geometric set A such that the q-derivatives of
f and g exist for all x ∈ A. Then, there is a non-symmetric formula for the
q-differentiation of a product

Dq[f(x)g(x)] = f(qx)Dqg(x) + g(x)Dqf(x).

The q-integral usually associated with the name of Jackson is defined in the interval
(0, x), as ∫ x

0

f(t)dqt = (1− q)

∞∑
n=0

f(xqn)xqn,∫ x

0

Dqf(t)dqt = f(x)− f(0).

The q-integration for a function f over [0,∞) is defined as the following by Hahn
(see [11]) ∫ ∞

0

f(t)dqt =

∞∑
n=−∞

(1− q)qnf(qn).
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The q-analogue of the Laplace transformed is defined by

Fq(s) = £q(f(t)) =

∫ ∞

0

Eq(−qst)f(t)dqt (s > 0). (2)

From (2), we obtain

£q(αf(t) + βg(t)) = α£q(f(t)) + β£q(g(t)),

where α, β are constants. The q-analogue of the Gamma function is defined as the
following in [13]

Γq(t) =

∫ 1
(1−q)

0

xt−1Eq(−qx)dqx, (t > 0) (3)

From (2) and (3), we get

£q(1) =
1

s
(s > 0), £q(t) =

1

s2
(s > 0), ...,£q(t

n) =
Γq(n+ 1)

sn+1
=

[n]q!

sn+1
.

3. LTCM for q-Analogue of the Telegraph Differential Equation

We shall obtain numerical solution of q-analogue of the telegraph differential
equation using the method LTCM. Taking the Laplace transform of the problem
(1), we get

Dq,ηφ(0, ξ)− sφ(0, ξ) + s2φq(s, ξ)

= −£q{Dq,ηφ(η, ξ)} −£q{φ(η, ξ)}+£q{D2
q,ξφ(η, ξ)}+£q{f(η, ξ)} (4)

After simple algebraic simplification and using initial condition of the problem (1),
we have

φq(s, ξ) =
1

s2
[Dq,ηφ(0, ξ) + sφ(0, ξ)−£q{Dq,ηφ(η, ξ)} −£q{φ(η, ξ)}

+£q{D2
q,ξφ(η, ξ)}+£q{f(η, ξ)}

] (5)

The function φq(η, ξ) and its derivative function in the equation (5) are replaced
with a trial function of the form

φq = φ0
q +

n∑
i=1

ciφ
i
q, (6)
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then we will obtain the following equation

φq(s, ξ) =
1

s2

[
Dq,η

(
φ0
q(0, ξ) +

n∑
i=1

ciφ
i
q(0, ξ)

)
+ s

(
φ0
q(0, ξ) +

n∑
i=1

ciφ
i
q(0, ξ)

)

−£q

{
Dq,η

(
φ0
q(η, ξ) +

n∑
i=1

ciφ
i
q(η, ξ)

)}
−£q

{
φ0
q(η, ξ) +

n∑
i=1

ciφ
i
q(η, ξ)

}

+£q

{
D2

q,ξ

(
φ0
q(η, ξ) +

n∑
i=1

ciφ
i
q(η, ξ)

)}
+£q{f(η, ξ)}

]
,

(7)
where ci are constants to be stated which satisfy the given conditions in the problem
(1). Taking the inverse q-Laplace transform of the equation (7), we obtain

φnew
q (η, ξ) = £−1

q

[
1

s2

[
Dq,η

(
φ0
q(0, ξ) +

n∑
i=1

ciφ
i
q(0, ξ)

)
+ s

(
φ0
q(0, ξ) +

n∑
i=1

ciφ
i
q(0, ξ)

)

−£q

{
Dq,η

(
φ0
q(η, ξ) +

n∑
i=1

ciφ
i
q(η, ξ)

)}
−£q

{
φ0
q(η, ξ) +

n∑
i=1

ciφ
i
q(η, ξ)

}

+£q

{
D2

q,ξ

(
φ0
q(η, ξ) +

n∑
i=1

ciφ
i
q(η, ξ)

)}
+£q{f(η, ξ)}

]]
.

(8)
Substituting the equality (8) into the problem (1), we get new collocating at points
ξ = ξk as following

D2
q,ηφ

new
q (η, ξk) + φnew

q (η, ξk) +Dq,ηφ
new
q (η, ξk)−D2

q,ξφ
new
q (η, ξk) = f(η, ξk) (9)

where ξk = L−0
n+1 , k = 1, 2, . . . , n.

Now, we shall define the residual function by the following formula

Rn(η, ξ) = L[φnew
q (η, ξ)]− f(η, ξ). (10)

Here φnew
q (η, ξ) demonstrates the approximate solution, φ(η, ξ) demonstrates the

exact solution and

L[φnew
q (η, ξ)] = D2

q,ηφ
new
q (η, ξ)+Dq,ηφ

new
q (η, ξ)+φnew

q (η, ξ)−D2
q,ξφ

new
q (η, ξ). (11)

From the equality (11), we write

D2
q,ηφ

new
q (η, ξ) +Dq,ηφ

new
q (η, ξ) +φnew

q (η, ξ)−D2
q,ξφ

new
q (η, ξ) = f(η, ξ) +Rn(η, ξ),

(12)
Now since L is a linear operator, we obtain for the error function
en = φnew

q (η, ξ)− φ(η, ξ)

D2
q,ηen(η, ξ) +Dq,ηen(η, ξ) + en(η, ξ)−D2

q,ξen(η, ξ) = Rn(η, ξ). (13)
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From the conditions in the problem (1), we get

en(0, ξ) = Dq,ηen(0, ξ) = D2
q,ηen(0, ξ) = 0, (14)

en(η, 0) = en(η, L) = 0. (15)

By solving (13) subject to the homogeneous conditions (14) and (15), we obtain
the error function en(η, ξ). This allows us to calculate φ(η, ξ)=un(η, ξ) + en(η, ξ)
even for problems without known exact solutions.

4. Numerical Applications

In this section, we shall present one test example for implementation of the
LTCM. In the following example, the numerical solution calculated by the this
method will be compared with the exact solution.

Example 1. Consider the following initial-boundary value problem for q-analogue
of the telegraph differential equation

D2
q,ηφ(η, ξ) +Dq,ηφ(η, ξ) + φ(η, ξ) = D2

q,ξφ(η, ξ) + [3]q!ηξ
3 + [3]qη

2ξ3

+ η3ξ3 − [3]q!ξη
3

0 < η < L 0 < ξ < L 0 < q ≤ 1,

φ(0, ξ) = h(ξ), Dq,ηφ(0, ξ) = g(ξ)

φ(η, 0) = 0 φ(η, 1) = η3

(16)

First, we shall calculate the example problem (16) by LTCM.
We assume that the trial function is the following form:

φ(η, ξ) = c1ξ
2(ξ − 1)η3 + c2ξ(ξ − 1)2η3. (17)

Taking the Laplace transform of the equation (16) and using the formula (7), we
obtain

−Dq,ηφq(0, ξ)− sφq(0, ξ) + s2φq(s, ξ)

= −£q {Dq,ηφ(η, ξ)} − £q {φ(η, ξ)}+ £
{
D2

q,ξφ(η, ξ)
}

(18)

+£
{
[3]q!ηξ

3 + [3]qη
2ξ3 + η3ξ3 − [3]q!ξη

3
}
.

Using the initial condition of the problem (16), the formula (18) is obtained as:

φq(s, ξ) =
1

s2
[−£q{Dq,ηφ(η, ξ)} −£q{φ(η, ξ)}

+£q{D2
q,ξφ(η, ξ)}+£q{[3]q!ηξ3 + [3]qη

2ξ3 + η3ξ3 − [3]q!ξη
3}
] (19)

Using the formulas (17) and (19), we obtain

φq(s, ξ) =
1

s2
£q

{(
−[3]qξ

2(ξ − 1)η2 − ξ2(ξ − 1)η3 + [3]q!ξη
3 − [2]q!η

3
)
c1

+
(
−[3]qξ(ξ − 1)2η2 − ξ(ξ − 1)2η3 + ([3]q!ξ − [4]qη

3
)
c2

+£q

{
[3]q!ηξ

3 + [3]qη
2ξ3 + η3ξ3 − [3]q!ξη

3
}}

. (20)
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From the formula (20), we can get

φq(s, ξ) =

(
−[3]q!ξ

2(ξ − 1)
1

s5
− [3]q!ξ

2(ξ − 1)
1

s6
+ [3]q!([3]q!ξ − [2]q!)

1

s6

)
c1

+

(
−[3]q!ξ(ξ − 1)2

1

s5
− [3]q!ξ(ξ − 1)2

1

s6
+ [3]q!([3]q!ξ − [4]q)

1

s6

)
c2

+

(
[3]q!

s4
+

[3]q!

s5
+

[3]q!

s6

)
ξ3 − [3]q!

2

s6
ξ (21)

Taking the inverse Laplace transform of (21), we get the following new trial solution:

φnew
q (η, ξ) =

[(
− η4

[4]q
− η5

[4]q[5]q

)
(c1 + c2) + η3 +

η4

[4]q
+

η5

[4]q[5]q

]
ξ3

+

[(
η4

[4]q
+

η5

[4]q[5]q

)
(c1 + 2c2)

]
ξ2

+

[
[3]q!

[4]q[5]q
η5c1 −

(
η4

[4]q
+

η5

[4]q[5]q
− [3]q!

[4]q[5]q
η5
)
c2 −

[3]q!

[4]q[5]q
η5
]
ξ

− η5

[5]q
(c1 + c2) (22)

Substituting (22) into (16), we have the following residual formula:

R(η, ξ, c1, c2) = D2
q,ηφ

new
q (η, ξ) +Dq,ηφ

new
q (η, ξ) + φnew

q (η, ξ)−D2
q,ξφ

new
q (η, ξ)

−
(
[3]q!η + [3]qη

2 + η3
)
ξ3 + [3]q!η

3ξ (23)

Taking the derivatives of the equation (22) as to ξ and η, and writing in the formula
(23), we obtain

R(η, ξ, c1, c2) = (Aξ3 −Aξ2 +Dξ −B − C)c1

+ (Aξ3 − 2Aξ2 + (A+D)ξ −B − 2C)c2 −A−D

= 0, (24)

where,

A = − η5

[4]q[5]q
− 2

η4

[4]q
− 2η3 − [3]qη

2,

B = [4]qη
3 + η4 +

η5

[5]q
,

C = [2]q

(
η4

[4]q
+

η5

[4]q[5]q

)
,

D =
2[3]q!

[4]q[5]q
η5 +

2[3]q!

[4]q
η4 + [3]q!η

3.
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From (24), we have

c1 =
A

Aξ3 −Aξ2 +Dξ −B − C

c2 =
D

Aξ3 − 2Aξ2 + (A+D)ξ −B − 2C
.

Errors calculate by the following formula

Error = |exact solution− approximate solution|,
ϵ = max|φexact − φapp|,

where φexact = η3ξ3 is exact solution and φapp = c1ξ
2(ξ − 1)η3 + c2ξ(ξ − 1)2η3 is

numerical solution that is obtained by using LTCM for the problem (16). As shows

Figure 1. Gives the approximation solution of the example (16)
for 1 ≤ ξ ≤ 2, 0 ≤ η ≤ 1 and q = 0.01.

from the figure of Figure 1 the difference better exact solution and approximation
solutions is not clearly obvious. Therefore we present the numerical regents and
error analysis in the following Table 1.

5. Conclusion

In this work, we adopted a combination of Laplace transform collocation method
to develop numerical methods for the q-difference operator for the telegraph differ-
ential equation. Numerical example was considered to demonstrate the accuracy
and efficiency of this method. The exact solution is compared with the approximate
solution. Obtained results are given in the numerical error analysis Table 1 The
simulations are showed for the exact and approximation solution.
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ξ = η α Exact Solution LTCM method Error Analysis
0.99 0.01 0.941480149401000 0.769146969442938 0.172333179958063
0.5 0.01 0.015625000000000 0.032637283173177 0.017012283173177
0.5 0.5 0.015625000000000 0.037117402318906 0.021492402318906
0.5 0.99 0.015625000000000 0.027823738101408 0.012198738101408
0.1 0.01 1.0001× 10−6 2.3185× 10−5 2.2185× 10−5

0.1 0.5 1.0001× 10−6 1.6396× 10−5 1.5396× 10−5

0.1 0.99 1.0001× 10−6 1.1374× 10−5 1.0374× 10−5

0.01 0.01 1.000× 10−12 2.8934× 10−10 2.883410× 10−10

0.01 0.5 1.000× 10−12 1.7618× 10−10 1.7518× 10−10

0.01 0.99 1.000× 10−12 1.1629× 10−10 1.1529× 10−10

Table 1. Table error analysis of Example 1.
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