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Abstract: In this paper, a novel class of generalized compact sets (briefly, g-T,-compact sets) in
generalized topological spaces (briefly, 5 -spaces) is studied. The study reveals that g-Ty-compactness
implies ordinary compactness (briefly, T,-compactness) in J-spaces, and such statement implies its
analogue in ordinary topological spaces (briefly, 7 -spaces). Diagrams establish the various relationships
amongst these types of g-%4-compactness presented here and in relation to other types of g-T-compactness

in .7 -spaces presented in the literature of 7 -spaces, and a nice application supports the overall theory.
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1. Introduction
The concepts of T-compactness and g-T-compactness in 7 -spaces (ordinary and generalized
compactness in ordinary topological spaces) and the concepts of ¥,-compactness and g-%,-
compactness in J-spaces (ordinary and generalized compactness in generalized topological spaces)
are verily the most important topological invariants [3-5, 7, 15-17, 20, 21, 24, 25, 27, 30-38].
For, T, g-T, T, g-T4-compactness, respectively, are absolute properties of T, g-T, Ty, g-F -
sets [2, 13, 18, 27, 31, 35, 39]. Typical examples of g-%-compactness in .7 -spaces are «, [3,
~v-compactness [10, 19, 28]; examples of Tg-compactness in Jy-spaces are semi-*o, s, gb-
compactness [7, 14, 31], whereas examples of g-T -compactness in Tg-spaces are bTH, p-rgb,
wp-compactness [5, 24, 40], among others.

In the literature of 7;-spaces, several new classes of g-T;-compactness in 7 -spaces, similar

in descriptions to g-T-compactness in 7 -spaces, have been studied [20, 21, 24, 27, 30, 32, 36-38].
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In this paper, a novel class of g-Tj-compact sets in 7;-spaces is studied.

The paper is organized as follows: In Section 2, preliminary notions are described in
Subsection 2.1 and the main results of g-T;-compactness in a 7-space are reported in Section 3.
In Section 4, the establishment of the relationships among various types of g-%;-compactness

are discussed in Subsection 4.1. To support the work, a nice application of the concept of

g-T 4 -compactness in a J,-space is presented in Subsection 4.2. Finally, Subsection 4.3 provides

concluding remarks and future directions of the notion of g-%-compactness in a Ty -space.

2. Theory
2.1. Preliminaries
Notations and definitions not presented here are presented in [22, 23].
The set 4 denotes the universe of discourse, fixed within the framework of the theory
of g-Ty-compactness and containing as elements all sets (A-sets: A € {Q,E}; TIn, 6T,

Ta, g-FTa-sets; Tya, 0-Tgn, Tga, §-Tg.a-sets, to name a few) considered in this theory, and
10 def {V eN0: v < n}; index sets IO, I, I* are defined similarly [22, 23]. Every one-valued
map of the type Fyx : P2 (A) ¥ {Of : Of C A} — P (A), satisfying Ty (0) = 0,

Tan (Og) C Oy and Ty a(Uyer Ogw) = Upere Zaa (Og,) is called an absolute g-topology on

A while Zyp: P () € (O, : Opy CT C A} — Fyr € {6,NT: O € Ty} defines a

relative g-topology on I', and the structures T4 o def (A, T4,a) and Ty p def (T, Z4,r), respectively,
are called a J a-space and a J r-subspace [22, 23], on which no separation axioms are assumed
unless otherwise mentioned [11, 12, 29].

def

The classes of Z z-open and J x-closed sets are Ty p = {0y C Tga: Oy € Ty} and

BA def {% C FTga: Ca (Ay) € %,A}, respectively; C}u;/\ A def {ﬁ’g € Tgn: Oy C 5’9}

and C25 [] o {Hy € ~Tyn: Hy 2D Sy}, respectively, are the classes of J x-open subsets

and g a-closed supersets (complements of the J5 a-open subsets) of the Ty a-set Sy C Ty
22, 23)].

The operator clga : & (A) — F (A) carrying .y C Ty 4 into its closure clg p () is
called a g-closure operator and the operator intg z : & (A) — & (A) carrying it into its interior

intg A (A) is called a g-interior operator [6, 22, 23], where:

. def def
intg a (Fy) = U Oy, clga (Fy) = N Hy. (1)
0,03 | [ 7] Hy€CN5 (7]
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For convenience of notation, let 2% () = 2 () \ {0}, 7 = 5\ {0}, and T = -7\ {0}.
The mapping op, : & (A) — & (A) is called a g-operation on & (A) if it holds that:
(V7 € 2% (M) (3(Oy, Hy) € Tip x 2T 5) [(opg (0) = 0) V (~opg (0) = 0)
V(S opy () V (F4 2 opg (A7))], (2)

where —~op, : & (Q) — & (Q) is called the “ complementary g-operation”on & (£2) ranging in
2 (Q) and, for all (L, g, Vo) €acrye P*(Q) such that Wy = %, U Vg and (g, ~Hy) =

(opg (#),—op, (%)) , the following axioms are satisfied:
e AX. L (5”9 C opy (ﬁg)) \% (5”9 D —opy (jfg))7

o AX. 1. (opy (#5) C opgoop, (Ty)) V (mop, (L) 2 —opg o—op, (Hy)),

Ax. 1. (%g U opPg (ﬁw))\/<ﬁ%2 U 70Dy (%n))a

o=, o=p,v

o AX. V. (Y C Yau — 0pg (Ogu) S o0y (Og0)) V (U 2 Vo <— —0pg (Hgu)

:—> - Opg (‘%/Q,V))

for some (Oy, 04, Og,0) €acl,- Tn and (g, Hgu Hgw) Eaclye T A [8, 26]. The class

of all possible g-operators and their complementary g-operators in the 7;a-space Ty are

Zy[A] € {0pg, () = (0pg, () =0pg, ()) : (rp) € I9 x 19} = L [A] x ZrF[A], where:
opg () € LA E {opgo (), 0pg1 (), 0Dga (), 0Dgs ()}

= {intg (), clgointy (-), intgoclg (-), clgointgocly (-)};

—opg () € LE[A] T {mopgo (), mopgy (), “0pga (), m0pgs ()}

{clg (-), intgocly (), clgointg (-), intgoclgointy (+)}. (3)

A Ty a-set Sy C Ty ina Fya-space is called a g-Tg a-set if and only if (O, Hg) € Ty a x Ty a
and opg (-) € Z,[A] exist such that the following statement holds:
(36) [(€ € Z) A (L5 S opg (Gg)) V (F4 2 ~opg ()] - (4)
The g-T4 a-set Sy C T4 a is of category v if and only if is in the class of g-v-Tg A -sets:
def
g'V'S[gg,A] = {yg CTga: (Hﬁg“%/g?()pgy ())

(5 Copg, (Og)) V (L3 2 =0pg., (H))]}- (5)
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The classes of g-v-Ty -open and g-v-%4 a -closed sets, respectively, are defined by

g-u-O [TD’A] = {yg C TBJ\ : (Hﬁmopg,u ()) [yg - ODg.v (ﬁg)] }7

gv-K[Toa] = {F CTaa: (34, 0p, (1) [F5 2 ~op,, (Hy)] } (6)

and g-S[Tga] = Uyerg 00-8[Ton] = Up myergcfoxy 7-B[Te] = Upe(oxy 0-E[Ta] [22, 23]

By adding a g-T;-separation axiom of type H, called g-T i -aziom, to the axioms for a

Ty-space Ty = (2, T) to obtain a g—ﬂgH)—space g—SéH) def (Q,g—ﬁgH)) is meant that, for every
disjoint pair (§,() € T4 x Ty of points in Ty, there exists a disjoint pair (Oy ¢, Oyc) € Ty X Ty

of J-open sets such that (§,() € (opg (Og.¢) 0D (Og¢)) [23]. The definition follows:

Definition 2.1 [23][9—3511) -Space] A Ty-space Ty = (Q, Ty) endowed with a g-T; y -aziom is

called a g-7 " -space g-T = (Q,g-7 ().

By omitting the subscript g in almost all symbols of the above definitions, we obtain very similar

definitions but in a 7 -space; see [22, 23].

Definition 2.2 [23][g-T -Sets Sequence] Let g-v-S[Tq] C Ty be the class of g-T;-sets of category

v in a Jy-space Ty = (Q, Ty). The symbol (S .o € g-v-S[Tq)) denotes a sequence of g-T -

aclx

sets of category v in Ty that has been indexed by 13 C I% , inheriting its order from I, and the

o’

corresponding index mapping ¢ : o= Sy o denotes the a'™ term of the sequence.

»”

Throughout, the relation <‘%97@>ael* =< <Yg,a>ael* means that the one preceding “ <

is a subsequence of the other following “ <”. Suppose a T4-set Z; C T4 is related to a sequence

(S50 € 8-S[T,)) by the relation %Z; C | Sa.a, then Zy is said to be covered by a

aelx aelr

sequence (Fgq € 8-S [Tq)) whose cardinality is at most o € I’ . The definition follows:

aclx

Definition 2.3 [23/[g-v-T-Covering] Let Sy C Ty be a Ty-set in a Fy-space Ty. Then, for

every v € I3 :

o I. Sy is said to be “ covered” by a sequence <%g7a € g--0 [‘ZED of g-v-%4-open sets

aclk
whose cardinality is at most o € I, if and only if %3 C Uyers %o
o II. Sy 15 said to be “ covered” by a sequence <%,a € g-v-K [T9]>ael* of g-v-%4-closed sets

whose cardinality is at most o € 1%, if and only if 7y C UaEI* Voo
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Accordingly, (Z5a € g-S[Tg]) (U0 € 3-0[%,]) and (¥go € g-K[Tg])

a€ly’ €l acly?

respectively, are simply said to be a g-T,-covering, a g-T4-open covering and a g-Tg-closed

covering of ./ whose cardinality is at most o € I .

Definition 2.4 [23][g-T, -Subcovering] Let {Zy.o € g-S[Tq]) be a g-%4-covering of a Ty -set

a€clr

Sy C %y ina Ty-space Ty and let ¥ : 17 — I;;(U) C I be an index mapping. Then the map

V: (Sga € 8-S[Tg)) — (Fg0(a) € 8-S [Tg])

(o, 9())elr I} (7)

acl: 3(0)

[

is said to realise a “ g-Tg-subcovering” <¢5ﬁgﬂ9(a)>(a 9(a)) T X T of Sy from the g-Tg-covering

9 (o)

<<5ﬂg,a>ae1; if and only if Sy C U(a,ﬁ(a))eI;xI* Zg.9(a) -

9(o)

Thus, (S .9(a)) < (Spa)y

(@, 8(a))Es X I is equivalent to this definition, meaning that,

(o) el

for every 9 (a) € 15, € 15, there exists a € I7 C I, such that 7 y(a) = .- It is plain that,

for every o € I, ¥ (0) = card(]},‘(a)) <card([;)=o0.

Definition 2.5 [23/[g-v-T;-Compact Set] A Ty-set Sy C Ty of a Ty-space Ty is said to be

g-v-Ty -compact if and only if, for every g-v-Ty-open covering <?/g7a € g-v-0 [IED(er* ,

3<%Bﬂ9(a)>(a,19(a))elj;><l* RS U Uy.0(c)> (8)

(o) )
(a,9()) eI XI5 0y

where ¥ (o) = card(Ig(U)) < card (I}) = o. The class of all g-Tq-compact sets of category v € I
18:

g-v-A [T = {yg [ (%0 € 9-0 [‘IEDQGI;‘] [3<02/9a19(0‘)>(04,19(a))61;><1

]

9 (o)

(7 U Ui ) | o)

(a,9(v))El: 9 (o)

Thus, by a g-v-Tg-compact set is meant a type of set T;-set every g-v-Tg-open covering
of which has a finite g-v-T;-open subcovering [27, 36, 37]. Further, it is clear from the context

that, g-A [T4] = U, ¢ I g-v-A [T4]; its elements, then, are simply called g-T4-compact sets. Stated

differently, the above definition says that, given any sequence <6Z/g,a € g-0 [TED of g-%4-open

aclk

sets of ./ C %4 such that every point £ € #; belongs to at least one %, a € I, it is possible

to select from <02/g,a> a finite number of g-T;-open sets % 9(1), %.9(2)» -+ > Ug,0(c) Whose

aclx

union covers all of 7.
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Remark 2.6 Since <?/g’19(a)> =< <%g7a € g-0 [‘Eg]>a61*, g-%4 -compactness of a

(e,9())€ET: XI5 oy

T4 -set is defined in terms of relatively g-Ty-open sets.

Definition 2.7 [23][g-T4-Refinement] A g-T4 -covering (Fy.a € 8-S [T4]) of a Ty-set Sy C

acll
Ty of a Ty-space Ty = (Q,7,) is a “ g-Ty-refinement” of another g-Ty-covering (#gp €

g-S[T of the same T4 -set Sy if and only if:

ol per;
(V€ I5) (38 € 1) [ L. € Zo,p]- (10)

In the event that .y = Q, (Sya € gv-S [Tg]>ael* is a g-v-Ty-covering of Ty if Q =

UaeI;; Fava- Accordingly, (Ly9(a) € 8-S [Tg)) is a g-v-T4-subcovering of Ty if

(a,9(e)) eI XI5 oy

the relation Q = J,, (a))Els I3, Ygﬂg(a) holds, where ¥ (o) = card(I;;(g)) < card (I}) < 0.

The definition follows.

Definition 2.8 [23][9—1/—95\1 -Space] A Ty -space Ty = (Q, Ty) is called a g—u—ﬂgA] -space denoted

g—u—TgA] ef (2, g—l/—ﬂgﬂ) if and only if each g-v-Tg-open covering (U, € g-v-0 [T4]) of T4

aclk

has a finite g-v-Ty-open subcovering.

In the sequel, by a g-V—ﬂLA] -space g—TLA] = (Q,g—ﬂgA]) is meant g—‘IgA] = Vuelg g—l/—‘ILA] =

(Q\/Uelggy—ﬁ[ ]) (Qgﬂ)

3. Main Results

The main results of the theory of g-%,-compactness are presented in this section.

Theorem 3.1 A g- ﬁ(H) -space g- S(H) (Q g-7 H)) is a g—ﬁ[gA] -space g—T[gA] = (Q,g—ﬂgA])

if and only if every sequence <”I/g7a € g-K [‘Ig]> of g-%4-closed sets which has the finite

aclk

intersection property has a non-empty intersection.

Proof  Necessity. Let the g—yé -space g- S(H) (Q g- 9 ) be a g—f[gA] -space g—f[gA] =

(Q,g—ﬂLA]), and let (¥ € g-K[Tg]) be a sequence of g-T,-closed sets g—TéH) such that

aclx

Uaer: %o.0 = 0. For every a € set %o = 0(7,a) and consider the sequence (%, €

g-O [TgDaEI* of g-T4-open sets. Since U, cpr %0 = Uqers C(Y,a) = C(Nacr Yaa) = Q, it fol-

lows that <%g_’a € g0 [‘ZQD is a g-T4-open covering of g—IéH) . But g—féH) is a g—ﬂgA] -space

aEll
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g—TgA] = (Q,g—ygA]) and, thus, there exists a g-%;-open subcovering <%Eﬁ(a)>(a Bla))elxT>
(U0 € 3-0[Z4]) such that

acly

Q= U  %se = U C(sw) = C( N %ﬁ(a))-

(a,B(a))€Tx %I (a,B(a))elx I (a,B(a))elz XTI}

This implies that ﬂ(aﬁ(a))epxp Y48 = 0. Hence, if a sequence (%50 € g-K [Tg]>o¢€I* of

g-T4-closed sets of g—TEJH) has the finite intersection property, then (\, s(a)er:x1: Ya.6(0) # 0-

Sufficiency. Conversely, suppose that g-TéH) = (Q,g—ﬂg{)) is a g—ﬂéH) -space in which

every sequence <”I/ga € g-K [‘ZED of g-T4-closed sets which has the finite intersection property

aclk

has a non-empty intersection. Then, for every subsequence <%75(a)>(o¢ Blayel:xIz <%7a>ael*

of g-T,-closed sets, the relation ﬂ(a,ﬁ(a))el*xl* Ya.8(a) # 0 holds. Consequently, (), cr- g0 # 0.

In other words, (, g(ayer:xr: Ya.6(a) # O for every Iy C I7 implies Yoo # 0. But

aclx

this is the contrapositive statement of ) Y. = 0 implies that there exists I} C I such

aclx

that ﬂ(aﬁ(a))el*xl* Yo.6() = 0. It results that, every sequence (%5, € g-K[Tg]) of g-Ty-

aclx

closed sets of Ty, Nocrs Yoo = 0 implies (%50 € g-K[Tg]) contains a finite subsequence

aclk
. H) .

<%76(Q)>(a7ﬁ(a))g;x[i of g-%T4-closed sets with ﬂ(aﬁ(a))g;x[: Ya.8(a) = 0. Hence, g—fé ) is a

g- 7 space g-TM = (Q,g-71Y). O

An interesting remark may well be given at this stage.

Remark 3.2 In particular, if the g—ﬂéH) -space g—‘IgH) = (Q,g—ng)) is a g—ﬂLA] -space g—TgA] =

(Q,g—ggA]) and the elements of <"//g7a € g-K [Tg]> forms a descending sequence Vg1 D Vg2 D

acl;
oD Vga D of non-empty g-Ty-closed sets, then (e« Yg.a # 0. Such property in its own
right is weaker than g-%4-compactness. In fact, it indicates the sense in which g-%4-compactness

asserts that the g—ﬂgH) -space g—SéH) has enough points, namely, at least enough points to yield
one point in each such intersection of a descending sequence Vg1 D Vg2 D -+ D Vga D -+ of

non-empty g-Tgy-closed sets.

Theorem 3.3 (g-T4-Refinement) In o J-space Ty = (2, ), any g-T4-subcovering of the

type <f5ﬂg,ﬁ(a)>(aﬁ(a))gzXlg(g) derived from a g-Tq-covering (Sgo € g-S [Tg]>a€I; is a g-Tg-

refinement.

Proof Let <y93779(0‘)>(a,19(a))61;><I:;(a) be any g-%4-subcovering derived from a g-Ty-covering
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<Yg7a € g-S [Tg]> in a Jy-space Ty = (2, .7;). Then, it results, consequently, that the

aclk

relation (.7 =< <y9’o‘>a61; holds true. Thus,

719(“)>(a,19(a))€]; XI5,

Therefore, the g-T4-subcovering <y9’19(0‘)>(o¢ 9(a))er derived from the g-T4-covering <L§”g7a €

xlﬁ(g)

g-S [‘Zg]>a 7 is therefore a g-Tg-refinement. This completes the proof of the theorem. |

Theorem 3.4 Let /3 C Ty be a Ty-set of a Ty-space Ty = (2, Ty). Then, Sy € g-A[T,] if

and only if, for each g-%4-open covering <%g,a € g0 [‘Zg]> of Sy, there is a finite g-%4-open

acll

subcovering <%9»19(a)>(a,19(a))e[;x1* ) of Sy:

(o

yﬂ € g_A [TQ] <~ (v<%9704 S g_O [ZQD(XE];) (3<%9719(a)>(a,19(a))613;><I:;(0> = <%gya>ael(,;)

[5”9 C U %g,ﬁ(a):| . (11)

(e, 9())€eT: XI5 oy

Proof  Necessity. Let .7y € g-A[T,] in Ty, and let (%o € 9-O[F,]) be a g-%T4-

aelr

open covering of .#;. Then, %3 C J Uy, and, consequently, .7y = Uyer (%g.a N-y).

aclx

Therefore, <%g7a ﬂyg> is a g-Ty-open covering of .7, by relatively g-%T4-open sets %1 N7,

acl:
UgoNSyy ooy Uy oNTy € g-0[%F,]. Since S € g-A [T,], there is a finite g-T;-open subcovering

of 7y such that 7 = U(aﬁ(a))el*xp (%gﬂg(a)ﬂyg). Thus, it

9 (o)

<62/9719(0‘)>(o¢,19(a))61; xI*

9 (o)

follows that yg g U(a,ﬁ(a))e[* X I* %9719(a) n yg .

9 (o)

Sufficiency. Conversely, suppose that, for every g-%,-open covering <%g’a € g-0 [T9]>ael*

of S, <%g,a> has a finite g-%4-open subcovering of the type <02/g’19(a)> of A.

a€clr (o, 9())ET: XTI}

9 (o)

It must be shown that, given a g-%;-open covering <622975>561* of 4 by relatively g-T4-open sets
I

0229,1, %;72, el OZ/AML € g-0 [T,], there is a finite g-T4-open subcovering <OZ/AQ’79(B)>(B d(Ner <y,
) 9

of 3 such that 7 = U(B,ﬂ(,@))el*xl* Q/Agﬂg(/g). For every 8 € I, since ?/Ag,g € g-0O[%]

9 (u)

is a relatively g-Tg-open set in .7, there exists a g-Ty-open set %, € g-O [Ty such that

Uy p = Uy pNSy. But Sy = UBGIZ Uy 3 = UﬁeI; (Uy 3N Fy) C Uﬁg; %, s and, consequently,
Sy C Uﬁel* ,,, implying that <%9w@>ﬁel* is a g-%4-open covering of .#; by g-Ty-open sets
" "

Ugr, Ugoy -y Ugp € 9-O[Tg]. By hypothesis, there exists a finite g-T;-open subcovering
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of #4 such that .75 C U(ﬁﬁ(@)) Ug,9(5)- Thus,

<02/9a19(5)>(ﬁ,19(3))61;><1* I XI5

9(n) I (p)
Ty = ( U %949(@) NSy = U (%y,08) N 5)
(BIB)EL XTI, (BOBNELEXT5 )
= U Uy.0(8)-

(B.OB)EL; X I,

Hence, it results that the g-%4-open covering <@/Ag7 5 € g-0O[Tg)) of .7, by relatively g-T4-open

BeI;

sets 929’1, 6229’2, ce 5229,0 € g-O [T,] has a finite g-T4-open subcovering <52/Ag’19(5)>(6 9(8))els X I
’ w

9 ()

of A. O

Theorem 3.5 If %y 1, Sy2, ..., Fgu € -A [Sg] be p > 1 g-%4-compact sets in a Tg-space

Ty =(Q,T;), then UaeI: g0 € 0-A [‘Sg} in Ty
Nacr; (Foo € 0-A[Te]) = Uner; Za0 € 0-A[T]. (12)

Proof Let A1, H52, ..., FLgu € ¢-A [Tg] be p > 1 g-Ty-compact sets in Ty. Then, for

every « € I, there exists (%, < Uy () € g—O[‘EgDMQ)E[*, where

,ﬁ(aﬁ)>(ﬁ(a),19(0¢ﬁ))el; X500y

I*

o) € 1%, such that S o C U(ﬂ(a),ﬂ(a,ﬁ))e];xl* Uy,9(a,p) holds. Consequently,

B(o)

Uael;;yg,a < U ( U %9719(046)> < U %g,ﬁ(aﬁ)'
(9(a),9(

a€l} a,,@))EI;XIE(g> (a,ﬂ(a),ﬂ(a,,@))el;;xlgxlgm

Hence, it follows that, |J,c/« 5,0 € g-A [‘Sg] in €4. The proof of the theorem is complete. a
n

Theorem 3.6 If %y C T4 be any finite Ty-set of a Ty-space Ty = (Q, Ty), then Sy € g-A [T, :
(S5 CTy) A(card (F) < o0) = 5 € g-A[T]. (13)

Proof Let .7y C T, be any finite Ty-set of a Fy-space Ty, = (2, F). Then, there exist
<ﬁ9719(a)>(a,19(a))61;><I;;(U) < <ﬁg,a>a612 such that U&EYQ {E} - U(a,ﬂ(a))EI;X1§(6> ﬁgﬂg(a) holds.

Since Og.a C 0pg (Og,a) for every a € I7 and g 5, {€} = 4, it results that,

Ty C U Ogo(a) < Opg< U ﬁg,ﬁ(a))
(e d(@)EF XI5y (a9(a)) €l XI5,y
< U Opg(ﬁg,ﬂ(a)) < U Opg(ﬁg,a)~
(04,19(04))6];)([;;(“) (XGI;
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Therefore, .7, C U(a,ﬁ(a))e[;xlg(a) opg(ﬁgﬂg(a)). But, for every pair (a,d(a)) € I x I:;(

o)’
opg(ﬁgﬂg(a)) € g-O[%,]. Consequently, for every (a,d(a)) € I} X I3y, there exists % 9(q) €
g-O [T4] such that % ) = opg(ﬁgﬂg(a)). Thus, .7 C U(a’ﬁ(a))déxl* Ug.9(a) and hence,

9 (o)

s € 9-A[T,]. This completes the proof of the theorem. |

Corollary 3.7 Let /3 C Ty be a Ty-set of a discrete Ty-space Ty = (2,.T,). Then, Sy €

g-A [Ty if and only if it is a finite Ty -set.

Proposition 3.8 If T, = (Q, J;) is a finite strong Ty -space, then it is a g—ygA] -space g—TgA] =

(297
(Ty = (2 F)) A (card () < 0) = ¢TI = (Q,g-71). (14)

Proof Let T; = (2,7;) be a finite strong Z;-space with Q = {ga: ae]Z} and p <
0o. Since T4 is a finite strong F;-space, if <ﬁ9’o‘>ael* is a T5-open covering of 2, then, for

every a € I, there exists a ¥ (a) € I; such that &, € gy Thus, Q = [J 5. {&a} C
m

U(a’ﬁ(a))g;x[; O4,9(a) and consequently, <ﬁ9719(a)>(a,19(a))61;><1; is a T4-open subcovering of (2.
But, for every (o, 9 (a)) € I, x I3, Og ) < opg(ﬁg)ﬁ(a)) € g-0[%,]. Consequently, for each
(, 9 (a)) € I, x I, there corresponds a %;9(a) € 9-O [Ty such that % 9y = Opg(ﬁg,g(a)).
Thus, Q2 C U(aﬁ(a))a;x]; Ug,9(a)- Hence, Ty = (Q, ) is a g—ygA] -space g—igA] = (Q,g—ﬂgA]).

The proof of the proposition is complete. g

Proposition 3.9 If T, = (2, F) be a Ty -space generated by unit Ty-sets of 1, then any infinite

Tg-set Sy C Ty is not g-Ty-compact.

Proof Let ./; C ¥, be any infinite Ty-set of a Fy-space Ty = (,.7,;) generated by unit
Tq-sets of Q. Then, since {¢} € Ty and {¢} C op,({¢}) hold for every {&} C .7, it follows
that, for every £ € ., {&} C opg({f}). Consequently, /3 = Ugeyg {&} C Ugey’g opy ({5})
Clearly, opg({g}) € g-O[%,] for every £ € 7, and therefore, there exists, for each £ € .75, a
Uy e € g-O[T,] such that % ¢ = opy ({f}) Hence, 73 C Ugeyg U4 ¢, implying that <%915>5efg
is an infinite g-T;-open covering of .#;. Consequently, there exists no finite g-T;-open subcovering

<02/g,19(§)>(£719(§))€y0><[; =< <%9a5>§eyg of Sy such that %5 C U ye))esr, x1: %aoie)- Hence,

S ¢ g-A [‘Ig] . This completes the proof of the theorem. O
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Corollary 3.10 If T, = (,.7;) be a Ty-space generated by unit Ty-sets of Q and Sy C Ty,

then Sy € g-A [Sg] if and only if it is a finite Ty-set in Tq.

Theorem 3.11 Let %; C Ty be any Ty -set of a Ty-space Ty = (Q, Ty). If S be g-T4 -compact,

then it is also Ty -compact:
S €GAT] = S eA[T]. (15)

Proof Let .7y C Ty beany T -set of a Jy-space Ty = (2, ;) and suppose .7 € g-A [T4]. Since
Sy is g-Tg-compact, there exists a g-Ty-open covering (%o € g-O[T4]),, € I; of .#; which

has a g-T;-open subcovering <%9719(0‘)>(a,19(a)) such that .#; C U(aﬂg(a))GI;X[* Uy,9(cr) -

ElxXI} (o)

(o)

The assertion that, %y € g-A[T,] for every (o, 9 (a)) € I} x I3,y implies the existence of

Oq,9(¢) € Ty such that, %) C Opg(ﬁgﬂg(g)) for every (a, 9 (a)) € I} x I;;(J). Consequently,

ST U (ﬁgﬂ?(a) N yg)
(a,ﬁ(a))é];xl:;(g)
c U (Ga,00) NoDg(Tg,0(6))) C U Oa0(6),
(,9(@))EIF XI5, (e, 9(e)) eIz XI5

thereby implying, .5 C U(a,ﬂ(a))el*ﬂ* Og,9(¢)- Hence, 7y € g-A[T,] implies ./, € A[T].

(o)

The proof of the theorem is complete. o

Proposition 3.12 If /; C T4 be any infinite Tq-set of a discrete Fy-space Ty = (2, Ty), then
g ¢ a-A[T].

Proof Let .7y C Ty be a Ty-set of a discrete Jg-space Ty = (2, F). Then, .75 € g-A[T,] if
and only if it is a finite Ty-set. Since Ty is a discrete J;-space, consider the class {{5} s e Yg}
of unit Tg-sets of ;. Clearly, the relation .y C Ugey, 1€} S Uges, 0g({€}) holds and,
for every ¢ € 7, opg({g}) € g-O[%y]. Accordingly, for every £ € 7, set opg({f}) = Uy

Then, <%975 € g-0 [Tg]> is an infinite g-T;-open covering of .. Consequently, <%9=5>5e§”
g

ce,
contains no finite g-% -open subcovering <02/9’19(5)>(£ IE)eFy Xz <%g7g>£€y of .75 such that
’ g o N g

Iy C U(&,ﬂ(&))ey’g w1= Uy()- Hence, ;5 ¢ g-A [Tg] . The proof of the theorem is complete. O

Corollary 3.13 Let T, = (,.7;) to be a Fy-space. If Ty is a g—ygA] -space g—‘IgA] =

(Q,Q—QLA]), then it is also a %[A] -space TgA] = (Q, %[A]) .
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Theorem 3.14 A necessary and sufficient conditions for a Ty -space Ty = (2, Ty) to be a g-fLA] -

space g—‘ILA] = (Q,g—ggA]) is that, whenever a sequence <“//g7a € g-K [‘Eg]> of g-%4-closed sets

aclx

is such that Yg,a =0, then there exists (Vg p(a)) such that the

el (@seyersxr; = Yaa)acr;

relation (. g(a)yer:xr: Yoo =0 holds.

Proof Necessity. Suppose Ty is a g—f[gA] -space g-‘IgA] = (Qg—ﬁgﬂ) and a sequence <“I/g,a €

g-K [‘EQDQGI* of g-Tg-closed sets is given such that () Yoo = 0. Then, U e %o =

aclk
UaeI;E(%a) = C(ﬂaeI; Yga) = Q, so that (% € g-O [‘IQDQH; is a g-Ty-open covering

of Ty. Thus, there exists a g-Ty-open subcovering <%g7ﬁ(a)>(aﬂ(a))g;x]; =< <%g,a> and,

aclx
thus, ﬂ(a,/a(a))ez;xz;; Y4,8(a) = C(U(a,ﬁ(a))e[; X I %g,ﬁ(a)) =0.

Sufficiency. Conversely, suppose that, for every <”//g,a € g-K [Sg]> of g-T4-closed sets

acl}:

such that N V3,0 = 0, there exists a g-T4-open subcovering given by <’7/97ﬁ(°‘)>(a A( =

a€ly a))ETx T

<7/g7a>a€[* such that (. s(a))er:x1: Yoo Further, let (%0 € -0[Tg)) stand for a g-Tg4-

acl]

open covering of Tg. Then (0 (%) € g-0[T4)) is a sequence of g-T-closed sets such that

ol
nael; C (Z3,0) = 0. Thus n(a,ﬁ(a))el;ﬂ; C (%gﬂ(a)) =0 and <%976(a) € g0 [Sg]>(a7ﬁ(a))61;><[;
is a g-T4-open subcovering of T. O
If Tgr = (I, Jyr) be a Jy-space such that (I', Tyr) C (2, Tga) and (I', Tyr) C (2, Fx),
where Ty 0 = (Q, J5.0) and Ty = (X, T ») are two Jy-spaces satisfying (Q, T5.0) # (2, Z,2),
then Fyr : Z(I') — £ (I') is the same whether Tyr C Ty0 or Tyr C Ty s and, hence,
the assertion that, T,r = (I', Zyr) is a g—ygA] -space g—i[gﬁl = (F,g—?LA’ll) depends only on
the elements forming the structure (I', 75 ). Therefore, the g-T;-compactness of a Jj-subspace
Tar = (I, Ty r) of a Fy-space Tga = (Q, Ty,0) may be related to Ty : £ (Q) — Z () by

virtue of the following theorem.

Theorem 3.15 Let I' C Q be a Ty-set of a Ty-space Ty = (2, F,). Then, the following

statements are equivalent:

o I '€ g-A[Ty] with respect to the absolute g-topology Ty : Py (Q) — Py ().

def

e II. T' € g-A [Tg] with respect to the relative g-topology Tyr : Py (') = Tyr = {ﬁg NnT:

Oy € Ty}

Proof 1. — 11. Let <5Z/gya € g0 [Tg]> is a g-%T4-open covering of I' with respect to the

aclx
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relative g-topology Jgr : P4 (I') = 5 r. The relative g-topology being Jy r : Z4 (I') = Fyr ef

{ﬁg NI': 04 € %}, it consequently follows that, for every a € I, there exists 5’9@ € Iy such

that Zg,a C 0pg(Cga) = 0pg(Fg.aNT) C 0py(Cy.a). Forevery a € I}, set Uy .o = opy(C,anT).

Thus, ' C ?/Agﬂ and therefore, <?/Ag7a> is a g-T4-open covering of I' with respect to the

acly €l

absolute g-topology 7 : P4 (Q) — P4 (). By virtue of 1., I’ € g-A [Tg] with respect to 7

and consequently, a finite g-%;-open subcovering <%9719(a)>(a 9(a))El: =< <%Aﬂv‘¥>ael* exists

XI;(U)

where, for every (o, (a)) € I* X I:;(J), %Agﬂg(a) = opg(ﬁg’g(a) N F). But then

I'crn

@ﬁ(a)) - U (Og9() NT)

(e, 9())€eT: XI5 oy

((a,ﬂ(a))GI; XTI

9(o)

= U %o

(e, 9())€eI: XI5 oy

Thus, it follows that the g-T4-open covering <%9’O‘>a contains a finite g-T4-open subcovering

er;

<%Agﬂ9(a)>(a 9(a))els x It of T' with respect to the relative g-topology Zgr : Z4(I') — .

9 (o)

Hence, (I', 73 r) is a g-ng] -space. This proves that 1. implies II.

L ¢+ 1. Let (%o € g-0[%)) be a g-Tg-open covering of I' with respect to

aelk

the absolute g-topology J; : &4 () — P4 (). For every a € I, there exists, then,

ﬁAgﬂ € J, such that %Ag,a = opg(ﬁﬁgya). For every a € I}

o

set Oy = @397& NTI'. Consequently,

I' € Upers %y, implies

Fgrm(u @ZW>: U @Tn%.) = | ([Tnopy(faa))

€l a€lz €l

U OPyg (ﬁg:a ﬂF) = U OPyg (Og,a)

acl: acl®

and from which it results that, I' C J ,c;- 0P4 (0y.a) - Since O o € Z5r and op, (Oya) € g-O [T]

for every o € I}, set Uy = 0Dy (Og,a). Then, (%o € g-0[%,]) is a g-T4-open covering of

aclk
I' with respect to the relative g-topology Jyr : &4 (I') = 5 r. But, by hypothesis, I' € g-A [Sg]

with respect to the relative g-topology Jyr : &y (I') — J3r and, therefore, a finite g-T;-open
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subcovering <%9’79(a)>(a,19(04))61;Xlg(a) = <%g7a>oz€I; exists. Accordingly,

r c U Uyi(e) = U Py (Cg.0())
(a,9(e)) eI XI5 ) (a,9(e)) eI XI5 0y
= U oPg(Cg.0(a) NT) = U (T Nopg (Gg.0(a)))
(a,9(e)) eI XI5 ) (a,ﬁ(a))elgxlg(a)
= I'n < U Opg(ﬁg,wa))) < U oPg (Cg.0())
(a,ﬁ(a))EI;xlg(c,) (a,9(e)) eI xI;(U)
= U g,9(0)-
(a,9(e)) eI XI;(U)
Thus, <52297a>a612 is reducible to a a finite g-Ty-open subcovering <%9719(0‘)>(a,19(a))€I;XI;(U) with

respect to the absolute g-topology 7y : &4 (Q) — P4 (). Hence, I' € g-A[T,] with respect to

the absolute g-topology 7, : &4 () — P4 (). Thus proves that 1. is implied by II. o

Theorem 3.16 Let T, = (Q,7;) be a Ty-space. Then, the following statements are equivalent:

e I. 5050 g—ﬂLA] -space G'S[gA] = (ng_yg*]),

e 1I. For every sequence <”//g7a € g-K [‘Sg]> of g-%4-closed sets of Ty, the equality relation

aclx

ﬂaeI; Yg.o = 0 implies that the sequence <”//970¢ € g-K [‘Zg]> contains a finite subsequence

acly

<7/9»/3(a)>(a,[3(a))61;><1; of g-Tg-closed sets with ﬂ(aﬂ(a))g;x]; Yo.8a) = 0.

Proof 1. — 1. Suppose (\,c« Y50 = 0. Then, by virtue of De Morgan’s Law, it fol-
lows that @ = C(0) = C(Nucr: Yaa) = UperC(Y0.0) = Uper Zayo- Therefore, (% €
g-O [ZQDOLEI* is a g-Ty-open covering of Ty. But since Ty is, by hypothesis, a g—ﬂLA] -space

g—TLA] = (Q, g-f[A]) , there exists a finite subsequence <ﬁ2/gﬁ(a)>(

g of g-T4-open sets

aBa))Elzx T},

such that Q = U(a’ﬁ(a))el*xl* Ug,5(a)- Thus, by De Morgan’s Law, it follows that () = C(Q) =

E(U(a,,ﬁ(a))EI;xI; %,ﬂ(a)) = m(a,B(a))EI;xI;’; C (%ﬁ(a)) = n(a,ﬁ(a))gf;xl; V4,6(a)- This proves
that 1. implies 1I.

I « I Let (%0 € 9-O[%,]) is a g-Tg-open covering of Ty. Then, Q = J,c7+ %.a-

acl;
Moreover, by De Morgan’s Law, 0 = C(Q) = C(Uucrx Z0) = Nacr: C(Zaa) = Nucrs Yoo -

Thus, <“//97a € g-K [Eg]> is a sequence of g-%-closed sets and, by above, has an empty intersec-

aelk

tion. By hypothesis, it follows, then, that there exists a finite subsequence <"//g7ﬁ(a)>(a Ba))elzxIx
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of g-Tg-closed sets such that ﬂ(a,ﬁ(a))e[*x[* Ya8(a) = 0. Thus, by virtue of De Morgan’s

Law, it results that Q@ = C(0) = E(m(a,ﬁ(a))EI;xI;‘; %,B(a)) = U(a,ﬁ(a))gl;xl;[:(%ﬁ(a)) =

wse Xg.8(a)- Accordingly, T, is a g—y[A] -space g—T[A] = Q,g—ﬁ[A] and, hence,
(a,B(a))elxxIx “g,8(a) g g g g

I. is implied by 1I. O

Proposition 3.17 If 7 € g-K[T,] be a g-T -closed set of a g—ﬂgA] -space g—‘IgA] = (Q,g—ﬂgA]) ,

then Sy € g-A [T,
S € KT = S egA[T]. (16)

Proof Let it be assumed that ; € g-K[T,] is a g-T;-closed set of a g—ygA] -space g-i[gA] =
(Q,g—ygA]). Then, 0(;) € ¢-O[T,]; that is, 2\ .7 is a g-T,-open set in g—i[gA]. Let

<02/g,a € g0 [“S[QA]D be a g-%4-open covering of . in g—‘IgA] and, for every a € I, set ?Zg,a =

aelr

Uy, UC (F). Then, <%Ag,a> is a g-T4-open covering of §). But since g—‘ILA] = (Q,g-ﬂgﬂ) isa

aclx

g—ygA] -space, there exists a finite g-Ty-open subcovering <%£M9(a)>(a da))ersxrs, <52/g7a>ael*

9(o)

such that Q C U(aﬁ(a))el* Ug,9(a) > Where %gﬂg(a) = Uy 9(a) U C () for every (o, (a)) €

XI;(U)

I3 % Iy - Therefore, <%9719(04)>(04,19(a))61;><1*

is a finite g-T4-open subcovering of .#;. Hence,
9(o)

4 € g-A [T4]. The proof of the proposition is complete. ]

Theorem 3.18 A necessary and sufficient conditions for a Ty -space Ty = (Q, F) to be a g—ﬂ[gA] -
space g—TEA] = (Q,g—ygﬂ) is that, whenever for each £ € Ty a g-Ty-open neighborhood of £ is
giwen, there is a finite collection € = {&, :n €I} of points &, &, ..., & € Ty such that

Q= Uge%g opg (Og.e) -

Proof  Necessity. Suppose Ty is a g-ﬂ[gA] -space g-T[gA] = (Q,g—ﬂgA]). Let there be given,
for each ¢ € T4, a g-F3-open neighborhood of £. For each £ € T, there is a Ty-open set
Use C Ty satisfying § € % ¢ C opy (Oge). Thus, for every § € Ty, % ¢ € g-O[T,] and,

consequently, (% € g-O[Tg]) is a g-T4-open covering of T,. Since T, is a g-7 M -space

£€Ty

g—fLA] = (Q,g—ygA]), there is a finite g-Tg-open subcovering (¢, € 9-O [T,]) But, for

nely”
every p € I, & € Uy, C opg(y, ), whence Q = Uuelg opg(Fge,) = Uge% opg (Og.¢)-
Sufficiency. Conversely, suppose that whenever, for each £ € T4, a g-7;-open neighborhood

of ¢ is given, there is a finite collection ¢; = {&, :n € I} of points &, &, ..., & € T4 such
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that Q = Uge%ﬁs opg (Oge). Let (%0 € g-O[T4]) be a g-Ty-open covering of Ty. Then, for

acl?
each { € Ty, there exists an o = o (§) such that § € % (), and hence, % o) = opg (Oy¢)
for every (§,a(§)) € ¥4 x I;. By hypothesis, there is, then, a finite collection 6¢ = {&, : n € I}

of points &1, &, ..., & € Ty such that Q = Ugecg5 Ug,a(¢), and thus, Ty is a g—ggA]—space

g T = (Q,g-7M). u]

4. Discussion

4.1. Categorical Classifications
Having adopted a categorical approach in the classifications of the J;-property called g-%;-
compactness in the Jj-space T4, the dual purposes of the this section are firstly, to establish

the various relationships amongst the elements of the sequences <g—1/—T£A] = (Q, g-v-7 gﬂ»y c 100
3

and <g—1/—‘Z[A] = (Q,g—y—ﬁ [A])>V €19 of g-v-7 LA] -spaces and g-v-7 [A] -spaces, respectively, and
secondly, to illustrate them through a so-called categorical compactness diagram.

Let 04 € J, be any Jy-open set in a Jy-space Ty, = (Q,.7,;) and, for every v € I3,
let there exist a g € I§ such that the relation opg, (04) C op,, (€y) holds. Then, since
Oy C op,, (Oy) for every v € 19, it follows that T,-openness implies g-v-T4-openness and the
latter, in turn, implies g-v-%,-openness. But since the statement that g-%,-compactness implies
% 4-compactness is a consequence of the statement that Tj-openness implies g-T4-openness, it
evidently follows that, g-v-Tj-compactness implies g-v-%;-compactness and the latter, in turn,
implies ¥g-compactness. On the other hand, for every T, -open set /3 C Ty, the relation

inty () C clgointy (F) C clgointyocly () 2 intg ocly (F) holds [22, 23]. Consequently,
0Pg 0 (75) C 0Pg1 (Fy) Copg3(Fy) 20pg0(Fy) VI C Ty

Therefore, for each (p,v) € {(0,1), (1,3), (2,3)}, from g-u-Ty-openness implies g-v-Tg-
openness, it results that g-v-T;-compactness implies g-p-T4-compactness. Thus, if %, C T,
is a g-Ty-open set then, with respect to g-T4-openness, the following left-hand side system of

implications holds:

Uy € g-0-0[T,] = U € g-1-0[F,] Sy € g0-A[T] = S egl-AlT]
Uy € g-2-0[T,] = % € g-3-0[F,]; Fo €9-2-A[T] = S €g3-AlT,].

Such left-hand side system with respect to g-Tj-compactness, in turn, implies the right-

hand side system of implications. For visualization, a so-called categorical compactness diagram,
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N

g-0-A[T | =— gl-A[T] =—— g3A[T] —> g2A[T
g-0-A[S] =—— glA[T] =—— g3A[T] —> g2A[F]

\\§‘4//

Figure 1: Relationships: classes of g-T-compact and g-%,-compact sets

expressing the various relationships amongst the classes of g-T-compact and g-T4-compact sets,

is presented in Figure 1. The notion of g—igA] -spaces of category v € I3 is exemplified below.

4.2. A Nice Application
A nice application is now presented. Let 7 : & (2) — &2 (2) be the g-topology on 2 = (0,1) C
R (set of real numbers) generated by 7;-open and 7;-closed sets belonging to:

Ty € {@’w: (VMGI;;\I;)O@’Q,#:@W{ﬁwz(;1_1)})};

I

1

-7, © {xfw (vMeI:o\Ié‘)([%,ﬁﬂ]v[%,ﬁﬂ(i,l—uﬂ)},

respectively. Clearly, the g-topology 7 : & (Q) — &7 () satisfies the relations 5 (0) = 0,
1 1
T (Og.) C (,u’l - M) = 0Oy, and, moreover, ‘%(ﬂueI;\lg Ogn) = ﬂuel*\l* Ty (O4,,,) and

%(UME%V; Og ) = UueI* \Ig Iy (O4,,,) are also satisfied, since ﬂﬂel*\l* Ogp = Og3 € Ty
and Uuel* \Ig Oy = Q € Ty, respectively. Thus, T, = (T, Q) is a F;-space and, since
Ty = (,9Q) = (7,Q) = F, it is also a T -space. Observe that <ﬁg7o‘>aelgo\l2* is a Ty-open
covering of €, since Oy, € O[T, for every a € I\ I5 and, moreover, it is also a g-T4-open
covering of 2, since Oy o C 0py(Fg.a) € g-O [T for every a € I7,\I5. On the other hand, for each

1 1 1
o > 3, the relation — € UMEI*\I; e (, 1-— ) . Hence, from every g-%4-open subcovering
o ’ o o

(Oa,9(0) ) (a0(a))c 2. Ty (Og.0) aers gz Where T3 = I\ I3 and Jj ) = Iy \ I3, the

union U(aﬂ(a))e]* XT3 O4,9(a) must fail to contain some point of {2 and, hence, there exist no

finite g-T4-open subcovering of <ﬁgva>ae1* N This proves that T, = (Z, ), where Q = (0,1),
oo 2
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]

is not a TLA -space. Since g-T;-compactness implies Ty-compactness, it follows, consequently,

that it is also not a g—TgA] -space. Finally, from this case, it results that, not every Ty-set of a

g-TgA] -space is itself g-T4-compact.

4.3. Concluding Remarks

In this paper, a new theory called Theory of g-%, -Compactness has been presented, the foundation
of which was based on the theory of g-Tj-sets [22, 23]. The theory holds equally well when
(Q,7;) = (2,7), and other characteristics adapted on this ground, in which case it might be
called Theory of g-%-Connectedness.

Thus, it follows that in a Jj-space the theoretical framework categorises such statements
as g-T4-compactness in terms of relatively open Tj-sets, g-T,-compactness in terms of rela-
tively semi-open Tg-sets, g-T,-compactness in terms of relatively preopen %g-sets, and g-%-
compactness in terms of relatively semi-preopen ¥,-sets as g-%4-compactness of categories 0, 1,
2 and 3, respectively, and theorises the concepts in a unified way; in a Z -space it categorises
such statements as g-T-compactness in terms of relatively open T-sets, g-%T-compactness in terms
of relatively semi-open T-sets, g-T-compactness in terms of relatively preopen ¥-sets, and g-%-
compactness in terms of relatively semi-preopen T-sets as g-%-compactness of categories 0, 1, 2
and 3, respectively, and theorises the concepts in a unified way.

It is an interesting topic for future research to study other derived concepts called countable,
sequential, and local generalized compactness (countable, sequential, local g-T4-compactness) in

Ty-spaces. Such a study will be considered in a next paper, and this paper ends here.
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