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Abstract: In this paper, a novel class of generalized compact sets (briefly, g-Tg -compact sets) in

generalized topological spaces (briefly, Tg -spaces) is studied. The study reveals that g-Tg -compactness

implies ordinary compactness (briefly, Tg -compactness) in Tg -spaces, and such statement implies its

analogue in ordinary topological spaces (briefly, T -spaces). Diagrams establish the various relationships

amongst these types of g-Tg -compactness presented here and in relation to other types of g-T -compactness

in T -spaces presented in the literature of Tg -spaces, and a nice application supports the overall theory.

Keywords: Generalized topology (Tg ), generalized topological space (Tg -space), generalized sets (g-Tg -

sets), generalized compactness (g-Tg -compactness).

1. Introduction

The concepts of T -compactness and g-T -compactness in T -spaces (ordinary and generalized

compactness in ordinary topological spaces) and the concepts of Tg -compactness and g-Tg -

compactness in Tg -spaces (ordinary and generalized compactness in generalized topological spaces)

are verily the most important topological invariants [3–5, 7, 15–17, 20, 21, 24, 25, 27, 30–38].

For, T , g-T , Tg , g-Tg -compactness, respectively, are absolute properties of T , g-T , Tg , g-Tg -

sets [2, 13, 18, 27, 31, 35, 39]. Typical examples of g-T -compactness in T -spaces are α , β ,

γ -compactness [10, 19, 28]; examples of Tg -compactness in Tg -spaces are semi-∗α , s , gb -

compactness [7, 14, 31], whereas examples of g-Tg -compactness in Tg -spaces are bTµ , µ-rgb ,

πp -compactness [5, 24, 40], among others.

In the literature of Tg -spaces, several new classes of g-Tg -compactness in Tg -spaces, similar

in descriptions to g-T -compactness in T -spaces, have been studied [20, 21, 24, 27, 30, 32, 36–38].
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In this paper, a novel class of g-Tg -compact sets in Tg -spaces is studied.

The paper is organized as follows: In Section 2, preliminary notions are described in

Subsection 2.1 and the main results of g-Tg -compactness in a Tg -space are reported in Section 3.

In Section 4, the establishment of the relationships among various types of g-Tg -compactness

are discussed in Subsection 4.1. To support the work, a nice application of the concept of

g-Tg -compactness in a Tg -space is presented in Subsection 4.2. Finally, Subsection 4.3 provides

concluding remarks and future directions of the notion of g-Tg -compactness in a Tg -space.

2. Theory

2.1. Preliminaries

Notations and definitions not presented here are presented in [22, 23].

The set U denotes the universe of discourse, fixed within the framework of the theory

of g-Tg -compactness and containing as elements all sets (Λ -sets: Λ ∈
{
Ω,Σ

}
; TΛ , g-TΛ ,

TΛ , g-TΛ -sets; Tg,Λ , g-Tg,Λ , Tg,Λ , g-Tg,Λ -sets, to name a few) considered in this theory, and

I0n
def
=

{
ν ∈ N0 : ν ≤ n

}
; index sets I0∞ , I∗n , I∗∞ are defined similarly [22, 23]. Every one-valued

map of the type Tg,Λ : P (Λ)
def
=

{
Og,ν : Og,ν ⊆ Λ

}
−→ P (Λ) , satisfying Tg,Λ (∅) = ∅ ,

Tg,Λ (Og) ⊆ Og and Tg,Λ

(∪
ν∈I∗

∞
Og,ν

)
=

∪
ν∈I∗

∞
Tg,Λ (Og,ν) is called an absolute g-topology on

Λ while Tg,Γ : P (Γ)
def
=

{
Og,ν : Og,ν ⊂ Γ ⊆ Λ

}
7−→ Tg,Γ

def
=

{
Og ∩ Γ : Og ∈ Tg,Λ

}
defines a

relative g-topology on Γ , and the structures Tg,Λ
def
= (Λ,Tg,Λ) and Tg,Γ

def
= (Γ,Tg,Γ) , respectively,

are called a Tg,Λ -space and a Tg,Γ -subspace [22, 23], on which no separation axioms are assumed

unless otherwise mentioned [11, 12, 29].

The classes of Tg,Λ -open and Tg,Λ -closed sets are Tg,Λ
def
=

{
Og ⊂ Tg,Λ : Og ∈ Tg,Λ

}
and

¬Tg,Λ
def
=

{
Kg ⊂ Tg,Λ : {Λ (Kg) ∈ Tg,Λ

}
, respectively; Csub

Tg,Λ
[Sg]

def
=

{
Og ∈ Tg,Λ : Og ⊆ Sg

}
and Csup

¬Tg,Λ
[Sg]

def
=

{
Kg ∈ ¬Tg,Λ : Kg ⊇ Sg

}
, respectively, are the classes of Tg,Λ -open subsets

and Tg,Λ -closed supersets (complements of the Tg,Λ -open subsets) of the Tg,Λ -set Sg ⊂ Tg,Λ

[22, 23].

The operator clg,Λ : P (Λ) −→ P (Λ) carrying Sg ⊂ Tg,Λ into its closure clg,Λ (Sg) is

called a g-closure operator and the operator intg,Λ : P (Λ) −→P (Λ) carrying it into its interior

intg,Λ (Sg) is called a g-interior operator [6, 22, 23], where:

intg,Λ (Sg)
def
=

∪
Og∈Csub

Tg,Λ
[Sg]

Og, clg,Λ (Sg)
def
=

∩
Kg∈Csup

¬Tg,Λ
[Sg]

Kg. (1)
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For convenience of notation, let P∗ (Ω) = P (Ω) \
{
∅
}

, T ∗
g = Tg \

{
∅
}

, and ¬T ∗
g = ¬Tg \

{
∅
}

.

The mapping opg : P (Λ) −→P (Λ) is called a g-operation on P (Λ) if it holds that:

(
∀Sg ∈P∗ (Λ)

)(
∃ (Og,Kg) ∈ T ∗

g,Λ × ¬T ∗
g,Λ

)[(
opg (∅) = ∅

)
∨
(
¬ opg (∅) = ∅

)
∨
(
Sg ⊆ opg (Og)

)
∨
(
Sg ⊇ ¬ opg (Kg)

)]
, (2)

where ¬ opg : P (Ω) −→P (Ω) is called the “ complementary g-operation”on P (Ω) ranging in

P (Ω) and, for all (Sg,Ug,µ,Vg,ν) ∈α∈I3∗ P∗ (Ω) such that Wg = Ug,µ ∪ Vg,ν and
(
Ŵg,¬Ŵg

)
=(

opg (Wg) ,¬ opg (Wg)
)
, the following axioms are satisfied:

• Ax. i.
(
Sg ⊆ opg (Og)

)
∨
(
Sg ⊇ ¬ opg (Kg)

)
,

• Ax. ii.
(
opg (Sg) ⊆ opg ◦ opg (Og)

)
∨
(
¬ opg (Sg) ⊇ ¬ opg ◦¬ opg (Kg)

)
,

• Ax. iii.
(

Ŵg ⊆
∪

σ=µ,ν

opg (Og,σ)

)∨(
¬Ŵg ⊇

∪
σ=µ,ν

¬ opg (Kg,σ)

)
,

• Ax. iv.
(
Ug,µ ⊆ Vg,ν −→ opg (Og,µ) ⊆ opg (Og,ν)

)
∨
(
Ug,µ ⊇ Vg,ν ←− ¬ opg (Kg,µ)

⊇ ¬ opg (Kg,ν)
)

for some (Og,Og,µ,Og,ν) ∈α∈I3∗ T ∗
g,Λ and (Kg,Kg,µ,Kg,ν) ∈α∈I3∗ ¬T ∗

g,Λ [8, 26]. The class

of all possible g-operators and their complementary g-operators in the Tg,Λ -space Tg,Λ are

Lg

[
Λ
] def
=

{
opg,νµ (·) =

(
opg,ν (·) ,¬ opg,µ (·)

)
: (ν, µ) ∈ I03 × I03

}
= L ω

g

[
Λ
]
×L κ

g

[
Λ
]
, where:

opg (·) ∈ L ω
g

[
Λ
] def
=

{
opg,0 (·) , opg,1 (·) , opg,2 (·) , opg,3 (·)

}
=

{
intg (·) , clg ◦ intg (·) , intg ◦ clg (·) , clg ◦ intg ◦ clg (·)

}
;

¬ opg (·) ∈ L κ
g

[
Λ
] def
=

{
¬ opg,0 (·) , ¬ opg,1 (·) , ¬ opg,2 (·) , ¬ opg,3 (·)

}
=

{
clg (·) , intg ◦ clg (·) , clg ◦ intg (·) , intg ◦ clg ◦ intg (·)

}
. (3)

A Tg,Λ -set Sg,Λ ⊂ Tg in a Tg,Λ -space is called a g-Tg,Λ -set if and only if (Og,Kg) ∈ Tg,Λ×¬Tg,Λ

and opg (·) ∈ Lg

[
Λ
]

exist such that the following statement holds:

(∃ξ)
[
(ξ ∈ Sg) ∧

((
Sg ⊆ opg (Og)

)
∨
(
Sg ⊇ ¬ opg (Kg)

))]
. (4)

The g-Tg,Λ -set Sg ⊂ Tg,Λ is of category ν if and only if is in the class of g-ν-Tg,Λ -sets:

g-ν-S
[
Tg,Λ

] def
=

{
Sg ⊂ Tg,Λ :

(
∃Og,Kg,opg,ν (·)

)
[(

Sg ⊆ opg,ν (Og)
)
∨
(
Sg ⊇ ¬ opg,ν (Kg)

)]}
. (5)
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The classes of g-ν-Tg,Λ -open and g-ν-Tg,Λ -closed sets, respectively, are defined by

g-ν-O
[
Tg,Λ

] def
=

{
Sg ⊂ Tg,Λ :

(
∃Og,opg,ν (·)

) [
Sg ⊆ opg,ν (Og)

]}
,

g-ν-K
[
Tg,Λ

] def
=

{
Sg ⊂ Tg,Λ :

(
∃Kg,opg,ν (·)

) [
Sg ⊇ ¬ opg,ν (Kg)

]}
(6)

and g-S
[
Tg,Λ

]
=

∪
ν∈I0

3
g-ν-S

[
Tg,Λ

]
=

∪
(ν,E)∈I0

3×{O,K} g-ν-E
[
Tg

]
=

∪
E∈{O,K} g-E

[
Tg

]
[22, 23].

By adding a g-Tg -separation axiom of type H , called g-Tg,H -axiom, to the axioms for a

Tg -space Tg = (Ω,Tg) to obtain a g-T (H)
g -space g-T(H)

g
def
=

(
Ω, g-T (H)

g

)
is meant that, for every

disjoint pair (ξ, ζ) ∈ Tg × Tg of points in Tg , there exists a disjoint pair (Og,ξ,Og,ζ) ∈ Tg × Tg

of Tg -open sets such that (ξ, ζ) ∈
(
opg (Og,ξ) , opg (Og,ζ)

)
[23]. The definition follows:

Definition 2.1 [23][g-T (H)
g -Space] A Tg -space Tg = (Ω,Tg) endowed with a g-Tg,H -axiom is

called a g-T (H)
g -space g-T(H)

g
def
=

(
Ω, g-T (H)

g

)
.

By omitting the subscript g in almost all symbols of the above definitions, we obtain very similar

definitions but in a T -space; see [22, 23].

Definition 2.2 [23][g-Tg -Sets Sequence] Let g-ν-S [Tg] ⊆ Tg be the class of g-Tg -sets of category

ν in a Tg -space Tg = (Ω,Tg) . The symbol
⟨
Sg,α ∈ g-ν-S [Tg]

⟩
α∈I∗

σ
denotes a sequence of g-Tg -

sets of category ν in Tg that has been indexed by I∗σ ⊆ I∗∞ , inheriting its order from I∗σ , and the

corresponding index mapping ϕ : α 7→ Sg,α denotes the αth term of the sequence.

Throughout, the relation
⟨
Rg,α

⟩
α∈I∗

∞
≺

⟨
Sg,α

⟩
α∈I∗

∞
means that the one preceding “ ≺”

is a subsequence of the other following “ ≺”. Suppose a Tg -set Rg ⊂ Tg is related to a sequence⟨
Sg,α ∈ g-S [Tg]

⟩
α∈I∗

σ
by the relation Rg ⊆

∪
α∈I∗

σ
Sg,α , then Rg is said to be covered by a

sequence
⟨
Sg,α ∈ g-S [Tg]

⟩
α∈I∗

σ
whose cardinality is at most σ ∈ I∗∞ . The definition follows:

Definition 2.3 [23][g-ν-Tg -Covering] Let Sg ⊂ Tg be a Tg -set in a Tg -space Tg . Then, for

every ν ∈ I03 :

• i. Sg is said to be “ covered” by a sequence
⟨
Ug,α ∈ g-ν-O [Tg]

⟩
α∈I∗

σ
of g-ν-Tg -open sets

whose cardinality is at most σ ∈ I∗∞ if and only if Sg ⊆
∪

α∈I∗
σ

Ug,α .

• ii. Sg is said to be “ covered” by a sequence
⟨
Vg,α ∈ g-ν-K [Tg]

⟩
α∈I∗

σ
of g-ν-Tg -closed sets

whose cardinality is at most σ ∈ I∗∞ if and only if Sg ⊆
∪

α∈I∗
σ

Vg,α .
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Accordingly,
⟨
Sg,α ∈ g-S [Tg]

⟩
α∈I∗

σ
,
⟨
Ug,α ∈ g-O [Tg]

⟩
α∈I∗

σ
, and

⟨
Vg,α ∈ g-K [Tg]

⟩
α∈I∗

σ
,

respectively, are simply said to be a g-Tg -covering, a g-Tg -open covering and a g-Tg -closed

covering of Sg whose cardinality is at most σ ∈ I∗∞ .

Definition 2.4 [23][g-Tg -Subcovering] Let
⟨
Sg,α ∈ g-S [Tg]

⟩
α∈I∗

σ
be a g-Tg -covering of a Tg -set

Sg ⊂ Tg in a Tg -space Tg and let ϑ : I∗σ −→ I∗ϑ(σ) ⊆ I∗σ be an index mapping. Then the map

ϑ :
⟨
Sg,α ∈ g-S [Tg]

⟩
α∈I∗

σ
−→

⟨
Sg,ϑ(α) ∈ g-S [Tg]

⟩
(α,ϑ(α))∈I∗

σ×I∗
ϑ(σ)

(7)

is said to realise a “ g-Tg -subcovering”
⟨
Sg,ϑ(α)

⟩
(α,ϑ(α))∈I∗

σ×I∗
ϑ(σ)

of Sg from the g-Tg -covering⟨
Sg,α

⟩
α∈I∗

σ
if and only if Sg ⊆

∪
(α,ϑ(α))∈I∗

σ×I∗
ϑ(σ)

Sg,ϑ(α) .

Thus,
⟨
Sg,ϑ(α)

⟩
(α,ϑ(α))∈I∗

σ×I∗
ϑ(σ)

≺
⟨
Sg,α

⟩
α∈I∗

σ
is equivalent to this definition, meaning that,

for every ϑ (α) ∈ I∗ϑ(σ) ⊆ I∗σ , there exists α ∈ I∗σ ⊆ I∗∞ such that Sg,ϑ(α) = Sg,α . It is plain that,

for every σ ∈ I∗∞ , ϑ (σ) = card
(
I∗ϑ(σ)

)
≤ card (I∗σ) = σ .

Definition 2.5 [23][g-ν-Tg -Compact Set] A Tg -set Sg ⊂ Tg of a Tg -space Tg is said to be

g-ν-Tg -compact if and only if, for every g-ν-Tg -open covering
⟨
Ug,α ∈ g-ν-O [Tg]

⟩
α∈I∗

σ
,

∃
⟨
Ug,ϑ(α)

⟩
(α,ϑ(α))∈I∗

σ×I∗
ϑ(σ)

: Sg ⊆
∪

(α,ϑ(α))∈I∗
σ×I∗

ϑ(σ)

Ug,ϑ(α), (8)

where ϑ (σ) = card
(
I∗ϑ(σ)

)
≤ card (I∗σ) = σ . The class of all g-Tg -compact sets of category ν ∈ I03

is:

g-ν-A [Tg]
def
=

{
Sg :

[
∀
⟨
Ug,α ∈ g-ν-O [Tg]

⟩
α∈I∗

σ

][
∃
⟨
Ug,ϑ(α)

⟩
(α,ϑ(α))∈I∗

σ×I∗
ϑ(σ)

]
(

Sg ⊆
∪

(α,ϑ(α))∈I∗
σ×I∗

ϑ(σ)

Ug,ϑ(α)

)}
. (9)

Thus, by a g-ν-Tg -compact set is meant a type of set Tg -set every g-ν-Tg -open covering

of which has a finite g-ν-Tg -open subcovering [27, 36, 37]. Further, it is clear from the context

that, g-A [Tg] =
∪

ν∈I0
3
g-ν-A [Tg] ; its elements, then, are simply called g-Tg -compact sets. Stated

differently, the above definition says that, given any sequence
⟨
Ug,α ∈ g-O [Tg]

⟩
α∈I∗

σ
of g-Tg -open

sets of Sg ⊂ Tg such that every point ξ ∈ Sg belongs to at least one Ug,α , α ∈ I∗σ , it is possible

to select from
⟨
Ug,α

⟩
α∈I∗

σ
a finite number of g-Tg -open sets Ug,ϑ(1) , Ug,ϑ(2) , . . . , Ug,ϑ(σ) whose

union covers all of Sg .
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Remark 2.6 Since
⟨
Ug,ϑ(α)

⟩
(α,ϑ(α))∈I∗

σ×I∗
ϑ(σ)

≺
⟨
Ug,α ∈ g-O [Tg]

⟩
α∈I∗

σ
, g-Tg -compactness of a

Tg -set is defined in terms of relatively g-Tg -open sets.

Definition 2.7 [23][g-Tg -Refinement] A g-Tg -covering
⟨
Sg,α ∈ g-S [Tg]

⟩
α∈I∗

σ
of a Tg -set Sg ⊂

Tg of a Tg -space Tg = (Ω,Tg) is a “ g-Tg -refinement” of another g-Tg -covering
⟨
Rg,β ∈

g-S [Tg]
⟩
β∈I∗

µ
of the same Tg -set Sg if and only if:

(
∀α ∈ I∗σ

)(
∃β ∈ I∗µ

)[
Sg,α ⊆ Rg,β

]
. (10)

In the event that Sg = Ω ,
⟨
Sg,α ∈ g-ν-S [Tg]

⟩
α∈I∗

σ
is a g-ν-Tg -covering of Tg if Ω =∪

α∈I∗
σ

Sg,α . Accordingly,
⟨
Sg,ϑ(α) ∈ g-ν-S [Tg]

⟩
(α,ϑ(α))∈I∗

σ×I∗
ϑ(σ)

is a g-ν-Tg -subcovering of Tg if

the relation Ω =
∪

(α,ϑ(α))∈I∗
σ×I∗

ϑ(σ)
Sg,ϑ(α) holds, where ϑ (σ) = card

(
I∗ϑ(σ)

)
< card (I∗σ) < ∞ .

The definition follows.

Definition 2.8 [23][g-ν-T [A]
g -Space] A Tg -space Tg = (Ω,Tg) is called a g-ν-T [A]

g -space denoted

g-ν-T[A]
g

def
=

(
Ω, g-ν-T [A]

g

)
if and only if each g-ν-Tg -open covering

⟨
Ug,α ∈ g-ν-O [Tg]

⟩
α∈I∗

σ
of Tg

has a finite g-ν-Tg -open subcovering.

In the sequel, by a g-ν-T [A]
g -space g-T[A]

g =
(
Ω, g-T [A]

g

)
is meant g-T[A]

g =
∨

ν∈I0
3
g-ν-T[A]

g =(
Ω,

∨
ν∈I0

3
g-ν-T [A]

g

)
=

(
Ω, g-T [A]

g

)
.

3. Main Results
The main results of the theory of g-Tg -compactness are presented in this section.

Theorem 3.1 A g-T (H)
g -space g-T(H)

g =
(
Ω, g-T (H)

g

)
is a g-T [A]

g -space g-T[A]
g =

(
Ω, g-T [A]

g

)
if and only if every sequence

⟨
Vg,α ∈ g-K [Tg]

⟩
α∈I∗

σ
of g-Tg -closed sets which has the finite

intersection property has a non-empty intersection.

Proof Necessity. Let the g-T (H)
g -space g-T(H)

g =
(
Ω, g-T (H)

g

)
be a g-T [A]

g -space g-T[A]
g =(

Ω, g-T [A]
g

)
, and let

⟨
Vg,α ∈ g-K [Tg]

⟩
α∈I∗

σ
be a sequence of g-Tg -closed sets g-T(H)

g such that∪
α∈I∗

σ
Vg,α = ∅ . For every α ∈ I∗σ , set Ug,α = { (Vg,α) and consider the sequence

⟨
Ug,α ∈

g-O [Tg]
⟩
α∈I∗

σ
of g-Tg -open sets. Since

∪
α∈I∗

σ
Ug,α =

∪
α∈I∗

σ
{ (Vg,α) = {

(∩
α∈I∗

σ
Vg,α

)
= Ω , it fol-

lows that
⟨
Ug,α ∈ g-O [Tg]

⟩
α∈I∗

σ
is a g-Tg -open covering of g-T(H)

g . But g-T(H)
g is a g-T [A]

g -space
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g-T[A]
g =

(
Ω, g-T [A]

g

)
and, thus, there exists a g-Tg -open subcovering

⟨
Ug,β(α)

⟩
(α,β(α))∈I∗

σ×I∗
n
≺⟨

Ug,α ∈ g-O [Tg]
⟩
α∈I∗

σ
such that

Ω =
∪

(α,β(α))∈I∗
σ×I∗

n

Ug,β(α) =
∪

(α,β(α))∈I∗
σ×I∗

n

{
(
Vg,β(α)

)
= {

( ∩
(α,β(α))∈I∗

σ×I∗
n

Vg,β(α)

)
.

This implies that
∩

(α,β(α))∈I∗
σ×I∗

n
Vg,β(α) = ∅ . Hence, if a sequence

⟨
Vg,α ∈ g-K [Tg]

⟩
α∈I∗

σ
of

g-Tg -closed sets of g-T(H)
g has the finite intersection property, then

∩
(α,β(α))∈I∗

σ×I∗
n

Vg,β(α) 6= ∅ .

Sufficiency. Conversely, suppose that g-T(H)
g =

(
Ω, g-T (H)

g

)
is a g-T (H)

g -space in which

every sequence
⟨
Vg,α ∈ g-K [Tg]

⟩
α∈I∗

σ
of g-Tg -closed sets which has the finite intersection property

has a non-empty intersection. Then, for every subsequence
⟨
Vg,β(α)

⟩
(α,β(α))∈I∗

σ×I∗
n
≺

⟨
Vg,α

⟩
α∈I∗

σ

of g-Tg -closed sets, the relation
∩

(α,β(α))∈I∗
σ×I∗

n
Vg,β(α) 6= ∅ holds. Consequently,

∩
α∈I∗

σ
Vg,α 6= ∅ .

In other words,
∩

(α,β(α))∈I∗
σ×I∗

n
Vg,β(α) 6= ∅ for every I∗n ⊆ I∗σ implies

∩
α∈I∗

σ
Vg,α 6= ∅ . But

this is the contrapositive statement of
∩

α∈I∗
σ

Vg,α = ∅ implies that there exists I∗n ⊆ I∗σ such

that
∩

(α,β(α))∈I∗
σ×I∗

n
Vg,β(α) = ∅ . It results that, every sequence

⟨
Vg,α ∈ g-K [Tg]

⟩
α∈I∗

σ
of g-Tg -

closed sets of Tg ,
∩

α∈I∗
σ

Vg,α = ∅ implies
⟨
Vg,α ∈ g-K [Tg]

⟩
α∈I∗

σ
contains a finite subsequence⟨

Vg,β(α)

⟩
(α,β(α))∈I∗

σ×I∗
n

of g-Tg -closed sets with
∩

(α,β(α))∈I∗
σ×I∗

n
Vg,β(α) = ∅ . Hence, g-T(H)

g is a

g-T [A]
g -space g-T[A]

g =
(
Ω, g-T [A]

g

)
. 2

An interesting remark may well be given at this stage.

Remark 3.2 In particular, if the g-T (H)
g -space g-T(H)

g =
(
Ω, g-T (H)

g

)
is a g-T [A]

g -space g-T[A]
g =(

Ω, g-T [A]
g

)
and the elements of

⟨
Vg,α ∈ g-K [Tg]

⟩
α∈I∗

σ
forms a descending sequence Vg,1 ⊃ Vg,2 ⊃

· · · ⊃ Vg,α ⊃ · · · of non-empty g-Tg -closed sets, then
∩

α∈I∗
σ

Vg,α 6= ∅ . Such property in its own

right is weaker than g-Tg -compactness. In fact, it indicates the sense in which g-Tg -compactness

asserts that the g-T (H)
g -space g-T(H)

g has enough points, namely, at least enough points to yield

one point in each such intersection of a descending sequence Vg,1 ⊃ Vg,2 ⊃ · · · ⊃ Vg,α ⊃ · · · of

non-empty g-Tg -closed sets.

Theorem 3.3 (g-Tg -Refinement) In a Tg -space Tg = (Ω,Tg) , any g-Tg -subcovering of the

type
⟨
Sg,ϑ(α)

⟩
(α,ϑ(α))∈I∗

σ×I∗
ϑ(σ)

derived from a g-Tg -covering
⟨
Sg,α ∈ g-S [Tg]

⟩
α∈I∗

σ
is a g-Tg -

refinement.

Proof Let
⟨
Sg,ϑ(α)

⟩
(α,ϑ(α))∈I∗

σ×I∗
ϑ(σ)

be any g-Tg -subcovering derived from a g-Tg -covering
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⟨
Sg,α ∈ g-S [Tg]

⟩
α∈I∗

σ
in a Tg -space Tg = (Ω,Tg) . Then, it results, consequently, that the

relation
⟨
Sg,ϑ(α)

⟩
(α,ϑ(α))∈I∗

σ×I∗
ϑ(σ)

≺
⟨
Sg,α

⟩
α∈I∗

σ
holds true. Thus,

(
∀ϑ (α) ∈ I∗ϑ(σ)

)(
∃α ∈ I∗σ

)[
Sg,ϑ(α) ⊆ Sg,α

]
.

Therefore, the g-Tg -subcovering
⟨
Sg,ϑ(α)

⟩
(α,ϑ(α))∈I∗

σ×I∗
ϑ(σ)

derived from the g-Tg -covering
⟨
Sg,α ∈

g-S [Tg]
⟩
α∈I∗

σ
is therefore a g-Tg -refinement. This completes the proof of the theorem. 2

Theorem 3.4 Let Sg ⊂ Tg be a Tg -set of a Tg -space Tg = (Ω,Tg) . Then, Sg ∈ g-A [Tg] if

and only if, for each g-Tg -open covering
⟨
Ug,α ∈ g-O [Tg]

⟩
α∈I∗

σ
of Sg , there is a finite g-Tg -open

subcovering
⟨
Ug,ϑ(α)

⟩
(α,ϑ(α))∈I∗

σ×I∗
ϑ(σ)

of Sg :

Sg ∈ g-A [Tg] ⇔
(
∀
⟨
Ug,α ∈ g-O [Tg]

⟩
α∈I∗

σ

)(
∃
⟨
Ug,ϑ(α)

⟩
(α,ϑ(α))∈I∗

σ×I∗
ϑ(σ)

≺
⟨
Ug,α

⟩
α∈I∗

σ

)
[
Sg ⊆

∪
(α,ϑ(α))∈I∗

σ×I∗
ϑ(σ)

Ug,ϑ(α)

]
. (11)

Proof Necessity. Let Sg ∈ g-A [Tg] in Tg , and let
⟨
Ug,α ∈ g-O [Tg]

⟩
α∈I∗

σ
be a g-Tg -

open covering of Sg . Then, Sg ⊆
∪

α∈I∗
σ

Ug,α and, consequently, Sg =
∪

α∈I∗
σ
(Ug,α ∩Sg) .

Therefore,
⟨
Ug,α∩Sg

⟩
α∈I∗

σ
is a g-Tg -open covering of Sg by relatively g-Tg -open sets Ug,1∩Sg ,

Ug,2∩Sg , . . . , Ug,σ∩Sg ∈ g-O [Tg] . Since Sg ∈ g-A [Tg] , there is a finite g-Tg -open subcovering⟨
Ug,ϑ(α)

⟩
(α,ϑ(α))∈I∗

σ×I∗
ϑ(σ)

of Sg such that Sg =
∪

(α,ϑ(α))∈I∗
σ×I∗

ϑ(σ)

(
Ug,ϑ(α) ∩Sg

)
. Thus, it

follows that Sg ⊆
∪

(α,ϑ(α))∈I∗
σ×I∗

ϑ(σ)
Ug,ϑ(α) ∩Sg .

Sufficiency. Conversely, suppose that, for every g-Tg -open covering
⟨
Ug,α ∈ g-O [Tg]

⟩
α∈I∗

σ

of Sg ,
⟨
Ug,α

⟩
α∈I∗

σ
has a finite g-Tg -open subcovering of the type

⟨
Ug,ϑ(α)

⟩
(α,ϑ(α))∈I∗

σ×I∗
ϑ(σ)

of Sg .

It must be shown that, given a g-Tg -open covering
⟨
Ûg,β

⟩
β∈I∗

µ
of Sg by relatively g-Tg -open sets

Ûg,1 , Ûg,2 , . . . , Ûg,µ ∈ g-O [Tg] , there is a finite g-Tg -open subcovering
⟨
Ûg,ϑ(β)

⟩
(β,ϑ(β))∈I∗

µ×I∗
ϑ(µ)

of Sg such that Sg =
∪

(β,ϑ(β))∈I∗
µ×I∗

ϑ(µ)
Ûg,ϑ(β) . For every β ∈ I∗µ , since Ûg,β ∈ g-O [Tg]

is a relatively g-Tg -open set in Sg , there exists a g-Tg -open set Ug,β ∈ g-O [Tg] such that

Ûg,β = Ug,β ∩Sg . But Sg =
∪

β∈I∗
µ

Ûg,β =
∪

β∈I∗
µ
(Ug,β ∩Sg) ⊆

∪
β∈I∗

µ
Ug,β and, consequently,

Sg ⊆
∪

β∈I∗
µ

Ug,β , implying that
⟨
Ug,β

⟩
β∈I∗

µ
is a g-Tg -open covering of Sg by g-Tg -open sets

Ug,1 , Ug,2 , . . . , Ug,µ ∈ g-O [Tg] . By hypothesis, there exists a finite g-Tg -open subcovering
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⟨
Ug,ϑ(β)

⟩
(β,ϑ(β))∈I∗

µ×I∗
ϑ(µ)

of Sg such that Sg ⊆
∪

(β,ϑ(β))∈I∗
µ×I∗

ϑ(µ)
Ug,ϑ(β) . Thus,

Sg =

( ∪
(β,ϑ(β))∈I∗

µ×I∗
ϑ(µ)

Ug,ϑ(β)

)
∩Sg =

∪
(β,ϑ(β))∈I∗

µ×I∗
ϑ(µ)

(
Ug,ϑ(β) ∩Sg

)

=
∪

(β,ϑ(β))∈I∗
µ×I∗

ϑ(µ)

Ûg,ϑ(β).

Hence, it results that the g-Tg -open covering
⟨
Ûg,β ∈ g-O [Tg]

⟩
β∈I∗

µ
of Sg by relatively g-Tg -open

sets Ûg,1 , Ûg,2 , . . . , Ûg,σ ∈ g-O [Tg] has a finite g-Tg -open subcovering
⟨
Ûg,ϑ(β)

⟩
(β,ϑ(β))∈I∗

µ×I∗
ϑ(µ)

of Sg . 2

Theorem 3.5 If Sg,1 , Sg,2 , . . . , Sg,µ ∈ g-A
[
Tg

]
be µ ≥ 1 g-Tg -compact sets in a Tg -space

Tg = (Ω,Tg) , then
∪

α∈I∗
µ

Sg,α ∈ g-A
[
Tg

]
in Tg :

∧
α∈I∗

µ

(
Sg,α ∈ g-A

[
Tg

])
⇒

∪
α∈I∗

µ
Sg,α ∈ g-A

[
Tg

]
. (12)

Proof Let Sg,1 , Sg,2 , . . . , Sg,µ ∈ g-A
[
Tg

]
be µ ≥ 1 g-Tg -compact sets in Tg . Then, for

every α ∈ I∗µ , there exists
⟨
Ug,ϑ(α,β)

⟩
(ϑ(α),ϑ(α,β))∈I∗

σ×I∗
β(σ)

≺
⟨
Ug,ϑ(α) ∈ g-O

[
Tg

]⟩
ϑ(α)∈I∗

σ
, where

I∗β(σ) ⊆ I∗σ , such that Sg,α ⊆
∪

(ϑ(α),ϑ(α,β))∈I∗
σ×I∗

β(σ)
Ug,ϑ(α,β) holds. Consequently,

∪
α∈I∗

µ
Sg,α ⊆

∪
α∈I∗

µ

( ∪
(ϑ(α),ϑ(α,β))∈I∗

σ×I∗
β(σ)

Ug,ϑ(α,β)

)
⊆

∪
(α,ϑ(α),ϑ(α,β))∈I∗

µ×I∗
σ×I∗

β(σ)

Ug,ϑ(α,β).

Hence, it follows that,
∪

α∈I∗
µ

Sg,α ∈ g-A
[
Tg

]
in Tg . The proof of the theorem is complete. 2

Theorem 3.6 If Sg ⊂ Tg be any finite Tg -set of a Tg -space Tg = (Ω,Tg) , then Sg ∈ g-A [Tg] :

(
Sg ⊂ Tg

)
∧
(
card (Sg) <∞

)
⇒ Sg ∈ g-A [Tg] . (13)

Proof Let Sg ⊂ Tg be any finite Tg -set of a Tg -space Tg = (Ω,Tg) . Then, there exist⟨
Og,ϑ(α)

⟩
(α,ϑ(α))∈I∗

σ×I∗
ϑ(σ)

≺
⟨
Og,α

⟩
α∈I∗

σ
such that

∪
ξ∈Sg

{ξ} ⊆
∪

(α,ϑ(α))∈I∗
σ×I∗

ϑ(σ)
Og,ϑ(α) holds.

Since Og,α ⊆ opg (Og,α) for every α ∈ I∗σ and
∪

ξ∈Sg
{ξ} = Sg , it results that,

Sg ⊆
∪

(α,ϑ(α))∈I∗
σ×I∗

ϑ(σ)

Og,ϑ(α) ⊆ opg

( ∪
(α,ϑ(α))∈I∗

σ×I∗
ϑ(σ)

Og,ϑ(α)

)

⊆
∪

(α,ϑ(α))∈I∗
σ×I∗

ϑ(σ)

opg
(
Og,ϑ(α)

)
⊆

∪
α∈I∗

σ

opg
(
Og,α

)
.
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Therefore, Sg ⊆
∪

(α,ϑ(α))∈I∗
σ×I∗

ϑ(σ)
opg

(
Og,ϑ(α)

)
. But, for every pair (α, ϑ (α)) ∈ I∗σ × I∗ϑ(σ) ,

opg
(
Og,ϑ(α)

)
∈ g-O [Tg] . Consequently, for every (α, ϑ (α)) ∈ I∗σ × I∗ϑ(σ) , there exists Ug,ϑ(α) ∈

g-O [Tg] such that Ug,ϑ(α) = opg
(
Og,ϑ(α)

)
. Thus, Sg ⊆

∪
(α,ϑ(α))∈I∗

σ×I∗
ϑ(σ)

Ug,ϑ(α) and hence,

Sg ∈ g-A [Tg] . This completes the proof of the theorem. 2

Corollary 3.7 Let Sg ⊆ Tg be a Tg -set of a discrete Tg -space Tg = (Ω,Tg) . Then, Sg ∈

g-A [Tg] if and only if it is a finite Tg -set.

Proposition 3.8 If Tg = (Ω,Tg) is a finite strong Tg -space, then it is a g-T [A]
g -space g-T[A]

g =(
Ω, g-T [A]

g

)
:

(
Tg = (Ω,Tg)

)
∧
(
card (Ω) <∞

)
⇒ g-T[A]

g =
(
Ω, g-T [A]

g

)
. (14)

Proof Let Tg = (Ω,Tg) be a finite strong Tg -space with Ω =
{
ξα : α ∈ I∗µ

}
and µ <

∞ . Since Tg is a finite strong Tg -space, if
⟨
Og,α

⟩
α∈I∗

σ
is a Tg -open covering of Ω , then, for

every α ∈ I∗µ , there exists a ϑ (α) ∈ I∗σ such that ξα ∈ Og,ϑ(α) . Thus, Ω =
∪

α∈I∗
µ
{ξα} ⊆∪

(α,ϑ(α))∈I∗
µ×I∗

σ
Og,ϑ(α) and consequently,

⟨
Og,ϑ(α)

⟩
(α,ϑ(α))∈I∗

µ×I∗
σ

is a Tg -open subcovering of Ω .

But, for every (α, ϑ (α)) ∈ I∗µ × I∗σ , Og,ϑ(α) ⊆ opg
(
Og,ϑ(α)

)
∈ g-O [Tg] . Consequently, for each

(α, ϑ (α)) ∈ I∗µ × I∗σ , there corresponds a Ug,ϑ(α) ∈ g-O [Tg] such that Ug,ϑ(α) = opg
(
Og,ϑ(α)

)
.

Thus, Ω ⊆
∪

(α,ϑ(α))∈I∗
µ×I∗

σ
Ug,ϑ(α) . Hence, Tg = (Ω,Tg) is a g-T [A]

g -space g-T[A]
g =

(
Ω, g-T [A]

g

)
.

The proof of the proposition is complete. 2

Proposition 3.9 If Tg = (Ω,Tg) be a Tg -space generated by unit Tg -sets of Ω , then any infinite

Tg -set Sg ⊂ Tg is not g-Tg -compact.

Proof Let Sg ⊂ Tg be any infinite Tg -set of a Tg -space Tg = (Ω,Tg) generated by unit

Tg -sets of Ω . Then, since {ξ} ∈ Tg and {ξ} ⊆ opg
(
{ξ}

)
hold for every {ξ} ⊂ Sg , it follows

that, for every ξ ∈ Sg , {ξ} ⊆ opg
(
{ξ}

)
. Consequently, Sg =

∪
ξ∈Sg

{ξ} ⊆
∪

ξ∈Sg
opg

(
{ξ}

)
.

Clearly, opg
(
{ξ}

)
∈ g-O [Tg] for every ξ ∈ Sg and therefore, there exists, for each ξ ∈ Sg , a

Ug,ξ ∈ g-O [Tg] such that Ug,ξ = opg
(
{ξ}

)
. Hence, Sg ⊆

∪
ξ∈Sg

Ug,ξ , implying that
⟨
Ug,ξ

⟩
ξ∈Sg

is an infinite g-Tg -open covering of Sg . Consequently, there exists no finite g-Tg -open subcovering⟨
Ug,ϑ(ξ)

⟩
(ξ,ϑ(ξ))∈Sg×I∗

σ
≺

⟨
Ug,ξ

⟩
ξ∈Sg

of Sg such that Sg ⊆
∪

(ξ,ϑ(ξ))∈Sg×I∗
σ

Ug,ϑ(ξ) . Hence,

Sg /∈ g-A
[
Tg

]
. This completes the proof of the theorem. 2
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Corollary 3.10 If Tg = (Ω,Tg) be a Tg -space generated by unit Tg -sets of Ω and Sg ⊂ Tg ,

then Sg ∈ g-A
[
Tg

]
if and only if it is a finite Tg -set in Tg .

Theorem 3.11 Let Sg ⊆ Tg be any Tg -set of a Tg -space Tg = (Ω,Tg) . If Sg be g-Tg -compact,

then it is also Tg -compact:

Sg ∈ g-A [Tg] ⇒ Sg ∈ A [Tg] . (15)

Proof Let Sg ⊆ Tg be any Tg -set of a Tg -space Tg = (Ω,Tg) and suppose Sg ∈ g-A [Tg] . Since

Sg is g-Tg -compact, there exists a g-Tg -open covering
⟨
Ug,α ∈ g-O

[
Tg

]⟩
α
∈ I∗σ of Sg which

has a g-Tg -open subcovering
⟨
Ug,ϑ(α)

⟩
(α,ϑ(α))∈I∗

σ×I∗
ϑ(σ)

such that Sg ⊆
∪

(α,ϑ(α))∈I∗
σ×I∗

ϑ(σ)
Ug,ϑ(α) .

The assertion that, Ug,ϑ(ξ) ∈ g-A [Tg] for every (α, ϑ (α)) ∈ I∗σ × I∗ϑ(σ) implies the existence of

Og,ϑ(ξ) ∈ Tg such that, Ug,ϑ(ξ) ⊆ opg
(
Og,ϑ(ξ)

)
for every (α, ϑ (α)) ∈ I∗σ × I∗ϑ(σ) . Consequently,

Sg =
∪

(α,ϑ(α))∈I∗
σ×I∗

ϑ(σ)

(
Og,ϑ(α) ∩Sg

)

⊆
∪

(α,ϑ(α))∈I∗
σ×I∗

ϑ(σ)

(
Og,ϑ(α) ∩ opg

(
Og,ϑ(ξ)

))
⊆

∪
(α,ϑ(α))∈I∗

σ×I∗
ϑ(σ)

Og,ϑ(ξ),

thereby implying, Sg ⊆
∪

(α,ϑ(α))∈I∗
σ×I∗

ϑ(σ)
Og,ϑ(ξ) . Hence, Sg ∈ g-A [Tg] implies Sg ∈ A [Tg] .

The proof of the theorem is complete. 2

Proposition 3.12 If Sg ⊆ Tg be any infinite Tg -set of a discrete Tg -space Tg = (Ω,Tg) , then

Sg /∈ g-A [Tg] .

Proof Let Sg ⊆ Tg be a Tg -set of a discrete Tg -space Tg = (Ω,Tg) . Then, Sg ∈ g-A [Tg] if

and only if it is a finite Tg -set. Since Tg is a discrete Tg -space, consider the class
{
{ξ} : ξ ∈ Sg

}
of unit Tg -sets of Sg . Clearly, the relation Sg ⊆

∪
ξ∈Sg

{ξ} ⊆
∪

ξ∈Sg
opg

(
{ξ}

)
holds and,

for every ξ ∈ Sg , opg
(
{ξ}

)
∈ g-O

[
Tg

]
. Accordingly, for every ξ ∈ Sg , set opg

(
{ξ}

)
= Ug,ξ .

Then,
⟨
Ug,ξ ∈ g-O

[
Tg

]⟩
ξ∈Sg

is an infinite g-Tg -open covering of Sg . Consequently,
⟨
Ug,ξ

⟩
ξ∈Sg

contains no finite g-Tg -open subcovering
⟨
Ug,ϑ(ξ)

⟩
(ξ,ϑ(ξ))∈Sg×I∗

σ
≺

⟨
Ug,ξ

⟩
ξ∈Sg

of Sg such that

Sg ⊆
∪

(ξ,ϑ(ξ))∈Sg×I∗
σ

Ug,ϑ(ξ) . Hence, Sg /∈ g-A
[
Tg

]
. The proof of the theorem is complete. 2

Corollary 3.13 Let Tg = (Ω,Tg) to be a Tg -space. If Tg is a g-T [A]
g -space g-T[A]

g =(
Ω, g-T [A]

g

)
, then it is also a T

[A]
g -space T

[A]
g =

(
Ω,T

[A]
g

)
.
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Theorem 3.14 A necessary and sufficient conditions for a Tg -space Tg = (Ω,Tg) to be a g-T [A]
g -

space g-T[A]
g =

(
Ω, g-T [A]

g

)
is that, whenever a sequence

⟨
Vg,α ∈ g-K [Tg]

⟩
α∈I∗

σ
of g-Tg -closed sets

is such that
∩

α∈I∗
σ

Vg,α = ∅ , then there exists
⟨
Vg,β(α)

⟩
(α,β(α))∈I∗

σ×I∗
n
≺

⟨
Vg,α

⟩
α∈I∗

σ
such that the

relation
∩

(α,β(α))∈I∗
σ×I∗

n
Vg,α = ∅ holds.

Proof Necessity. Suppose Tg is a g-T [A]
g -space g-T[A]

g =
(
Ω, g-T [A]

g

)
and a sequence

⟨
Vg,α ∈

g-K [Tg]
⟩
α∈I∗

σ
of g-Tg -closed sets is given such that

∩
α∈I∗

σ
Vg,α = ∅ . Then,

∪
α∈I∗

σ
Ug,α =∪

α∈I∗
σ
{ (Vg,α) = {

(∩
α∈I∗

σ
Vg,α

)
= Ω , so that

⟨
Ug,α ∈ g-O [Tg]

⟩
α∈I∗

σ
is a g-Tg -open covering

of Tg . Thus, there exists a g-Tg -open subcovering
⟨
Ug,β(α)

⟩
(α,β(α))∈I∗

σ×I∗
n
≺

⟨
Ug,α

⟩
α∈I∗

σ
and,

thus,
∩

(α,β(α))∈I∗
σ×I∗

n
Vg,β(α) = {

(∪
(α,β(α))∈I∗

σ×I∗
n

Ug,β(α)

)
= ∅ .

Sufficiency. Conversely, suppose that, for every
⟨
Vg,α ∈ g-K [Tg]

⟩
α∈I∗

σ
of g-Tg -closed sets

such that
∩

α∈I∗
σ

Vg,α = ∅ , there exists a g-Tg -open subcovering given by
⟨
Vg,β(α)

⟩
(α,β(α))∈I∗

σ×I∗
n
≺⟨

Vg,α

⟩
α∈I∗

σ
such that

∩
(α,β(α))∈I∗

σ×I∗
n

Vg,α . Further, let
⟨
Ug,α ∈ g-O [Tg]

⟩
α∈I∗

µ
stand for a g-Tg -

open covering of Tg . Then
⟨
{ (Ug,α) ∈ g-O [Tg]

⟩
α∈I∗

µ
is a sequence of g-Tg -closed sets such that∩

α∈I∗
µ
{ (Ug,α) = ∅ . Thus

∩
(α,β(α))∈I∗

µ×I∗
n
{
(
Ug,β(α)

)
= ∅ and

⟨
Ug,β(α) ∈ g-O [Tg]

⟩
(α,β(α))∈I∗

µ×I∗
n

is a g-Tg -open subcovering of Tg . 2

If Tg,Γ = (Γ,Tg,Γ) be a Tg -space such that (Γ,Tg,Γ) ⊆ (Ω,Tg,Ω) and (Γ,Tg,Γ) ⊆ (Σ,Tg,Σ) ,

where Tg,Ω = (Ω,Tg,Ω) and Tg,Σ = (Σ,Tg,Σ) are two Tg -spaces satisfying (Ω,Tg,Ω) 6= (Σ,Tg,Σ) ,

then Tg,Γ : P (Γ) −→ P (Γ) is the same whether Tg,Γ ⊆ Tg,Ω or Tg,Γ ⊆ Tg,Σ and, hence,

the assertion that, Tg,Γ = (Γ,Tg,Γ) is a g-T [A]
g -space g-T

[A]
g,Γ =

(
Γ, g-T

[A]
g,Γ

)
depends only on

the elements forming the structure (Γ,Tg,Γ) . Therefore, the g-Tg -compactness of a Tg -subspace

Tg,Γ = (Γ,Tg,Γ) of a Tg -space Tg,Ω = (Ω,Tg,Ω) may be related to Tg,Ω : P (Ω) −→ P (Ω) by

virtue of the following theorem.

Theorem 3.15 Let Γ ⊂ Ω be a Tg -set of a Tg -space Tg = (Ω,Tg) . Then, the following

statements are equivalent:

• i. Γ ∈ g-A
[
Tg

]
with respect to the absolute g-topology Tg : Pg (Ω) −→Pg (Ω) .

• ii. Γ ∈ g-A
[
Tg

]
with respect to the relative g-topology Tg,Γ : Pg (Γ) 7→ Tg,Γ

def
=

{
Og ∩ Γ :

Og ∈ Tg

}
.

Proof i. −→ ii. Let
⟨
Ug,α ∈ g-O [Tg]

⟩
α∈I∗

σ
is a g-Tg -open covering of Γ with respect to the
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relative g-topology Tg,Γ : Pg (Γ) 7→ Tg,Γ . The relative g-topology being Tg,Γ : Pg (Γ) 7→ Tg,Γ
def
={

Og ∩ Γ : Og ∈ Tg

}
, it consequently follows that, for every α ∈ I∗σ , there exists Ôg,α ∈ Tg such

that Ug,α ⊆ opg
(
Og,α

)
= opg

(
Ôg,α∩Γ

)
⊆ opg

(
Ôg,α

)
. For every α ∈ I∗σ , set Ûg,α = opg

(
Ôg,α∩Γ

)
.

Thus, Γ ⊆
∪

α∈I∗
σ

Ûg,α and therefore,
⟨
Ûg,α

⟩
α∈I∗

σ
is a g-Tg -open covering of Γ with respect to the

absolute g-topology Tg : Pg (Ω) −→ Pg (Ω) . By virtue of i., Γ ∈ g-A
[
Tg

]
with respect to Tg

and consequently, a finite g-Tg -open subcovering
⟨
Ûg,ϑ(α)

⟩
(α,ϑ(α))∈I∗

σ×I∗
ϑ(σ)

≺
⟨
Ûg,α

⟩
α∈I∗

σ
exists

where, for every (α, ϑ (α)) ∈ I∗σ × I∗ϑ(σ) , Ûg,ϑ(α) = opg
(
Ôg,ϑ(α) ∩ Γ

)
. But then

Γ ⊆ Γ ∩
( ∪

(α,ϑ(α))∈I∗
σ×I∗

ϑ(σ)

Ôg,ϑ(α)

)
=

∪
(α,ϑ(α))∈I∗

σ×I∗
ϑ(σ)

(
Ôg,ϑ(α) ∩ Γ

)

=
∪

(α,ϑ(α))∈I∗
σ×I∗

ϑ(σ)

Ûg,ϑ(α).

Thus, it follows that the g-Tg -open covering
⟨
Ug,α

⟩
α∈I∗

σ
contains a finite g-Tg -open subcovering⟨

Ûg,ϑ(α)

⟩
(α,ϑ(α))∈I∗

σ×I∗
ϑ(σ)

of Γ with respect to the relative g-topology Tg,Γ : Pg (Γ) 7→ Tg,Γ .

Hence, (Γ,Tg,Γ) is a g-T [A]
g -space. This proves that i. implies ii.

i. ← ii. Let
⟨
Ûg,α ∈ g-O [Tg]

⟩
α∈I∗

σ
be a g-Tg -open covering of Γ with respect to

the absolute g-topology Tg : Pg (Ω) −→ Pg (Ω) . For every α ∈ I∗σ , there exists, then,

Ôg,α ∈ Tg such that Ûg,α = opg
(
Ôg,α

)
. For every α ∈ I∗σ , set Og,α = Ôg,α ∩ Γ . Consequently,

Γ ⊆
∪

α∈I∗
σ

Ûg,α implies

Γ ⊆ Γ ∩
( ∪

α∈I∗
σ

Ûg,α

)
=

∪
α∈I∗

σ

(
Γ ∩ Ûg,α

)
=

∪
α∈I∗

σ

(
Γ ∩ opg

(
Ôg,α

))

=
∪

α∈I∗
σ

opg
(
Ôg,α ∩ Γ

)
=

∪
α∈I∗

σ

opg (Og,α)

and from which it results that, Γ ⊆
∪

α∈I∗
σ
opg (Og,α) . Since Og,α ∈ Tg,Γ and opg (Og,α) ∈ g-O [Tg]

for every α ∈ I∗σ , set Ug,α = opg (Og,α) . Then,
⟨
Ug,α ∈ g-O [Tg]

⟩
α∈I∗

σ
is a g-Tg -open covering of

Γ with respect to the relative g-topology Tg,Γ : Pg (Γ) 7→ Tg,Γ . But, by hypothesis, Γ ∈ g-A
[
Tg

]
with respect to the relative g-topology Tg,Γ : Pg (Γ) 7→ Tg,Γ and, therefore, a finite g-Tg -open
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subcovering
⟨
Ug,ϑ(α)

⟩
(α,ϑ(α))∈I∗

σ×I∗
ϑ(σ)

≺
⟨
Ug,α

⟩
α∈I∗

σ
exists. Accordingly,

Γ ⊆
∪

(α,ϑ(α))∈I∗
σ×I∗

ϑ(σ)

Ug,ϑ(α) =
∪

(α,ϑ(α))∈I∗
σ×I∗

ϑ(σ)

opg
(
Og,ϑ(α)

)

=
∪

(α,ϑ(α))∈I∗
σ×I∗

ϑ(σ)

opg
(
Ôg,ϑ(α) ∩ Γ

)
=

∪
(α,ϑ(α))∈I∗

σ×I∗
ϑ(σ)

(
Γ ∩ opg

(
Ôg,ϑ(α)

))

= Γ ∩
( ∪

(α,ϑ(α))∈I∗
σ×I∗

ϑ(σ)

opg
(
Ôg,ϑ(α)

))
⊆

∪
(α,ϑ(α))∈I∗

σ×I∗
ϑ(σ)

opg
(
Ôg,ϑ(α)

)

=
∪

(α,ϑ(α))∈I∗
σ×I∗

ϑ(σ)

Ûg,ϑ(α).

Thus,
⟨
Ûg,α

⟩
α∈I∗

σ
is reducible to a a finite g-Tg -open subcovering

⟨
Ûg,ϑ(α)

⟩
(α,ϑ(α))∈I∗

σ×I∗
ϑ(σ)

with

respect to the absolute g-topology Tg : Pg (Ω) −→Pg (Ω) . Hence, Γ ∈ g-A
[
Tg

]
with respect to

the absolute g-topology Tg : Pg (Ω) −→Pg (Ω) . Thus proves that i. is implied by ii. 2

Theorem 3.16 Let Tg = (Ω,Tg) be a Tg -space. Then, the following statements are equivalent:

• i. Tg is a g-T [A]
g -space g-T[A]

g =
(
Ω, g-T [A]

g

)
.

• ii. For every sequence
⟨
Vg,α ∈ g-K [Tg]

⟩
α∈I∗

σ
of g-Tg -closed sets of Tg , the equality relation∩

α∈I∗
σ

Vg,α = ∅ implies that the sequence
⟨
Vg,α ∈ g-K [Tg]

⟩
α∈I∗

σ
contains a finite subsequence⟨

Vg,β(α)

⟩
(α,β(α))∈I∗

σ×I∗
n

of g-Tg -closed sets with
∩

(α,β(α))∈I∗
σ×I∗

n
Vg,β(α) = ∅ .

Proof i. −→ ii. Suppose
∩

α∈I∗
σ

Vg,α = ∅ . Then, by virtue of De Morgan’s Law, it fol-

lows that Ω = { (∅) = {
(∩

α∈I∗
σ

Vg,α

)
=

∪
α∈I∗

σ
{ (Vg,α) =

∪
α∈I∗

σ
Ug,α . Therefore,

⟨
Ug,α ∈

g-O [Tg]
⟩
α∈I∗

σ
is a g-Tg -open covering of Tg . But since Tg is, by hypothesis, a g-T [A]

g -space

g-T[A]
g =

(
Ω, g-T [A]

g

)
, there exists a finite subsequence

⟨
Ug,β(α)

⟩
(α,β(α))∈I∗

σ×I∗
n

of g-Tg -open sets

such that Ω =
∪

(α,β(α))∈I∗
σ×I∗

n
Ug,β(α) . Thus, by De Morgan’s Law, it follows that ∅ = { (Ω) =

{
(∪

(α,β(α))∈I∗
σ×I∗

n
Ug,β(α)

)
=

∩
(α,β(α))∈I∗

σ×I∗
n
{
(
Ug,β(α)

)
=

∩
(α,β(α))∈I∗

σ×I∗
n

Vg,β(α) . This proves

that i. implies ii.

i. ← ii. Let
⟨
Ug,α ∈ g-O [Tg]

⟩
α∈I∗

σ
is a g-Tg -open covering of Tg . Then, Ω =

∪
α∈I∗

σ
Ug,α .

Moreover, by De Morgan’s Law, ∅ = { (Ω) = {
(∪

α∈I∗
σ

Ug,α

)
=

∩
α∈I∗

σ
{ (Ug,α) =

∩
α∈I∗

σ
Vg,α .

Thus,
⟨
Vg,α ∈ g-K [Tg]

⟩
α∈I∗

σ
is a sequence of g-Tg -closed sets and, by above, has an empty intersec-

tion. By hypothesis, it follows, then, that there exists a finite subsequence
⟨
Vg,β(α)

⟩
(α,β(α))∈I∗

σ×I∗
n
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of g-Tg -closed sets such that
∩

(α,β(α))∈I∗
σ×I∗

n
Vg,β(α) = ∅ . Thus, by virtue of De Morgan’s

Law, it results that Ω = { (∅) = {
(∩

(α,β(α))∈I∗
σ×I∗

n
Vg,β(α)

)
=

∪
(α,β(α))∈I∗

σ×I∗
n
{
(
Vg,β(α)

)
=∪

(α,β(α))∈I∗
σ×I∗

n
Ug,β(α) . Accordingly, Tg is a g-T [A]

g -space g-T[A]
g =

(
Ω, g-T [A]

g

)
and, hence,

i. is implied by ii. 2

Proposition 3.17 If Sg ∈ g-K [Tg] be a g-Tg -closed set of a g-T [A]
g -space g-T[A]

g =
(
Ω, g-T [A]

g

)
,

then Sg ∈ g-A [Tg] :

Sg ∈ g-K [Tg] ⇒ Sg ∈ g-A [Tg] . (16)

Proof Let it be assumed that Sg ∈ g-K [Tg] is a g-Tg -closed set of a g-T [A]
g -space g-T[A]

g =(
Ω, g-T [A]

g

)
. Then, { (Sg) ∈ g-O [Tg] ; that is, Ω \ Sg is a g-Tg -open set in g-T[A]

g . Let⟨
Ug,α ∈ g-O

[
T
[A]
g

]⟩
α∈I∗

σ
be a g-Tg -open covering of Sg in g-T[A]

g and, for every α ∈ I∗σ , set Ûg,α =

Ug,α∪{ (Sg) . Then,
⟨
Ûg,α

⟩
α∈I∗

σ
is a g-Tg -open covering of Ω . But since g-T[A]

g =
(
Ω, g-T [A]

g

)
is a

g-T [A]
g -space, there exists a finite g-Tg -open subcovering

⟨
Ug,ϑ(α)

⟩
(α,ϑ(α))∈I∗

σ×I∗
ϑ(σ)

≺
⟨
Ug,α

⟩
α∈I∗

σ

such that Ω ⊆
∪

(α,ϑ(α))∈I∗
σ×I∗

ϑ(σ)
Ûg,ϑ(α) , where Ûg,ϑ(α) = Ug,ϑ(α) ∪ { (Sg) for every (α, ϑ (α)) ∈

I∗σ × I∗ϑ(σ) . Therefore,
⟨
Ug,ϑ(α)

⟩
(α,ϑ(α))∈I∗

σ×I∗
ϑ(σ)

is a finite g-Tg -open subcovering of Sg . Hence,

Sg ∈ g-A [Tg] . The proof of the proposition is complete. 2

Theorem 3.18 A necessary and sufficient conditions for a Tg -space Tg = (Ω,Tg) to be a g-T [A]
g -

space g-T[A]
g =

(
Ω, g-T [A]

g

)
is that, whenever for each ξ ∈ Tg a g-Tg -open neighborhood of ξ is

given, there is a finite collection Cξ = {ξη : η ∈ I∗n} of points ξ1 , ξ2 , . . . , ξn ∈ Tg such that

Ω =
∪

ξ∈Cξ
opg (Og,ξ) .

Proof Necessity. Suppose Tg is a g-T [A]
g -space g-T[A]

g =
(
Ω, g-T [A]

g

)
. Let there be given,

for each ξ ∈ Tg , a g-Tg -open neighborhood of ξ . For each ξ ∈ Tg , there is a Tg -open set

Ug,ξ ⊂ Tg satisfying ξ ∈ Ug,ξ ⊆ opg (Og,ξ) . Thus, for every ξ ∈ Tg , Ug,ξ ∈ g-O [Tg] and,

consequently,
⟨
Ug,ξ ∈ g-O [Tg]

⟩
ξ∈Tg

is a g-Tg -open covering of Tg . Since Tg is a g-T [A]
g -space

g-T[A]
g =

(
Ω, g-T [A]

g

)
, there is a finite g-Tg -open subcovering

⟨
Ug,ξµ ∈ g-O [Tg]

⟩
µ∈I∗

n
. But, for

every µ ∈ I∗n , ξµ ∈ Ug,ξµ ⊆ opg
(
Og,ξµ

)
, whence Ω =

∪
µ∈I∗

n
opg

(
Og,ξµ

)
=

∪
ξ∈Cξ

opg (Og,ξ) .

Sufficiency. Conversely, suppose that whenever, for each ξ ∈ Tg , a g-Tg -open neighborhood

of ξ is given, there is a finite collection Cξ = {ξη : η ∈ I∗n} of points ξ1 , ξ2 , . . . , ξn ∈ Tg such
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that Ω =
∪

ξ∈Cξ
opg (Og,ξ) . Let

⟨
Ug,α ∈ g-O [Tg]

⟩
α∈I∗

σ
be a g-Tg -open covering of Tg . Then, for

each ξ ∈ Tg , there exists an α = α (ξ) such that ξ ∈ Ug,α(ξ) , and hence, Ug,α(ξ) = opg (Og,ξ)

for every (ξ, α (ξ)) ∈ Tg × I∗n . By hypothesis, there is, then, a finite collection Cξ = {ξη : η ∈ I∗n}

of points ξ1 , ξ2 , . . . , ξn ∈ Tg such that Ω =
∪

ξ∈Cξ
Ug,α(ξ) , and thus, Tg is a g-T [A]

g -space

g-T[A]
g =

(
Ω, g-T [A]

g

)
. 2

4. Discussion
4.1. Categorical Classifications

Having adopted a categorical approach in the classifications of the Tg -property called g-Tg -

compactness in the Tg -space Tg , the dual purposes of the this section are firstly, to establish

the various relationships amongst the elements of the sequences
⟨
g-ν-T[A]

g =
(
Ω, g-ν-T [A]

g

)⟩
ν∈ I0

3
,

and
⟨
g-ν-T[A] =

(
Ω, g-ν-T [A]

)⟩
ν∈ I0

3
of g-ν-T [A]

g -spaces and g-ν-T [A] -spaces, respectively, and

secondly, to illustrate them through a so-called categorical compactness diagram.

Let Og ∈ Tg be any Tg -open set in a Tg -space Tg = (Ω,Tg) and, for every ν ∈ I03 ,

let there exist a µ ∈ I03 such that the relation opg,ν (Og) ⊆ opg,µ (Og) holds. Then, since

Og ⊆ opg,ν (Og) for every ν ∈ I03 , it follows that Tg -openness implies g-ν-Tg -openness and the

latter, in turn, implies g-ν-Tg -openness. But since the statement that g-Tg -compactness implies

Tg -compactness is a consequence of the statement that Tg -openness implies g-Tg -openness, it

evidently follows that, g-ν-Tg -compactness implies g-ν-Tg -compactness and the latter, in turn,

implies Tg -compactness. On the other hand, for every Tg -open set Sg ⊂ Tg , the relation

intg (Sg) ⊆ clg ◦ intg (Sg) ⊆ clg ◦ intg ◦ clg (Sg) ⊇ intg ◦ clg (Sg) holds [22, 23]. Consequently,

opg,0 (Sg) ⊆ opg,1 (Sg) ⊆ opg,3 (Sg) ⊇ opg,2 (Sg) ∀Sg ⊂ Tg.

Therefore, for each (µ, ν) ∈ {(0, 1) , (1, 3) , (2, 3)} , from g-µ-Tg -openness implies g-ν-Tg -

openness, it results that g-ν-Tg -compactness implies g-µ-Tg -compactness. Thus, if Ug ⊂ Tg

is a g-Tg -open set then, with respect to g-Tg -openness, the following left-hand side system of

implications holds:

Ug ∈ g-0-O
[
Tg

]
=⇒ Ug ∈ g-1-O

[
Tg

]
Sg ∈ g-0-A

[
Tg

]
⇐= Sg ∈ g-1-A

[
Tg

]

=⇒ ⇐
=

Ug ∈ g-2-O
[
Tg

]
=⇒ Ug ∈ g-3-O

[
Tg

]
; Sg ∈ g-2-A

[
Tg

]
⇐= Sg ∈ g-3-A

[
Tg

]
.

Such left-hand side system with respect to g-Tg -compactness, in turn, implies the right-

hand side system of implications. For visualization, a so-called categorical compactness diagram,
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Figure 1: Relationships: classes of g-T -compact and g-Tg -compact sets

expressing the various relationships amongst the classes of g-T -compact and g-Tg -compact sets,

is presented in Figure 1. The notion of g-T[A]
g -spaces of category ν ∈ I03 is exemplified below.

4.2. A Nice Application

A nice application is now presented. Let Tg : P (Ω) −→P (Ω) be the g-topology on Ω = (0, 1) ⊂

R (set of real numbers) generated by Tg -open and Tg -closed sets belonging to:

Tg
def
=

{
Og,µ :

(
∀µ ∈ I∗∞ \ I∗2

)([
Og,µ = ∅

]
∨
[
Og,µ =

(
1

µ
, 1− 1

µ

)])}
;

¬Tg
def
=

{
Kg,µ :

(
∀µ ∈ I∗∞ \ I∗2

)([
Kg,µ = Ω

]
∨
[
Kg,µ = {

(
1

µ
, 1− 1

µ

)])}
,

respectively. Clearly, the g-topology Tg : P (Ω) −→ P (Ω) satisfies the relations Tg (∅) = ∅ ,

Tg (Og,µ) ⊆
(
1

µ
, 1 − 1

µ

)
= Og,µ and, moreover, Tg

(∩
µ∈I∗

σ\I∗
2

Og,µ

)
=

∩
µ∈I∗

σ\I∗
2

Tg (Og,µ) and

Tg

(∪
µ∈I∗

∞\I∗
2

Og,µ

)
=

∪
µ∈I∗

∞\I∗
2

Tg (Og,µ) are also satisfied, since
∩

µ∈I∗
σ\I∗

2
Og,µ = Og,3 ∈ Tg

and
∪

µ∈I∗
∞\I∗

2
Og,µ = Ω ∈ Tg , respectively. Thus, Tg = (Tg,Ω) is a Tg -space and, since

Tg = (Tg,Ω) = (T ,Ω) = T , it is also a T -space. Observe that
⟨
Og,α

⟩
α∈I∗

∞\I∗
2

is a Tg -open

covering of Ω , since Og,α ∈ O [Tg] for every α ∈ I∗∞ \ I∗2 and, moreover, it is also a g-Tg -open

covering of Ω , since Og,α ⊆ opg
(
Og,α

)
∈ g-O [Tg] for every α ∈ I∗∞\I∗2 . On the other hand, for each

σ > 3 , the relation 1

σ
∈

∪
µ∈I∗

σ\I∗
2
Og,µ =

(
1

σ
, 1− 1

σ

)
. Hence, from every g-Tg -open subcovering

⟨
Og,ϑ(α)

⟩
(α,ϑ(α))∈J∗

∞×J∗
ϑ(∞)

≺
⟨
Og,α

⟩
α∈I∗

∞\I∗
2

, where J∗
∞ = I∗∞ \ I∗2 and J∗

ϑ(∞) = I∗ϑ(∞) \ I
∗
2 , the

union
∪

(α,ϑ(α))∈J∗
∞×J∗

ϑ(∞)
Og,ϑ(α) must fail to contain some point of Ω and, hence, there exist no

finite g-Tg -open subcovering of
⟨
Og,α

⟩
α∈I∗

∞\I∗
2

. This proves that Tg = (Tg,Ω) , where Ω = (0, 1) ,
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is not a T
[A]
g -space. Since g-Tg -compactness implies Tg -compactness, it follows, consequently,

that it is also not a g-T[A]
g -space. Finally, from this case, it results that, not every Tg -set of a

g-T[A]
g -space is itself g-Tg -compact.

4.3. Concluding Remarks

In this paper, a new theory called Theory of g-Tg -Compactness has been presented, the foundation

of which was based on the theory of g-Tg -sets [22, 23]. The theory holds equally well when

(Ω,Tg) = (Ω,T ) , and other characteristics adapted on this ground, in which case it might be

called Theory of g-T-Connectedness.

Thus, it follows that in a Tg -space the theoretical framework categorises such statements

as g-Tg -compactness in terms of relatively open Tg -sets, g-Tg -compactness in terms of rela-

tively semi-open Tg -sets, g-Tg -compactness in terms of relatively preopen Tg -sets, and g-Tg -

compactness in terms of relatively semi-preopen Tg -sets as g-Tg -compactness of categories 0 , 1 ,

2 and 3 , respectively, and theorises the concepts in a unified way; in a T -space it categorises

such statements as g-T -compactness in terms of relatively open T -sets, g-T -compactness in terms

of relatively semi-open T -sets, g-T -compactness in terms of relatively preopen T -sets, and g-T -

compactness in terms of relatively semi-preopen T -sets as g-T -compactness of categories 0 , 1 , 2

and 3 , respectively, and theorises the concepts in a unified way.

It is an interesting topic for future research to study other derived concepts called countable,

sequential, and local generalized compactness (countable, sequential, local g-Tg -compactness) in

Tg -spaces. Such a study will be considered in a next paper, and this paper ends here.
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