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ON THE PERFORMANCE OF MAXIMUM LIKELIHOOD
ESTIMATORS OF SNR FOR NONCOHERENT BFSK SIGNALS IN
RAYLEIGH FADING CHANNELS
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Abstract: In a recent paper, we have derived Cramér-Rao bounds for data and non-data-aided SNR estimation of
noncoherent BFSK signals in slowly Rayleigh fading channels, and provided the corresponding true and approximate
maximum-likelihood estimators for the data-aided and non-data-aided estimation, respectively. In this paper, the
performances of the estimators are examined analytically in terms of means and variances. The results illustrate the
efficiency of their performance.
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Rayleigh Séntimlii Kanallarda Evre Uyumsuz BFSK lsaretlerin Isaret Giralti
Oraninin En Buyuk Olabilirlik Kestiricilerinin Basarimi Hakkinda

Ozet: Yakin gegmiste yayinlanan bir makalemizde yavas Rayleigh soniimlii kanallarda evre uyumsuz BFSK isaretle-
rinin veri destekli ve veri desteksiz isaret gurdlti orani kestirimine iliskin Cramér-Rao sinirlari ¢ikariimis, ve bunlara
karsilik gelen tam ve yaklasik en biylk olabilirlik kestiricileri, sirasiyla, veri destekli ve veri desteksiz kestirim icin
elde edilmistir. Bu makalede, Kkestiricilerin basarimi beklenti ve degisinti blytklikleri yoluyla analitik olarak ince-
lenmistir. Sonuglar kestiricilerin basarimlarinin verimliligini gostermektedir.

Anahtar Kelimeler: Isaret Giiriiltii Orani1 Kestirimi, En Biiyiik Olabilirlik, Rayleigh Kanallari, Evre Uyumsuz BFSK.

1. INTRODUCTION

Diversity combining has long been recognised as a powerful technique for mitigating the destruc-
tive effects of channel fading, and can be implemented either coherently or noncoherently (Proakis, 1983).
Noncoherent detection is normally desired when the transmission channel is such that reliable carrier re-
covery is difficult or impractical to obtain. It is well-known (Simon and Alouini, 2000) that the optimum
receiver for the noncoherent communication employs square-law detection in each diversity channel, and
applies weights to the output of each diversity channel determined from the average fading signal-to-noise
ratio (SNR) estimated in practice from measurement on each channel before combining them. Since the
combined system performance depends on the SNR estimates in each branch (Simon and Alouini, 2003), it
is therefore of great interest to find its actual maximum likelihood estimators and assess their performance
against the Cramér-Rao bound (CRB) (Kay, 1993), a well-known lower bound for the variance of any un-
biased estimator for a given observation data.

In Dilaveroglu and Ertas (2005), we obtained three possible CRB expressions for the data-aided
(DA) and the non-data-aided (NDA) SNR estimation of noncoherent binary frequency-shift-keying
(NCBFSK) modulated signals with square-law detection, and provided the corresponding maximum likeli-
hood estimators (MLES) for the DA and the NDA estimation. Due to the restrictions on the length of the
manuscript, derivation and therefore the proof of the mean and variance of the MLEs have not been unfor-
tunately included. In this paper, we derive the mean and variance of the MLEs for the NDA and the DA
estimation given in Dilaveroglu and Ertas (2005), and compare their performance against the correspond-
ing CRBs derived therein.
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2. SYSTEM DEFINITIONS

Assuming a flat slowly Rayleigh fading channel with a receiver using square-law detection for
NCBFSK signalling (Simon and Alouini, 2000), three data sets (models) out of many are adopted in
Dilaveroglu and Ertas (2005), from which the average SNR may be estimated. Data models are referred to
as Data Model 1 (DM1), Data Model 2 (DM2), and Data Model 3 (DM3), which are obtained from appro-
priately selected stages of the square-law detector and can be written as:

DM1: v, =Re{w, }, k=12,..,K, 1)
DM2: v, :huk|2,|zk|2]T, k=12,..K, )
DM3: v, :|uk|2 —|zk|2, k=12,...K, (3)

respectively, where w, = [uk,zk ]T = \/;§k0(k el +n,, ¥ =Ey/N, is the average SNR in which E,

is the transmitted bit energy and N, is the spectral density of the additive white Gaussian noise (AWGN),

S = [1, O]T or [0,1]T with equal probability, assuming sufficient channel interleaving, ¢, is a Rayleigh

distributed fading amplitude with E{(ak )2 }zl, 6, is the random phase uniformly distributed in [0, 27],

n,= [ncl’k + JNg i Nea i + ] nsz’kIr is the complex noise vector in which Ny ., Ng . N, and Ny

are i.i.d. zero-mean Gaussian random variables with variance 1/2. s,, ¢, 6,, and n, are all independ-

ent of each other. Also, the v, ’s for k=1,2,...,K are assumed to be i.i.d. random vectors (of size 2x1
E E

or 1x1 depending on the data model). The average received SNR is N—bE{(ak )2 }: N_b =y, and our
0 0

interest is to find an unbiased estimator of ¥, by using the observed data {\_/k }L(:l for each data model

above. We denote the CRB on the variance of any unbiased estimator of » by CRBy.

3. CRAMER-RAO BOUNDS AND MAXIMUM LIKELIHOOD ESTIMATORS

Given the kth data sample v, =[x, Y, ]" in (1) and (2), and v, =[v, ] in (3), the likelihood
functions of y for the v, respectively for the data sets (1)-(3) in the case of NDA estimation are given as
(Dilaveroglu and Ertas, 2005)

Pnoa DMl(\_/k;7):—1 exp ——XE — Y7 [+exp| —x; _y_E , (4)
' 21+ y 1+y 1+y
1
Proaom2 Vi 7) = —2(1+ y){eXpt— % - ij + exp(— Xy — 1)+/—k;/ﬂ : (5)
1 A
Vi y)= exp(—|v.|)+exp| ==L ||, 6
pNDA,DM3(_k y) 2(2+7){ p( | k|) p( 1+7ﬂ (6)
with the corresponding CRB,, ’s as
1
1 1 f(y)
CRB _1 _ | ,
#NDADML = (0 [2(1+7)2 4ﬁ(1+7)9/2} )
1 1 » T
gy
CRB =— - , 8
AT [(1+7)2 4(1+7>5} ?

72



-1
1) 1+y
1 g(&ZVJ 4{3’27:j_ 1

K| a2y @esf ®

CRB;/,NDA,DMs =

respectively, where

(xz— 2)Zex _ 2ty (x2+ 2)
e

201+7y)

dxdy,

gL

/4
X —
i)
and ¢(s,a)=35 ,(k+a)"° is the generalised Riemann’s zeta function. For the DA estimation, eliminat-

ing the dependency of the v, on the S, gives rise to a scalar v, = [vk] for all the data models DM1-
DM3, and the likelihood functions are obtained as (Dilaveroglu and Ertas, 2005)

dxdy,

v2
vV, 10
Poaomi(Vii7)= \/—\/r ( 17 (10)
1 Vi
Poaom2(Vii7) i+7) exp( 1+ 7j (11)
—exp(v, ), v, <0,
. (2+ ) p( k) k <
PoaomsVi:¥)= 1 v 12)
———exp| —— |, v, >0,
(2 + 7/) 1+y
with the corresponding CRB, ’s given as
21+ Y
CRB,pa bm1 :% ' (13)
1+ )
CRB,papm2 = % : (14)
L+ 7)2+y)
CRB,papm3 = W ' (15)

The MLE 7 of y is obtained from the maximisation of the applicable (NDA or DA) likelihood

function Hff:l p(\_/k ; 7) with respect to . It is unfortunately prohibited to find a closed-form expression

for the ¥ for the NDA estimation. However, an approximate MLE can be obtained in closed-form for a
sufficiently large y . For the DM1-DM3, the approximate MLEs are obtained as (Dilaveroglu and Ertas,
2005)

28 X Vi
) . o 16
¥ Npa,DM1 = K él+e_x§+y§ 14 %Y (16)
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7 :ii AT [ (17)
NDA,DM2 =" L e 1y gk .

T+1/T(T+4K)_1’T_i V| 15)

VNDA DM3 = oK

S14+e%

for the NDA estimation. Fortunately, for the DA estimation, the true MLEs can be obtained as (Dilaver-
oglu and Ertas, 2005)

A 2 &

VDA DM1 :EZVE -1, 19)
k=1

A 1 &

VDA DM 2 :EZVk -1, (20)
K=

. T+4T(T +4K)

VDA DM3 = -1, T= Y. (21)

2K k:v >0

4. MEAN AND VARIANCE OF THE APPROXIMATE MAXIMUM LIKELIHOOD
ESTIMATORS FOR THE NDA ESTIMATION

In this section we derive the mean and variance of the approximate MLEs (16)-(18) for the NDA
estimation of y for data models DM1-DM3, respectively. However, due to the complexity of the likeli-

hood functions and the MLEs for the data models, it is unfortunately prohibited to obtain the results in
closed forms. We therefore present the results most conveniently in the form of plots.

We begin with the data model DM1. Let us define an auxiliary random variable as
2 2
Xy Yk
1+eXhk 14 %

rk(xk’yk):

Since the v, = [Xk, Yk ]T ’s are i.i.d., the r,’s are also i.i.d. Thus, we get the mean and variance of the

MLE f’NDA, DM1 &S

n 2 &
E{VNDA,DMl}:EZE{rk}_lzZE{rk}—l- (22)
n 4
Var{VNDA, DM 1} K_ Z var{rk f=— Var{rk I3 (23)
k=1

where the mean and variance of r, are, of course, given by

S .[i J‘_Z e (X Y)Proa, owa (%, 3 7) dxdy,

var{r }= J‘_i, J‘_i [ri (% y)— E{ri JI* Proa, o (%, ¥i 7) dxdly.
However, the above integrals need to be evaluated numerically.

For the data model DM2, if we similarly define

Xy + Yk
X+ Yk XYk '
l+e l+e

the mean and variance of the MLE J\pa py2 become

. 18
E{VNDA, DMZ}:EZ Eln t-1=E{r J-1, (24)
k=1

rk(xkvyk):
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. 1 & 1
Var{VNDA, DM 2 }: — Z var{r j= —var{r, . (25)
K ia K
where, again, the integrals

Efr }= J: _[: (X, Y)Prpa, o2 (X, ; 7)dxdy,

var{r, }= J;O _[: [ ( ¥) = Efrne ¥ Proa, om2 (% ¥ 7)dxdy,

are evaluated numerically.
For the data model DM3, we first compute the mean and variance of

Vi

1+e%

by numerically evaluating the integrals

Efrc}= Jio e (X) Proa, oms (6 7) A%,

var{r b= [ [ (X)= E{rie I Proa oms (% 7)cx.

Then, the mean and variance of the random variable T in (18) are calculated by
E{T}=KE{r},
var{T } = K var{r, }.

Now, if we assume that the probability density function (PDF) of T is negligible outside a small interval
about its mean, the mean and variance of the MLE J\pa pw3 Can be approximated as (Papoulis, 1991, p.

112)
T+1/T(T+4K)_1‘ 6)
T=E{T}

ne (V) =

E{f’NDA, DM3}E 2K

2

d var{T}. (27)

Var{f/NDA, DM 3}5 d_T{

wm_l}

2K

T=E{T}

+ True SMR, ¥
— E{MLE}: NOA, DII.-!'?}
— E{MLE;; NDA, ome!
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Figure 1
Mean of the approximate MLES for the NDA estimation for the three data models.
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We computed the mean and variance of the MLEs for SNR values taken between —5 dB and
15 dB with increments of 0.5 dB. The means, (22), (24) and (26), are shown in Figure 1 and the vari-
ances, (23), (25) and (27), together with the corresponding CRBs from Dilaveroglu and Ertas (2005), re-
peated here in (7)-(9), are shown in Figure 2. We observe from the figures that the estimators are practi-
cally unbiased and efficient, i.e., achieve the corresponding CRBs, for all SNR values greater than or equal
to, say, 3dB . Note that a similar conclusion has also been drawn in Dilaveroglu and Ertas (2005) based
on the simulations performed therein. Also, note that the abovementioned assumption on the PDF of the
random variable T for the data model DM3 becomes valid for ¥ >3 dB. This follows from the related
analytical results presented in the figures here and the corresponding simulation results given in (Dilaver-
oglu and Ertas, 2005, Table 1).
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Figure 2:
Variance of the approximate MLEs for the NDA estimation for the three data models.

5. MEAN AND VARIANCE OF THE EXACT MAXIMUM LIKELIHOOD ESTIMATORS
FOR THE DA ESTIMATION

We next consider the DA estimation case. Fortunately, for this case we can get closed-form ex-
pressions for the mean and variance of the exact MLEs given in (19)-(21) for the data models DM1-DM3,
respectively. We shall show that the MLEs are unbiased and efficient.

For the data model DML, since the Vv, ’s are i.i.d. random variables, we have

. 2 2 2 (1"‘7)
{7DA,DM1} Ké {Vk} {Vk} 2 (28)
:7/,
. 4 X 2 2
varypa DM1}= szzVar{Vk }= *Var{Vk}
-1
_ 4| @+y) | _20+y) (29)
K 2 K
=CRB,, papm1:

c.f. (13). Thus, the MLE #pa pw1 is unbiased and attains the corresponding CRB regardless of the value
of 7.
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Similarly, for DM2

K
E{j}DA,DMZ} ZE{Vk}_le{Vk}_1:1+7_1
k=1 (30)

XI

Q

n K 1
Var{7DA, DM 2 }: - Z vary, j=—var{y, |
K& K
_1 2] [@+y)
=% 2+ 7)) < (31)

= CRB;/,DA,DMZ’

c.f. (14). Hence the MLE Jpa pw» is also an unbiased and efficient estimator of  for all y.

For the data model DM3, we first calculate the mean and variance of the random variable T in

(21). To this end, let A for | =0,1,....,K denote the event that | out of the K random variables

Vv;,V,, K, v are positive. Also, define

0 o
My = I_w Poaoma(X7)dx, Mg = Io Poa,oma (X 7)dx,
M, = I: XPpa oms (X 7)dx, M, = I: X* Pp, oma (X% 7)dx

E{T}=§E{T/A}Prm

= [TJMlmoK_l +(I§J2M1MomoK_Z

K _ K §
+(K _J(K ~1M, M2 my +(KJKM1M(§< !

K (K KK -1
=Mlz(|)M$_1%K_'=M1K ( | JM(IJ%K_l_I
=
leK(Mo"'mo)K_lelK

K(1+7)?
2+y

ﬁVFiEWﬂﬂMA}
( ] My 4{ ]ZM Mg +2M1)m0

4{ ]SM M2 +6MZM MK +..+

+(K ] +(K=1)(K —2)M2M £y
+ E][KM MET+K(K -1)MEM ¢ *2]

MZZK:(IJIMO me + M Z( jl —1MZm!

K-1 K-2, _
- KZ(K l]MOrrbl' +M2K(K —1)2(K| ijgmgz'
1=0
—MzK(M0+m))K71+M12K(K —1)(M0+”h)K72

=M,K +MSK(K -1),
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and, thus
var{T} = E{T?}- [E{T}f
= K(M 2~ M12)
K@+y)B+7)
(2+7)

Now, under the assumption that the PDF of T is concentrated near its mean, the mean and variance of the
MLE #pa pw3 are related to those of the T as

T+JTG+4K)_4
T=E{T}

In

E{},}DA, DM 3}

2K (32)

:}/’
2

d{T+JTﬁ+4K)

Var{f/DA, DM 3}5 e 2K - 1} var{T}
T=E{T}

dar
_ @+ p)2+y) (33)
K(3+7)
= CRB;/, DA, DM 31

c.f. (15). So, ¥papms i Unbiased and attains the CRB under the abovementioned assumption. The fact

that this assumption is valid for all practical values of the SNR follows from the simulation results given in
(Dilaveroglu and Ertas, 2005, Table 2), where the SNR values were considered in the range from —3 dB

to 15dB.

6. CONCLUSIONS

The performances of the MLEs proposed in Dilaveroglu and Ertas (2005) for the data-aided and
the non-data-aided estimation of the SNR for noncoherent binary frequency-shift-keying signals in
Rayleigh fading channels have been investigated. Analytical results show that the proposed MLEs for the
DA estimation are unbiased and efficient regardless of the value of SNR. However, the MLEs proposed for
the NDA estimation are unbiased and efficient only for some moderate to large values of SNR, such as 3
dB onwards.
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