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THE CRAMER-RAO BOUND FOR DAMPED AND UNDAMPED
SINUSOIDS IN GAUSSIAN NOISE

Erdogan DILAVEROGLU

Abstract: A new expression for a Fisher information matrix for the problem of estimating the parameters of damped
or undamped sinusoidal signals in Gaussian noise is derived for both complex and real valued time series data cases.
The expression in each data case is in such a form that some relations between the Cramér-Rao bound and the signal
parameters are easily seen.
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Gauss Giiriiltii Icindeki Soniimlii ve Soniimsiiz Siniislere Iliskin Cramér-Rao Smir1

Ozet: Gauss giiriiltii icindeki soniimlii ya da soniimsiiz siniizoidal sinyallerin parametrelerinin kestirimi problemine
iliskin bir Fisher bilgi matrisinin yeni bir ifadesi hem kompleks hem de reel degerli zaman serisi veri durumlart igin
¢ikartlmigtir. Her bir veri durumundaki matris ifadesi Cramér-Rao siniri ile sinyal parametreleri arasindaki bazi iligki-
lerin kolayca goriilecegi bir bigimdedir.
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1. INTRODUCTION

The problem of estimating the parameters (amplitudes, phases, damping factors and frequencies)
of sinusoidal signals in Gaussian noise is considered for both complex and real valued time series data
cases.

The Cramér-Rao (C-R) bound provides a lower bound on the variance of any unbiased estimator of
a nonrandom parameter. It is often used to investigate the optimality of parametric estimators. The C-R
bound is calculated by inverting a Fisher information matrix for the estimation problem under considera-
tion (Kay, 1993).

For the complex data case and when the noise is white Hua and Sarkar (1990) provided a useful
expression for a Fisher information matrix that reveals the dependence of the C-R parameter bounds on
some signal parameters. However, their expression is not readily applicable to the real data case. The real
data case is probably more common in practice.

In this paper, we extend the work of Hua and Sarkar to the real data and colored noise cases. Our
approach differs from their approach in that we introduce a decomposition of the Fisher information matrix
which is applicable to both complex and real data cases.

The complex data case is considered in Section 2. The real data case is discussed in Section 3.

2. THE COMPLEX DATA
The complex data sequence is described by
Vi =X 1
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k=0LK ,N~—1. n;’s are the noise. o;’s and @;’s are the amplitudes and the phases, respectively.
B,’s and ®;’s are the damping factors and the frequencies, respectively. M is the number of sinusoids.

The signal parameter vector 0 defined as
T
0 =[o, 01,1, 01,05.K 0] )

is to be estimated from the data vector y = [yo, y.K,y N_l]T. If the probability density function (pdf)
of n= [no,nl K ,nN_l]T is complex Gauss, i.e., CN(O,C) (e.g., see Kay (1993), p. 507), then the pdf

of y is CN(x,C) where x = [xo,xl,K ,xN_l]T.

Let 0; denote the ith element of 0. Then the (7, j)th element of the Fisher information matrix

J for the estimation problem in (1) and (2) can be shown to be

H ~-1
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where d ( )/ d0; is partial derivative. But J can be partitioned as

J=Vi 5 ij=12K M|

i,j»

where J; ;isa 4x4 (i, j)th block matrix of J . It can be shown from (3) that the J; ; can be expressed

as
_ T
Ji,j =2D;0iX; ;O D, )
where
D; =diag{1,(x,-,(x,-,ai}
(0! 0 , cosQ; sinQ;
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Cijs=V(z ) C_l\v'(zj)

v(z)= [1,Z,K ,zV-1 ]T, v'(z)=z d“:liz)

and

z; =exp(B; + joo;).




The decomposition of J in (4) slightly differs from the decomposition employed in (Hua and
Sarkar, 1990). We see in the next section that our decomposition, unlike theirs, is also applicable to the real
data case.

It can be shown from (4) that the 4 x4 (i, j)th block matrix of J s

TR i T el
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where X%/ is the 4x 4 (i, j)th block matrix of x 1= {Xi,j }_1 (which is independent of o;’s and

@; ’s). Here we have used the property that Q; - QlT . Note that we also have
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Thus, the ith diagonal block matrix of J 1
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Since the 4 diagonal elements of J i are the C-R bounds for o;, ®;, B; and o;, respectively,
the following results can be stated:

R1: The C-R bounds for ¢;, B; and ®; are independent of o j for j not equal to i but propor-
tional to 1/ ocl-z , the bound for a; is independent of o ; forall ;.
R2: The bounds for all parameters are independent of phases @ j forall ;.

R3: If the noise is white, i.e., C is diagonal, the bounds are independent of the group shift of fre-

quencies; they depend upon the frequencies only through their differences ®; — ® i

If B;’s are known (e.g., B; = 0 for all i —the undamped sinusoid case), the results R1 and R3 are

still valid but the result R2 no longer holds. The C-R bounds now depend upon the phases (but not the
group shift of the phases). This is because a symmetry in (4) is destroyed when [3;’s are known.

3. THE REAL DATA

The real data sequence is described by
Vi = X 1
M . (%)
= Zoc,-eﬁlk cos(w,—k +Q; )+ ny
i=1

k=0,1,K ,N —1. Here, the pdf of n= [”09”1 K ,nN_l]T is real Gauss, i.e., N(O,C), and hence the
pdf of ¥ =[yg,1.K ,yN_l]T is N(x,C) where x =[x, x,K ,xN_l]T. The (i, j)th element of the

Fisher information matrix J for estimation of the signal parameters in (5) can be shown to be
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We can show from (6) that the 4x 4 (i, j)th block matrix of J can be expressed as
J;i i =+D,0.x1.0TD 7
ij =3 PidiXi ;05 Dj ™

where

Xl’,j :Re{Zl,] +Zl’,]}

Z

i is as given before, and
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Comparing (4) with (7) we see that the decomposition technique we have employed for the com-
plex data case directly carries over to the real data case.

The 4x4 (i, j)th block matrix of J ~! can be shown from (7) to be
[, J -1 11, ] AT 1
JZ’] :2Di QZX l’]Qj D]

where X'/ is the 4x4 (i, j)th block matrix of x 1= {X{’j }_1 (which is independent of ;s and

@;’s). It can be shown that X i) , unlike X Ly , does not commute with Q; and QJT in general, and thus

the ith diagonal block matrix of J ! in the real data case is
We have the following results:

R4: The C-R bounds for ¢;, B; and ®; are independent of o j for j not equal to i but propor-

tional to 1/ OLl-2 , the bound for a; is independent of o ; forall ;.



R5: The bounds for o;, @;, B; and ®; depend upon the phase ¢; but are independent of @ j for

J notequal to 7.

R6: If C is diagonal, the bounds depend upon the frequencies only through ®; + ® i
If B;’s are known, the results R4 and R6 still apply but the result R5 becomes no longer valid. In
this case, the C-R bounds depend upon the phases ¢ j forall j (but only through @; £ ¢ j ).

4. CONCLUSIONS

We have introduced a new decomposition of a Fisher information matrix for the problem of esti-
mating the parameters of sinusoidal signals in the presence of (white or colored) Gaussian noise. It differs
from a previous one in that it is applicable to both complex and real valued data. The decomposition re-
veals clearly the dependence of the C-R bound on some signal parameters in each data case.
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