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Abstract

Let A denote the class of functions f which are analytic in the open unit disk U and given
by

f(z) = z +
∞∑

n=2
anzn (z ∈ U) .

The coefficient functional ϕλ (f) = a3 − λa2
2 on f ∈ A represents various geometric quan-

tities. For example, ϕ1 (f) = a3 − a2
2 = Sf (0) /6, where Sf is the Schwarzian derivative.

The problem of maximizing the absolute value of the functional ϕλ (f) is called the Fekete-
Szegö problem.
In a very recent paper, Shafiq et al. [Symmetry 12:1043, 2020] defined a new subclass
SL (k, q) , (k > 0, 0 < q < 1) consists of functions f ∈ A satisfying the following subordi-
nation:

z Dqf (z)
f(z)

≺ 2p̃k (z)
(1 + q) + (1 − q) p̃k (z)

(z ∈ U) ,

where
p̃k (z) = 1 + τ2

k z2

1 − kτkz − τ2
k z2 , τk = k −

√
k2 + 4
2

,

and investigated the Fekete-Szegö problem for functions belong to the class SL(k, q). This
class is connected with k-Fibonacci numbers.
The main purpose of this paper is to obtain sharp bounds on ϕλ (f) for functions f belong
to the class SL (k, q) when both λ ∈ R and λ ∈ C, and to improve the result given in the
above mentioned paper.
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1. Introduction
Let R = (−∞, ∞) be the set of real numbers, C be the set of complex numbers and

N := {1, 2, 3, . . .} = N0\ {0}

be the set of positive integers.
Assume that H is the class of analytic functions in the open unit disc

U = {z ∈ C : |z| < 1}

and the class P was defined by

P = {p ∈ H : p(0) = 1 and ℜ (p(z)) > 0, z ∈ U} .

For two functions f, g ∈ H, we say that the function f is subordinate to g in U, and
write

f (z) ≺ g (z) (z ∈ U) ,

if there exists a Schwarz function

ω ∈ Ω := {ω ∈ H : ω(0) = 0 and |ω (z)| < 1 (z ∈ U)} ,

such that
f (z) = g (ω (z)) (z ∈ U) .

Indeed, it is known that

f (z) ≺ g (z) (z ∈ U) ⇒ f (0) = g (0) and f (U) ⊂ g (U) .

Furthermore, if the function g is univalent in U, then we have the following equivalence

f (z) ≺ g (z) (z ∈ U) ⇔ f (0) = g (0) and f (U) ⊂ g (U) .

Let A denote the subclass of H consisting of functions f normalized by

f(0) = f ′(0) − 1 = 0.

Each function f ∈ A can be expressed as

f(z) = z +
∞∑

n=2
anzn (z ∈ U) . (1.1)

We also denote by S the class of univalent functions in A.
It is well-known that the class of starlike functions of order α is defined by

S∗ (α) =
{

f ∈ A : ℜ
(

zf ′ (z)
f (z)

)
> α (0 ≤ α < 1; z ∈ U)

}
and S∗(α) ⊂ S∗(0) = S∗ ⊂ S.

Quantum calculus is ordinary classical calculus without the notion of limits. It defines q-
calculus and h-calculus. Here h ostensibly stands for Planck’s constant, while q stands for
quantum. Recently, the area of q-calculus has attracted the serious attention of researchers.
This great interest is due to its application in various branches of mathematics and physics.
The application of q-calculus was initiated by Jackson [10,11]. He was the first to develop
q-integral and q-derivative in a systematic way. Later, geometrical interpretation of q-
analysis has been recognized through studies on quantum groups. It also suggests a relation
between integrable systems and q-analysis. A comprehensive study on applications of q-
calculus in operator theory may be found in [1].

For a function f ∈ A given by (1.1) and 0 < q < 1, the q-derivative of function f is
defined by (see [10,11])

Dqf (z) = f (qz) − f (z)
(q − 1) z

(z ̸= 0) , (1.2)
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and Dqf (0) = f ′ (0) . From (1.2) , we deduce that

Dqf (z) = 1 +
∞∑

n=2
[n]q anzn−1,

where the q-number [n]q is given by

[n]q = 1 − qn

1 − q
.

As q → 1−, [n]q → n. For a function g (z) = zn, we get

Dq (zn) = [n]q zn−1

and
lim

q→1−
(Dq (zn)) = nzn−1 = g′ (z) ,

where g′ is the ordinary derivative.
For f ∈ S given by (1.1), Fekete and Szegö [7] proved a noticeable result that

∣∣∣a3 − λa2
2

∣∣∣ ≤


3 − 4λ , λ ≤ 0
1 + 2 exp

(
−2λ
1−λ

)
, 0 ≤ λ ≤ 1

4λ − 3 , λ ≥ 1
(1.3)

holds. The result is sharp in the sense that for each λ there is a function in the class under
consideration for which equality holds.

The coefficient functional

ϕλ (f) = a3 − λa2
2 = 1

6

(
f ′′′ (0) − 3λ

2
(
f ′′ (0)

)2)
on f ∈ A represents various geometric quantities as well as in the sense that this behaves
well with respect to the rotation, namely

ϕλ

(
e−iθf

(
eiθz

))
= e2iθϕλ (f) (θ ∈ R) .

Thus it is quite natural to ask about inequalities for ϕλ corresponding to subclasses of
S.

Definition 1.1 ([17]). Let the function p be said to belong to the class k − Pq and let k
be any positive real number if

p(z) ≺ 2p̃k (z)
(1 + q) + (1 − q) p̃k (z)

(z ∈ U) ,

where
p̃k (z) = 1 + τ2

k z2

1 − kτkz − τ2
k z2 = 1 + τ2

k z2

1 −
(
τ2

k − 1
)

z − τ2
k z2 (1.4)

with

τk = k −
√

k2 + 4
2

. (1.5)

In a very recent paper, Shafiq et al. [17] introduced a new subclass of A which consists
of q-starlike functions related to k-Fibonacci numbers as follows:

Definition 1.2 ([17]). Let k be any positive real number. The function f ∈ A belongs to
the class SL (k, q) if and only if

z Dqf (z)
f(z)

≺ 2p̃k (z)
(1 + q) + (1 − q) p̃k (z)

(z ∈ U) ,

where p̃k (z) is given by (1.4) .
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Remark 1.3. For q → 1−, the class SL (k, q) reduces to the class SLk which consists of
functions f ∈ S satisfying

zf ′ (z)
f(z)

≺ p̃k (z) (z ∈ U) . (1.6)

This class was introduced by Yılmaz Özgür and Sokól [14].

Remark 1.4. For q → 1− and k = 1, the class SL (k, q) reduces to the class SL which
consists of functions f ∈ S defined by (1.1) satisfying

zf ′ (z)
f(z)

≺ p̃ (z) (z ∈ U) ,

where
p̃ (z) := p̃1 (z) = 1 + τ2z2

1 − τz − τ2z2 , τ := τ1 = 1 −
√

5
2

.

This class was introduced by Sokól [18].

Definition 1.5 ([6]). For any positive real number k, the k-Fibonacci sequence {Fk,n}n∈N0
is defined recurrently by

Fk,n+1 = kFk,n + Fk,n−1 (n ∈ N)
with initial conditions

Fk,0 = 0, Fk,1 = 1.

Furthermore nth k-Fibonacci number is given by

Fk,n = (k − τk)n − τn
k√

k2 + 4
, (1.7)

where τk is given by (1.5) .

Note that for k = 1, we obtain the classic Fibonacci sequence {Fn}n∈N0
:

F0 = 0, F1 = 1, and Fn+1 = Fn + Fn−1 (n ∈ N) .

Yılmaz Özgür and Sokól [14] showed that the coefficients of the function p̃k (z) defined
by (1.4) are connected with k-Fibonacci numbers. This connection is pointed out in the
following theorem.

Theorem 1.6 ([14]). Let {Fk,n}n∈N0
be the sequence of k-Fibonacci numbers defined in

Definition 1.5. If

p̃k (z) = 1 + τ2
k z2

1 − kτkz − τ2
k z2 := 1 +

∞∑
n=1

p̃k,nzn, (1.8)

then we have
p̃k,1 = kτk, p̃k,2 =

(
k2 + 2

)
τ2

k , p̃k,n = (Fk,n−1 + Fk,n+1) τn
k (n ∈ N) . (1.9)

For more details about the classes SL and SLk, please refer to [3–5,8,9,19,20]. Recently,
Shafiq et al. [17] investigated the Fekete-Szegö problem for functions belong to the class
SL (k, q) and obtained the following result:

Theorem 1.7 ([17]). Let the function f ∈ A given by (1.1) belong to the class SL (k, q) .
Then ∣∣∣a3 − λa2

2

∣∣∣ ≤ τ2
k

4q2

[
(1 + q)2 (1 + |λ|) k2 + 4q

]
. (1.10)

Remark 1.8. For q → 1−, we get [21, Theorem 2.3]; and for q → 1− and k = 1, we get
[15, Theorem 2.4].

The main purpose of this paper is to improve the results of the above-mentioned theorem
(Theorem 1.7). For this, we need the following lemmas:
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Lemma 1.9 ([12]). If p ∈ P with p (z) = 1 + c1z + c2z2 + · · · , then

∣∣∣c2 − νc2
1

∣∣∣ ≤


−4ν + 2 , ν ≤ 0
2 , 0 ≤ ν ≤ 1
4ν − 2 , ν ≥ 1

.

When ν < 0 or ν > 1, equality holds true if and only if p (z) is 1+z
1−z or one of its rotations.

If 0 < ν < 1, then equality holds true if and only if p (z) is 1+z2

1−z2 or one of its rotations. If
ν = 0, then the equality holds true if and only if

p (z) =
(1

2
+ 1

2
η

) 1 + z

1 − z
+
(1

2
− 1

2
η

) 1 − z

1 + z
(0 ≤ η ≤ 1)

or one of its rotations. If ν = 1, then the equality holds true if and only if p (z) is the
reciprocal of one of the functions such that the equality holds true in the case when ν = 0.

Although the above upper bound is sharp, in the case when 0 < ν < 1, it can be further
improved as follows: ∣∣∣c2 − νc2

1

∣∣∣+ ν |c1|2 ≤ 2
(

0 < ν ≤ 1
2

)
and ∣∣∣c2 − νc2

1

∣∣∣+ (1 − ν) |c1|2 ≤ 2
(1

2
< ν ≤ 1

)
.

Lemma 1.10 ([13]). Let p ∈ P with p (z) = 1 + c1z + c2z2 + · · · . Then

|cn| ≤ 2 (n ∈ N) .

Lemma 1.11 ([16]). Let p ∈ P with p (z) = 1 + c1z + c2z2 + · · · . Then for any complex
number ν ∣∣∣c2 − νc2

1

∣∣∣ ≤ 2 max {1, |2ν − 1|} ,

and the result is sharp for the functions given by

p (z) = 1 + z2

1 − z2 and p (z) = 1 + z

1 − z
.

2. Main results
Theorem 2.1. A function f given by (1.1) belongs to the class SL (k, q) if and only if
there exist a function h,

h(z) ≺ 2p̃k (z)
(1 + q) + (1 − q) p̃k (z)

(z ∈ U)

such that

f(z) = z

(
exp

∫ z

0

h(t) − 1
t

dqt

) ln q
q−1

(z ∈ U) . (2.1)

Proof. Let f ∈ SL (k, q) and consider

h(z) = z Dqf (z)
f(z)

,
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where h is analytic and h(0) = 1 in U. It follows that∫ z

0

h(t) − 1
t

dqt =
∫ z

0

t Dqf (t) − f(t)
t f(t)

dqt

=
∫ z

0

Dqf (t)
f(t)

dqt −
∫ z

0

1
t
dqt

=
(

q − 1
ln q

)
log (f(z)) −

(
q − 1
ln q

)
log (z)

= log
(

f(z)
z

) q−1
ln q

,

which implies that

z

(
exp

∫ z

0

h(t) − 1
t

dqt

) ln q
q−1

= f(z),

which is (2.1) . Conversely, let (2.1) holds true, that is, there exists an analytic function h,

h(z) ≺ 2p̃k (z)
(1 + q) + (1 − q) p̃k (z)

such that
f(z)

z
=
(

exp
∫ z

0

h(t) − 1
t

dqt

) ln q
q−1

. (2.2)

Then q-Logarithmic differentiation of (2.2) gives us

ln q

q − 1

(
Dqf (z)

f(z)

)
− ln q

q − 1

(1
z

)
= ln q

q − 1

(
h(z) − 1

z

)
,

or, equivalently
z Dqf (z)

f(z)
= h(z),

which implies that f ∈ SL (k, q) . Thus the proof of the theorem is completed. □

Letting q → 1− in Theorem 2.1, we get following consequence.

Corollary 2.2 ([14]). A function f given by (1.1) belongs to the class SLk if and only if
there exist a function h,

h(z) ≺ p̃k (z) (z ∈ U)
such that

f(z) = z exp
∫ z

0

h(t) − 1
t

dt (z ∈ U) .

Letting q → 1− and k = 1 in Theorem 2.1, we get following consequence.

Corollary 2.3 ([5]). A function f given by (1.1) belongs to the class SL if and only if
there exist a function h,

h(z) ≺ p̃ (z) (z ∈ U)
such that

f(z) = z exp
∫ z

0

h(t) − 1
t

dt (z ∈ U) .

Now, we give the upper bound of the Fekete-Szegö functional
∣∣a3 − λa2

2
∣∣ of functions

f ∈ SL (k, q) given by (1.1) when λ ∈ R.
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Theorem 2.4. If the function f given by (1.1) is in the class SL (k, q) , then we have

∣∣∣a3 − λa2
2

∣∣∣ ≤



τ2
k

(1+q)2k2+4q−λ(1+q)2k2

4q2 , λ ≤ ((1+q)2k2+4q)τk+2qk

(1+q)2k2τk

k|τk|
2q ,

((1+q)2k2+4q)τk+2qk

(1+q)2k2τk
≤ λ ≤ ((1+q)2k2+4q)τk−2qk

(1+q)2k2τk

τ2
k

λ(1+q)2k2−(1+q)2k2−4q
4q2 , λ ≥ ((1+q)2k2+4q)τk−2qk

(1+q)2k2τk

.

If ((1+q)2k2+4q)τk+2qk

(1+q)2k2τk
≤ λ ≤ (1+q)2k2+4q

(1+q)2k2 , then

∣∣∣a3 − λa2
2

∣∣∣+
λ −

(
(1 + q)2 k2 + 4q

)
τk + 2qk

(1 + q)2 k2τk

 |a2|2 ≤ k |τk|
2q

.

Furthermore, if (1+q)2k2+4q

(1+q)2k2 ≤ λ ≤ ((1+q)2k2+4q)τk−2kq

(1+q)2k2τk
, then

∣∣∣a3 − λa2
2

∣∣∣+

(
(1 + q)2 k2 + 4q

)
τk − 2qk

(1 + q)2 k2τk

− λ

 |a2|2 ≤ k |τk|
2q

.

Each of these results is sharp.

Proof. If f ∈ SL (k, q) , then it follows from Definition 1.2 that

z (Dqf) (z)
f(z)

≺ 2p̃k (z)
(1 + q) + (1 − q) p̃k (z)

=: φk,q (z) (z ∈ U) , (2.3)

where the function p̃k is given by (1.8). So by the principle of subordination, there exists
a Schwarz function ω ∈ Ω such that

z (Dqf) (z)
f(z)

= φk,q (ω (z)) .

Therefore, the function

g(z) := 1 + ω (z)
1 − ω (z)

= 1 + c1z + c2z2 + · · · (z ∈ U) (2.4)

is in the class P. Now, defining the function p(z) by

p(z) = z (Dqf) (z)
f(z)

= 1 + p1z + p2z2 + · · · , (2.5)

it follows from (2.3) and (2.4) that

p(z) = φk,q

(
g (z) − 1
g(z) + 1

)
. (2.6)

Note that

ω (z) = c1
2

z + 1
2

(
c2 − c2

1
2

)
z2 + · · ·

and so

φk,q (ω (z)) = 1 + (1 + q) p̃k,1c1
4

z

+
{

1 + q

4

(
c2 − c2

1
2

)
p̃k,1 + 1 + q

16
c2

1

[
(q − 1) p̃2

k,1 + 2p̃k,2
]}

z2 + · · · .(2.7)
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Thus, by using (2.4) in (2.6) and by considering the values p̃k,j (j = 1, 2) given in (1.9),
we obtain

p1 = (1 + q) kτk

4
c1

and

p2 = (1 + q) kτk

4

(
c2 − c2

1
2

)
+ (1 + q)

[
(1 + q) k2 + 4

]
τ2

k

16
c2

1.

On the other hand, a simple calculation shows that
z (Dqf) (z)

f(z)
= 1 + qa2z + q

[
(1 + q) a3 − a2

2

]
z2 + · · · ,

which, in view of (2.5), yields

p1 = qa2 and p2 = q
[
(1 + q) a3 − a2

2

]
or equivalently

a2 = p1
q

a3 = q p2 + p2
1

q2 (1 + q)
.

Thus, we obtain

a3 − λa2
2 = 1

q (1 + q)

[
p2 − (1 + q) λ − 1

q
p2

1

]
= 1

q (1 + q)

[
(1 + q) kτk

4

(
c2 − c2

1
2

)
+ (1 + q)

[
(1 + q) k2 + 4

]
τ2

k

16
c2

1

−(1 + q)2 [(1 + q) λ − 1] k2τ2
k

16q
c2

1

]

= kτk

4q

(
c2 − νc2

1

)
,

where
ν = 1

2
− (1 + q)2 k2 + 4q − λ (1 + q)2 k2

4qk
τk.

The assertion of Theorem 2.4 now follows by an application of Lemma 1.9.
To show that the bounds asserted by Theorem 2.4 are sharp, we define the following

functions:
Kφk,q,n

(z) (n ∈ N\ {1}) ,

with
Kφk,q,n

(0) = 0 = K ′
φk,q,n

(0) − 1,

by
zK ′

φk,q,n
(z)

Kφk,q,n
(z)

= φk,q

(
zn−1

)
, (2.8)

and the functions Fη (z) and Gη (z) (0 ≤ η ≤ 1) , with
Fη (0) = 0 = F ′

η (0) − 1 and Gη (0) = 0 = G′
η (0) − 1,

by
zF ′

η (z)
Fη (z)

= φk,q

(
z (z + η)
1 + ηz

)
and

zG′
η (z)

Gη (z)
= φk,q

(
−z (z + η)

1 + ηz

)
,

respectively. Then, clearly, the functions Kφk,q,n
, Fη, Gη ∈ SL (k, q) . We also write

Kφk,q
= Kφk,q,2 .
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If λ <
((1+q)2k2+4q)τk+2qk

(1+q)2k2τk
or λ >

((1+q)2k2+4q)τk−2qk

(1+q)2k2τk
, then the equality in Theorem 2.4

holds if and only if f is Kφk,q
or one of its rotations.

When ((1+q)2k2+4q)τk+2qk

(1+q)2k2τk
< λ <

((1+q)2k2+4q)τk−2qk

(1+q)2k2τk
, then the equality holds if and only

if f is Kφk,q,3 or one of its rotations.

If λ = ((1+q)2k2+4q)τk+2qk

(1+q)2k2τk
, then the equality holds if and only if f is Fη or one of its

rotations.
If λ = ((1+q)2k2+4q)τk−2qk

(1+q)2k2τk
, then the equality holds if and only if f is Gη or one of its

rotations. □

For q → 1−, we have the following result.

Corollary 2.5 ([2]). If the function f given by (1.1) is in the class SLk, then we have

∣∣∣a3 − λa2
2

∣∣∣ ≤



τ2
k

(
k2 + 1 − λk2) , λ ≤ 2(k2+1)τk+k

2k2τk

k|τk|
2 ,

2(k2+1)τk+k

2k2τk
≤ λ ≤ 2(k2+1)τk−k

2k2τk

τ2
k

(
λk2 − k2 − 1

)
, λ ≥ 2(k2+1)τk−k

2k2τk

.

If 2(k2+1)τk+k

2k2τk
≤ λ ≤ k2+1

k2 , then∣∣∣a3 − λa2
2

∣∣∣+ (
λ − 2

(
k2 + 1

)
τk + k

2k2τk

)
|a2|2 ≤ k |τk|

2
.

Furthermore, if k2+1
k2 ≤ λ ≤ 2(k2+1)τk−k

2k2τk
, then∣∣∣a3 − λa2

2

∣∣∣+ (
2
(
k2 + 1

)
τk − k

2k2τk
− λ

)
|a2|2 ≤ k |τk|

2
.

Each of these results is sharp.

Now, we give the upper bound for the Fekete-Szegö functional
∣∣a3 − λa2

2
∣∣ of functions

f ∈ SL (k, q) given by (1.1) when λ ∈ C.

Theorem 2.6. If the function f given by (1.1) is in the class SL (k, q) , then we have

∣∣∣a3 − λa2
2

∣∣∣ ≤ k |τk|
2q

max

1,

∣∣∣(1 + q)2 k2 + 4q − λ (1 + q)2 k2
∣∣∣

2qk
|τk|


for all λ ∈ C. The result is sharp.

Proof. Let the function f ∈ A given by (1.1) be in the class SL (k, q) . Define the function
p (z) = 1 + p1z + p2z2 + · · · by

z (Dqf) (z)
f(z)

= p (z) ,

then we have
p (z) ≺ 2p̃k (z)

(1 + q) + (1 − q) p̃k (z)
,

where p̃k (z) is given by (1.4) . As shown in the proof of Theorem 2.4, we obtain

a2 = p1
q

, a3 = q p2 + p2
1

q2 (1 + q)
.
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Therefore for any λ ∈ C, we have∣∣∣a3 − λa2
2

∣∣∣ = 1
q (1 + q)

∣∣∣∣p2 − (1 + q) λ − 1
q

p2
1

∣∣∣∣ .
Now, by Theorem 2.10, this equality implies that

∣∣∣a3 − λa2
2

∣∣∣ ≤ k |τk|
2q

max

1,

∣∣∣(1 + q)2 k2 + 4q − λ (1 + q)2 k2
∣∣∣

2qk
|τk|

 .

This evidently completes the proof of theorem. □

Remark 2.7. It is worthy to note that Theorem 2.6 improves the results given in Theorem
1.7.

Corollary 2.8. If the function f given by (1.1) is in the class SL (k, q) , then we have

∣∣∣a3 − a2
2

∣∣∣ ≤


τ2

k
q , 0 < k ≤ 2√

3

k|τk|
2q , k ≥ 2√

3

.

Theorem 2.9. If the function f given by (1.1) is in the class SL (k, q) , then we have

|a2| ≤ (1 + q) k

2q
|τk| (2.9)

and

|a3| ≤ k |τk|
2q

max
{

1,
(1 + q)2 k2 + 4q

2qk
|τk|

}
. (2.10)

Proof. Let f ∈ SL (k, q) . Therefore, as explained in the proof of Theorem 2.4, we obtain

a2 = (1 + q) kτk

4q
c1 (2.11)

and

a3 = kτk

4q

c2 −
2qk −

[
(1 + q)2 k2 + 4q

]
τk

4qk
c2

1

 . (2.12)

From (2.11) and Lemma 1.10, we get (2.9) . Also from (2.12) and Lemma 1.11, we obtain
(2.10) . □

Theorem 2.10. If the function p (z) = 1 + p1z + p2z2 + · · · belongs to the class k − Pq,
then we have

|p1| ≤ (1 + q) k

2
|τk| (2.13)

and

|p2| ≤ (1 + q) k

2
|τk| max

{
1,

(1 + q) k2 + 4
2k

|τk|
}

. (2.14)

The above estimates are sharp for the function Kφk,q,2 (z) and Kφk,q,3 given in (2.8).

Proof. Let p (z) = 1 + p1z + p2z2 + · · · and p̃k (z) = 1 + p̃k,1z + p̃k,2z2 + · · · . By the
hypothesis, since

p (z) ≺ 2p̃k (z)
(1 + q) + (1 − q) p̃k (z)

= φk,q (z) ,

the principle of subordination implies that there exists a function ω ∈ Ω such that

p (z) = φk,q (ω (z)) (z ∈ U) .
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Therefore, as explained in the proof of Theorem 2.4, we obtain

φk,q (ω (z)) = 1 + (1 + q) p̃k,1c1
4

z

+
{

1 + q

4

(
c2 − c2

1
2

)
p̃k,1 + 1 + q

16
c2

1

[
(q − 1) p̃2

k,1 + 2p̃k,2
]}

z2 + · · · .

So equating the coefficients of the functions p (z) and φk,q (ω (z)), and considering the
values p̃k,j (j = 1, 2) given in (1.9), we have

p1 = (1 + q) kτk

4
c1 (2.15)

and

p2 = (1 + q) kτk

4

(
c2 − c2

1
2

)
+ (1 + q)

[
(1 + q) k2 + 4

]
τ2

k

16
c2

1. (2.16)

From (2.15) and Lemma 1.10, we get (2.13). Also from (2.16), we can write

|p2| = (1 + q) k |τk|
4

∣∣∣∣∣c2 − 2k −
[
(1 + q) k2 + 4

]
τk

4k
c2

1

∣∣∣∣∣ .
Therefore by using Lemma 1.11, we obtain (2.14) . □

For q → 1−, we have the following result.

Corollary 2.11 ([21]). If p (z) = 1 + p1z + p2z2 + · · · and

p(z) ≺ p̃k (z) (z ∈ U) ,

then we have
|p1| ≤ k |τk|

and
|p2| ≤

(
k2 + 2

)
τ2

k =
(
k2 + 2

)
(kτk + 1) .

The above estimates are sharp.

Theorem 2.12. If the function p (z) = 1 + p1z + p2z2 + · · · belongs to the class k − Pq,
then we have∣∣∣p2 − γp2

1

∣∣∣ ≤ (1 + q) k |τk|
2

max
{

1,

∣∣(1 + q) k2 + 4 − γ (1 + q) k2∣∣
2k

|τk|
}

for all γ ∈ C.

Proof. On the other hand, by means of Lemma 1.11, we also have∣∣∣p2 − γp2
1

∣∣∣ = (1 + q) k |τk|
4

×

∣∣∣∣∣∣c2 −
2 (1 + q) k −

[
(1 + q)2 k2 + 4 (1 + q) − γ (1 + q)2 k2

]
τk

4 (1 + q) k
c2

1

∣∣∣∣∣∣
≤ (1 + q) k |τk|

2
max

1,

∣∣∣(1 + q)2 k2 + 4 (1 + q) − γ (1 + q)2 k2
∣∣∣

2 (1 + q) k
|τk|


for all γ ∈ C. □

For q → 1−, we have the following result.
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Corollary 2.13 ([2]). If p (z) = 1 + p1z + p2z2 + · · · and
p(z) ≺ p̃k (z) (z ∈ U) ,

then we have ∣∣∣p2 − γp2
1

∣∣∣ ≤ k |τk| max
{

1,

∣∣k2 + 2 − γk2∣∣
k

|τk|
}

for all γ ∈ C. The above estimates are sharp.

Corollary 2.14. If the function p (z) = 1 + p1z + p2z2 + · · · belongs to the class k − Pq,
then we have ∣∣∣p2 − p2

1

∣∣∣ ≤


(1 + q) τ2

k , 0 < k ≤ 2√
3

1+q
2 k |τk| , k ≥ 2√

3

.

3. Conclusion and future work
In this study, we consider following two subclasses of functions:

SL (k, q) =
{

f(z) = z +
∞∑

n=2
anzn : z Dqf (z)

f(z)
≺ 2p̃k (z)

(1 + q) + (1 − q) p̃k (z)
(z ∈ U)

}
,

k − Pq =
{

p(z) = 1 +
∞∑

n=1
pnzn : p(z) ≺ 2p̃k (z)

(1 + q) + (1 − q) p̃k (z)
(z ∈ U)

}
.

For functions f ∈ SL (k, q), we obtain sharp bounds for the Fekete-Szegö functional
ϕλ (f) = a3 − λa2

2. Also we give upper bounds for the initial coefficients a2 and a3. In the
general case, the coefficient bound for |an| is open problem.

Furthermore, for functions p ∈ k − Pq, we obtain sharp bounds for the
∣∣p2 − γp2

1
∣∣, |p1|

and |p2|. In the general case, the coefficient bound for |pn| is open problem.
This study could inspire light on further research.
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