Hacettepe Journal of Hacet. J. Math. Stat.
Volume 51 (6) (2022), 16611673
Mathematics & Statistics DOI : 10.15672/hujms.1010314

RESEARCH ARTICLE

Fekete-Szego problem for ¢-starlike functions in
connected with k-Fibonacci numbers

Serap Bulut

Kocaeli University, Faculty of Aviation and Space Sciences, Kocaeli, Turkey

Abstract

Let A denote the class of functions f which are analytic in the open unit disk U and given
by

f(z):z—l—Zanz” (z€U).
n=2

The coefficient functional ¢y (f) = ag — a3 on f € A represents various geometric quan-
tities. For example, ¢1 (f) = ag — a3 = Sy (0) /6, where S; is the Schwarzian derivative.
The problem of maximizing the absolute value of the functional ¢y (f) is called the Fekete-
Szegd problem.

In a very recent paper, Shafiq et al. [Symmetry 12:1043, 2020] defined a new subclass
8L (k,q),(k >0, 0 <q<1) consists of functions f € A satisfying the following subordi-

nation: D f( ) 05 ( )
zDqf (2 Pi \Z
=< —~ z€0),
i CTrort-omem <Y
where
_ 1—1—7,322 k—vVEk2+4
Pk(z)zl i 5739 Th = ——F >
—ktpz — T2 2

and investigated the Fekete-Szego problem for functions belong to the class 8£(k, ¢). This
class is connected with k-Fibonacci numbers.

The main purpose of this paper is to obtain sharp bounds on ¢, (f) for functions f belong
to the class 8L (k,q) when both A € R and A € C, and to improve the result given in the
above mentioned paper.
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1. Introduction

Let R = (—o00,00) be the set of real numbers, C be the set of complex numbers and
N:={1,2,3,...} = Ny\ {0}

be the set of positive integers.
Assume that H is the class of analytic functions in the open unit disc

U={zeC:|z| <1}
and the class P was defined by
P={peH:p0)=1 and R(p(z)) >0, z € U}.

For two functions f,g € H, we say that the function f is subordinate to g in U, and
write

f(z)=g(z) (:€0),
if there exists a Schwarz function
weR={weH:w0)=0 and |w(z)]<1 (z€V)},
such that
f(z)=gw(z) (€0).
Indeed, it is known that
f(z)<g(z) (2€U)=f(0)=g(0) and f(U)Cg(U).

Furthermore, if the function ¢ is univalent in U, then we have the following equivalence

f(z)<g(z) (2€U)= [f(0)=g(0) and [f(U)Cg(U).

Let A denote the subclass of H consisting of functions f normalized by

f(0)=f'(0)—1=0.

Each function f € A can be expressed as
f(z) :z—i—Zanz” (z€ ). (1.1)
n=2

We also denote by 8 the class of univalent functions in A.
It is well-known that the class of starlike functions of order « is defined by

5*(@) = {sea: m(zﬂ(z)

f(2)
and 8* (o) C 8*(0) = 8* C 8.

Quantum calculus is ordinary classical calculus without the notion of limits. It defines ¢-
calculus and h-calculus. Here h ostensibly stands for Planck’s constant, while ¢ stands for
quantum. Recently, the area of g-calculus has attracted the serious attention of researchers.
This great interest is due to its application in various branches of mathematics and physics.
The application of g-calculus was initiated by Jackson [10,11]. He was the first to develop
g-integral and g-derivative in a systematic way. Later, geometrical interpretation of g-
analysis has been recognized through studies on quantum groups. It also suggests a relation
between integrable systems and g-analysis. A comprehensive study on applications of ¢-
calculus in operator theory may be found in [1].

For a function f € A given by (1.1) and 0 < ¢ < 1, the g-derivative of function f is
defined by (see [10,11])

)>a (O§a<1;z€[U)}

flgz) — f(2)

Dot (2) = (g—1)z

(z#0), (1.2)
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and D, f (0) = f/(0). From (1.2), we deduce that
o0
Dyf (2) =14 ) [n],an2""",
n=2

where the g-number [n], is given by

1—q°
As ¢ — 17, [n], — n. For a function g (2) = 2", we get

and

lim (D, (")) =n="" = ¢’ (2),
q—1—

where ¢’ is the ordinary derivative.
For f € 8 given by (1.1), Fekete and Szegé [7] proved a noticeable result that

3— 4\ , A0
las = Aa3| <{ 14+2exp (FB) , 0<A<1 (1.3)
4\ -3 ;o A>1

holds. The result is sharp in the sense that for each A there is a function in the class under
consideration for which equality holds.
The coefficient functional
1 3\

o) =as =3 = 2 (77 0) - T (1" 0)°)

on f € A represents various geometric quantities as well as in the sense that this behaves
well with respect to the rotation, namely

o (e*wf (ewz)) =0, (f) (@eR).

Thus it is quite natural to ask about inequalities for ¢) corresponding to subclasses of

S.

Definition 1.1 ([17]). Let the function p be said to belong to the class k — P, and let k
be any positive real number if

2Py, (2)
p(z) < - zelU),
O Trora-ome Y
where - -
5 1+7152 14752
pr— p— 1.4
Pi (2) 1—kmpz — 71222 1— (1 —1)z—1222 (1.4)
with
k—VkZ2+4
T = 7+ (1.5)

2
In a very recent paper, Shafiq et al. [17] introduced a new subclass of A which consists

of g-starlike functions related to k-Fibonacci numbers as follows:

Definition 1.2 ([17]). Let k be any positive real number. The function f € A belongs to
the class 8L (k, q) if and only if

2Dy f (2) 2, (2)
f(2) (1+q)+ (1 —q) Pk (2)
where py, (2) is given by (1.4).

(ZG[U),
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Remark 1.3. For ¢ — 17, the class 8£ (k, q) reduces to the class S£* which consists of
functions f € 8 satisfying
2f'(2)

f(2)
This class was introduced by Yilmaz Ozgiir and Sokdl [14].

Remark 1.4. For ¢ — 1~ and k = 1, the class 8L (k, q) reduces to the class 8£ which
consists of functions f € 8§ defined by (1.1) satisfying

2f'(2)
f(z)

=< P (2) (z€ ). (1.6)

<p(z) (2€0),

where -
B B 1+7°2 1-—
p(’z)'_pl(z)_l—m—ﬁz?’ ) 2

This class was introduced by Sokdl [18].

=

Definition 1.5 ([6]). For any positive real number k, the k-Fibonacci sequence { F}, ,, }

n€eNg
is defined recurrently by
Fk,n+1 = ka,n + Fk,nfl (n € N)
with initial conditions
Fro=0, Fri=1
Furthermore n'* k-Fibonacci number is given by
k—7p)" — 11
Fop = BT T (1.7)

’ VEZ 4

where 7, is given by (1.5).

Note that for k = 1, we obtain the classic Fibonacci sequence {F},}, oy, :

Fy=0, Fi =1, and Fpp1=F,+ Fho1 (TLEN)
Yilmaz Ozgiir and Sokdl [14] showed that the coefficients of the function py (z) defined

by (1.4) are connected with k-Fibonacci numbers. This connection is pointed out in the
following theorem.

Theorem 1.6 ([14]). Let {Fj,}
Definition 1.5. If

neNo be the sequence of k-Fibonacci numbers defined in

_ 1+ 7222
1 — krpz — 1222

0o

Pr (2) =14 Prnz’ (1.8)
then we have =

Pt = kT, Pro = (k‘2 + 2) 2, P = (Fen1 + Fypi1) T4 (neN).  (1.9)

For more details about the classes $£ and SL*, please refer to [3-5,8,9,19,20]. Recently,

Shafiq et al. [17] investigated the Fekete-Szegd problem for functions belong to the class
8L (k,q) and obtained the following result:

Theorem 1.7 ([17]). Let the function f € A given by (1.1) belong to the class 8L (k,q) .
Then

2
-
g — Na| < 4—;2 [(1+@)” (1+ A K2+ 4q] (1.10)
Remark 1.8. For ¢ — 17, we get [21, Theorem 2.3]; and for ¢ — 1~ and k = 1, we get
[15, Theorem 2.4].

The main purpose of this paper is to improve the results of the above-mentioned theorem
(Theorem 1.7). For this, we need the following lemmas:
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Lemma 1.9 ([12]). If p € P with p(z) =1+ c12 + c22%2 + -, then

—4v+2 , v<0
’czfyc%‘g 2 , 0<v <l

4v — 2 , v>1

When v < 0 or v > 1, equality holds true if and only if p (z) is %fj or one of its rotations.

If 0 < v < 1, then equality holds true if and only if p (z) is %fiz
v =0, then the equality holds true if and only if

1 1\1+z (1 1\1-2
_(r, ! 22 <n<i1
p(z) (2+2")1—z+(2 2">1+z Osns<1)

or one of its rotations. If

or one of its rotations. If v = 1, then the equality holds true if and only if p(z) is the
reciprocal of one of the functions such that the equality holds true in the case when v = 0.

Although the above upper bound is sharp, in the case when 0 < v < 1, it can be further
improved as follows:

o2 = et + v ;
co —vei|+vie| <2 0<l/§§

and

1
’CQ—I/C%‘—F(l—V)‘Cl‘ZSZ <2<V§1>.

Lemma 1.10 ([13]). Let p € P with p(z) = 1+ c12 + c22® 4+ --- . Then
len] <2 (neN).

Lemma 1.11 ([16]). Let p € P with p(2) = 1+ c12 + ca2? + - -+ . Then for any complex
number v

o2 — vel| < 2max {1, |2v — 1]},
and the result is sharp for the functions given by

1
and p(z)= te

1—2"

2. Main results

Theorem 2.1. A function f given by (1.1) belongs to the class 8L (k,q) if and only if
there exist a function h,

2Dk (2)
h(z)<(1+q)+(1—q)ﬁk(z) (z € 1)
such that
z h _ %
f(z) =2 <exp /0 (t)tldqt> (z€U). (2.1)
Proof. Let f € 8L (k,q) and consider
2Dy f (2)
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where h is analytic and h(0) =1 in U. It follows that

“h(t) -1 21D, f (t) — f(1)
./o t dqt:/o tf() ot

; t dt / —dgt
- (n)
- (1 )
z(exp/OZh(t)t dt)lnq—f()

which is (2.1) . Conversely, let (2.1) holds true, that is, there exists an analytic function h,

which implies that

Qﬁk (Z)
AR T A
such that
fiz) = (exp /OZ h(t)t_ 1dqt) ' . (2.2)

Then g-Logarithmic differentiation of (2.2) gives us
Ingq <qu(z)) _ Ing (1) ~ Ing <h(z)—1>
g—1\ f(2) g—1\z) q—1 z ’

2Dy f (2)
f(2)
which implies that f € 8L (k, q). Thus the proof of the theorem is completed. ]

or, equivalently

= h(z),

Letting ¢ — 17 in Theorem 2.1, we get following consequence.

Corollary 2.2 ([14]). A function f given by (1.1) belongs to the class SLF if and only if
there exist a function h,
h(z) < pi (2) (z € U)
such that
h(t) — 1
t

f(z):zexp/oz dt (z € U).

Letting ¢ — 1~ and k£ = 1 in Theorem 2.1, we get following consequence.

Corollary 2.3 ([5]). A function f given by (1.1) belongs to the class SL if and only if
there exist a function h,

h(z) <p(z)  (2€0)
such that

f(z):zexp/OZh(t)t_ldt (z€ ).

Now, we give the upper bound of the Fekete-Szegé functional ‘ag — )\a§| of functions
f e 8L (k,q) given by (1.1) when X € R.
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Theorem 2.4. If the function f given by (1.1) is in the class 8L (k,q), then we have

-2 (140)° k> +4g-A(14q)*k? \ < ((1+9)2k>+4q) T +2qk
K 4q? T (1+q)*k27
32 k|| ((1+9)°k%+4q) 7 +2qk
‘a?’ )\a2’ = 2q ) (1+q) k27, SAS
-2 A(140)*k? —(14q)°k?~4g \ > ((1+q)k2+4q) 7p —2qk
k 4q2 ’ - (1+q)% k27,
((1+q)2k2+4q)7'k+2qk (1+q)%k2+4q
U=, SAS (ame o then
((1+ ) K2 +4q) 7 + 24k
‘ag—)\a§’+ A— 2 |a2]2_
(1 + q) kQTk

2
Wﬂ <A< ((H'Q) k2+24q)7'k_2kq
(I+g)°k2  — 7 — (1+q)°k2Ty,

(1+ q)2 k? 4+ 4q) 7, — 2qk
‘(Ig*)\a%"k ( 5 ) —A |CL2’2
(1 +q) kQTk

Furthermore, if , then

FEach of these results is sharp.
Proof. 1f f € 8L (k,q), then it follows from Definition 1.2 that

z (Dgf) (2) 2py (2)
f(2) (1+q)+ (1 —q)pr (2

((1+q)°k?+4q) T —2qk

(1+q)* k27,

k|7
2q

k|7
2q

) = ¢pqe(2) (z€U),

(2.3)

where the function py is given by (1.8). So by the principle of subordination, there exists

a Schwarz function w € Q such that

DD w00,

Therefore, the function

o) = 1+w(z)

is in the class P. Now, defining the function p(z) by

_ 2 (Def) (2)
p(z) - f(Z)
it follows from (2.3) and (2.4) that

P(2) = ¢rg (Z((j));ll) '

=14piz+pe2?+---,

Note that
1 2
w(z):%z+§ (CQ—C21> 224
and so
1+ q)pr1ca
org(0(2) = 14 LFOR,

4 16

1+gq 2\ l+gq _ _
+ { (CQ - 21> Dk, + o} [(q - 1)17%,1 + 2171@,2} ERR R
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Thus, by using (2.4) in (2.6) and by considering the values py ; (j = 1,2) given in (1.9),
we obtain

(1 + q) k’]’k
Phh=— "—"—"~2a
4
and ) : ) : )
_ (A +q)km ), 1+ [A+9k +4]7 ,
Pr=" “-3)" 16 -
On the other hand, a simple calculation shows that
2 (Dqf) (%) 2] .2
Z\al)\2) 1 — .
() +qa22+9[( +4q)as aQ}z to

which, in view of (2.5), yields

pr=ga and  py=q[(1+q)as— aj]
or equivalently
B R R i
q ¢ (1+q)
Thus, we obtain

1 I+gAr-1
= g
7 A0 g(1+q) [ 7
1 (14 q) kT, c (1+q) [1+q) k> +4] 77 ,
= Co — — —+ Cl
qg(1+q) 4 2 16
40P+ A - 1R
164q !
kT
where
1 (149K +4¢—A(1+¢)* k2
V= - — Tk

2 4dqk
The assertion of Theorem 2.4 now follows by an application of Lemma 1.9.
To show that the bounds asserted by Theorem 2.4 are sharp, we define the following
functions:

Kopon () (neN\{1}),

with
Ky, (0)=0=K, (0)-1,
N K (2
z Pk,q,n z n—1
— T = g4 (2 , (2.8)
Kﬂpk,q,n (Z) I ( )

and the functions F, (2) and Gy, (2) (0 <n <1), with
F,(0)=0=F;(0)—1 and G,(0)=0=G,(0) -1,

by
2k (2) (2(2+77)>
F, (2) R\ "1 ¥z
and
2Gy (2) (_Z(Z+77)>
Gy(2) Phia 1+nz )’
respectively. Then, clearly, the functions K,  ,F, G, € 8L (k,q) . We also write
K‘Pk,q = K‘pk,q,?'
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(1+q)2k2+4q) 7, —2qk
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( (
WA < s > T gy,
holds if and only if f is K, or one of its rotations.

((14+q)k2+4q) Te+2qk ((1+9)°k2+4q) 7 —2qk
When =G mn, <A< T (pen,
if fis Ky, 4 or one of its rotations.

_ ((149)?k?+4q) Te+2qk
A= (1+q)* k27,
rotations.
If =
rotations.

, then the equality holds

((1+9)°k2+4q) 7. —2qk
(1+q)° k27

, then the equality holds

For ¢ — 17, we have the following result.

Corollary 2.5 ([2]). If the function f given by (1.1)

, then the equality in Theorem 2.4
, then the equality holds if and only

if and only if f is F}, or one of its

if and only if f is G, or one of its
O

is in the class SL*, then we have

2(k2+1) 1 +k
(R +1-k2) A< A EInk
22 k|| 2(k?+1)m+k 2(k2+1) e~k
jas = haj| < e SAS Tapn
2(k2+1) 1, —k
Tl? (/\kz - k2 - 1) ) A > ( 2k23_kk -
2 T
If W <A< EHL then
‘a —)\aQ)—i— \_ 22+ 1)1+ k lasf? < k||
s 2%27, 2 ="9
2 _
Furthermore, if % <A< %, then
2>+ 1) —k k||
2 2 3
— _ < .
a3 — Aa3| + ( T A laof* < =5

Each of these results is sharp.

Now, we give the upper bound for the Fekete-Szegé functional a3 — Aa3| of functions

f € 8L (k,q) given by (1.1) when X € C.

Theorem 2.6. If the function f given by (1.1) is in the class SL (k,q) , then we have

2
k|l |1+ K2+

49— A(1+q) k2|

‘ag—)\a%‘g x{l,

for all X € C. The result is sharp.

2q

Iml}

2qk

Proof. Let the function f € A given by (1.1) be in the class 8£ (k, q) . Define the function

p(z):1+plz+p222+--- by

of Theorem 2.4, we obtain

z (Dqf) (2)
e =p(2),
TR
then we have B
Qﬁk z
p(z) < - :
N (e (P
where py, (2) is given by (1.4). As shown in the proof
b PL g A2t Dl
q’ ¢ (1+q)
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Therefore for any A € C, we have

1
q(1+q)
Now, by Theorem 2.10, this equality implies that

I1+gA—1
p2_(qp% .

’ag — )\ag‘ =

T (1 +9) K2 + 49— A (1 + )" k2|
a3—)\a2’ < ——max< 1, Tl ¢ -
‘ 2q 2qk
This evidently completes the proof of theorem. O

Remark 2.7. It is worthy to note that Theorem 2.6 improves the results given in Theorem
1.7.

Corollary 2.8. If the function f given by (1.1) is in the class 8L (k,q) , then we have

72

2
, ;’f , 0<k< 7
‘GS - az‘ <
K|y 2
2¢ = V3
Theorem 2.9. If the function f given by (1.1) is in the class 8L (k,q), then we have
1 k
o < L2 L8 (29)
and )
1 244
|ag| < k;j' max{l,( +q)2q: Rt |rk|}. (2.10)

Proof. Let f € 8L (k,q) . Therefore, as explained in the proof of Theorem 2.4, we obtain

(1 + q) k‘TkC
4q

. (2.11)

and

(2.12)

ko, ( 2qk — [(1 + )2k + 4q} Tk 2)
ag = — | ¢ — c11]-

4q 4qk

From (2.11) and Lemma 1.10, we get (2.9). Also from (2.12) and Lemma 1.11, we obtain
(2.10) . O

Theorem 2.10. If the function p(z) = 1 + p1z + p22% + - -+ belongs to the class k — Py,
then we have

1+q)k
Ip1| < dtak 2q) |7k| (2.13)
and
1+q)k 1+q)k?+4
pl < S50 o {1, Lo |m|}. (214)

The above estimates are sharp for the function Ky, ., (2) and Ky, , given in (2.8).

Proof. Let p(z) = 1+ p1z + p2z? + -+ and pp (2) = 1 + g1z + Pr2z® + ---. By the
hypothesis, since

Qﬁk (Z)
1+q)+(1—q)pr (2
the principle of subordination implies that there exists a function w € ) such that

p(2) = ¢rq(w(z)) (2€0).

p(2) < ( } = P (2),
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Therefore, as explained in the proof of Theorem 2.4, we obtain

(1+4q)praca .
4

1+q C% ~ ].+q 2 ) - )
+{4 (CQ—Z pk,l—i- 16 C1 [(q_1>pk,1+2pk,2} 254

So equating the coefficients of the functions p(z) and ¢4 (w(2)), and considering the
values Py ; (j = 1,2) given in (1.9), we have

Prq(@(2) = 1+

1 k
py = LD +Z> L (2.15)
and
1+q)k 2 1 1+q) k* + 4] 77
pp= U@k (0 a) A+a)[(I+ak”+ }ch%. (2.16)
4 2 16
From (2.15) and Lemma 1.10, we get (2.13). Also from (2.16), we can write
ipal = (L+qklml| 2k [(1+ q) k* + 4] T 2
b2 4| Ak 1]-
Therefore by using Lemma 1.11, we obtain (2.14). O

For ¢ — 17—, we have the following result.
Corollary 2.11 ([21])). Ifp(2) =1+ p1z 4+ p22z® +--- and

p(z) <pe(z)  (2€0),
then we have
Ip1] < k|7
and
pol < (K +2) 72 = (K +2) (hre +1).
The above estimates are sharp.

Theorem 2.12. If the function p(z) = 1 + p1z + p22% + - -+ belongs to the class k — Py,
then we have

1 k 1 K2 +4—~(1 k2
et < (ORI [ 10208 212 Qe
2 2k
for all v € C.
Proof. On the other hand, by means of Lemma 1.11, we also have
1+q k Tk
o] = UtORIn
20+ 9k |1+ +4(1+9) -y (1 +9 K| 7 ,
X |cg — N 3
(1+ ) k| 1+ K +4(1+9) =7 (1 +9)* K|
< ——— max\ 1, 73]
2 2(1+q)k
for all v € C. 0

For ¢ — 17, we have the following result.
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Corollary 2.13 ([2]). If p(z) =1+ p1z + p2z? +--- and

then

p(2) < Pk (2) (z€U),

we have

]kQ +2— ’ykzl
e

‘pg - yp%‘ < k|| max {1,

for all v € C. The above estimates are sharp.

Corollary 2.14. If the function p (z) = 1+ p1z + paz? + -+ belongs to the class k — Py,

then

we have
I+q)r2 , 0<k< 2

Sl

’p2*p%’ < . ,
qu|7'k’ s k > %

3. Conclusion and future work

In this study, we consider following two subclasses of functions:

8L

k

2Dy f (2) 20k (2)
f(2) (1+q)+(1—q)pk(2)

Qﬁk (Z)
(1+q)+(1—q)pk(2) e U)}'

(k. q) = {f(Z)ZerZanZ”: (zEU)},
n=2

-P, = {p(z) =1+ ipnz” :p(z) <
n=1

For functions f € 8L (k,q), we obtain sharp bounds for the Fekete-Szego functional
éx (f) = az — Aa3. Also we give upper bounds for the initial coefficients as and ag. In the
general case, the coefficient bound for |a,| is open problem.

Furthermore, for functions p € k — P4, we obtain sharp bounds for the ]pg — ’ypﬂ, |p1]
and |pa|. In the general case, the coefficient bound for |p,| is open problem.

This study could inspire light on further research.

1]
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