Beneficial effects of linagliptin in cell culture model of Parkinson’s disease

Ufuk Otkay1, Irmak Ferah Otkay2

1Department of Medical Pharmacology, Ataturk University, Faculty of Medicine, Erzurum, Turkey
2Department of Pharmacology, Ataturk University, Faculty of Pharmacy, Erzurum, Turkey

ABSTRACT

Objectives: We aimed to investigate the neuroprotective effects of linagliptin in an in vitro 6-hydroxydopamine (6-OHDA) Parkinson’s disease model.

Methods: 6-OHDA (200 µM) were administered to the SH-SY5Y cells for 24 h to induce Parkinson’s disease model in vitro. Cells were treated with linagliptin (1, 10, 50 and 100 nM) 30 minutes before 6-OHDA administration. Cell viability was examined by 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT) method and lactate dehydrogenase (LDH) analysis. Superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA) and reactive oxygen species (ROS) analyses were conducted to assess oxidative stress. Apoptosis was evaluated with Caspase-3 mRNA expression levels.

Results: It was observed that 6-OHDA elevated LDH levels and cell death. Oxidative stress was exaggerated with increased ROS and MDA levels and substantially apoptosis was proven with increased Caspase-3 levels in SH-SY5Y cells. Pretreatment with linagliptin alleviated oxidative stress and apoptosis.

Conclusions: Given its neuroprotective role as well as its effects on oxidative stress and apoptosis, linagliptin may be a drug candidate in Parkinson's disease.

Keywords: 6-OHDA, DPP-4 inhibitor, linagliptin, Parkinson’s disease, SH-SY5Y cells

Parkinson’s disease (PD) is a progressive and common neurodegenerative disease [1]. Characteristic feature of PD is progressive death of neuronal populations, primarily dopaminergic neurons [1]. Even though neuropathological processes of PD are well defined, its etiology is still largely undefined [2]. Furthermore, multiple mechanisms have been investigated as triggers of neuron loss in PD, including oxidative stress, mitochondrial dysfunction, apoptosis, and inflammation [3, 4]. PD patient’s key symptoms are tremor, bradykinesia, stiffness. Also, postural instability, behavioral and cognitive problems such as dementia, depression, anxiety, and sleep disturbances also occur in the late stages of PD [5].

Levodopa and/or dopamine agonists are used as the first choice in the treatment of PD, and the treatment has remained symptomatic [6]. These treatments are capable of slowing the progression of PD and most of them only relieving symptoms, and after a certain period most Parkinson's patients suffer from side effects such as motor and non-motor fluctuations and dyskinesia [7].

Linagliptin (LNG) is a dipeptidyl peptidase-4 (DPP-4) inhibitor which can be chosen for the type 2
diabetes management. Several studies in recent years have demonstrated the strong neuroprotective properties of LNG in various neurodegenerative disorders, like Alzheimer’s disease, dementia and stroke [8, 9]. These effects are based on the antioxidant and anti-inflammatory features of LNG, as well as its capability to modify the crucial neurotransmitters’ activity. It is also well known that glucagon-like peptide-1 (GLP-1) exerts neuroprotective activity by attenuating neuroinflammation [10, 11].

6-hydroxydopamine (6-OHDA) is a neurotoxicant that has been extensively utilized to induce in vivo and in vitro experimental PD models. Together with other free radicals, it produces H₂O₂, O₂⁻ and OH radicals, which determine mitochondrial membrane permeability loss and consequently results in oxidative stress [12, 13].

On this basis, this research was planned to assess the beneficial effects of LNG in 6-OHDA-induced in vitro PD model.

METHODS

Cell Culture

SH-SY5Y cells were incubated with 10 % FBS and antibiotic solution in DMEM. The flask was cultivated at 37 °C with 5% CO₂. Then, 0.5 × 10⁴ cells were seeded into 96 well-plates. To form PD in cell line, 6-OHDA (200 µM) was administered to each well for one day. Firstly SH-SY5Y cells were treated with LNG (1, 10, 50 and 100 nM) and then thirty minutes later 6-OHDA was administered to each well [14-16].

MTT Analysis

In order to evaluate the cell viability, 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT) method was utilized. 20 µl MTT solution (Sigma-Aldrich) was added to each well. After four hours supernatants were exchanged with 150 µm DMSO and the absorbance was measured at 490 nm.

LDH Analysis

Lactate dehydrogenase (LDH) is an intracellular enzyme which reflects cytotoxicity. LDH leakages from cells when membrane integrity is disrupted. LDH activity were assessed by an LDH assay kit (Elabscience, US). Absorbance was calculated at 450 nm.

Oxidative Stress Markers

Superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA) and reactive oxygen species (ROS) were analyzed by ELISA kits (Elabscience, US) as described before [17]. Levels of ROS were measured using ELISA kit (LSBio, United states) and the optical density was assessed at 450 nm.

Molecular Analysis

mRNA extraction and cDNA synthesis were carried out as previously described with RNeasy easy kit (Qiagen, Germany) Real-time PCR analysis also was carried out as previously described [18]. Relative mRNA caspase-3 expression levels were determined by Rotor-Gene Q (QIAGEN). β-actin was utilized as the reference gene. The target gene expression levels were compared with the housekeeping gene β-actin. The sequences of specific primers were as follows: Caspase-3: forward, 5′-TTTTCTAGTCCGGGACAAAC-3′, reverse, 5′-GGGCAGCGGAAGAATTACGT-3′, β-actin: forward, 5′-CAAGGTGGGTGTCTTTCCT-3′, reverse, 5′-GATCCACACGGAGTACTTGC-3′. The obtained results were analyzed as fold changes using the 2⁻ΔΔCt method.

Statistical Analysis

All data were analyzed with one-way analysis of variance (ANOVA) followed by the Tukey post hoc test (IBM SPSS 21.0) p < 0.05 assumed meaningful. Results are mean ± SD.

RESULTS

MTT and LDH Analyses

6-OHDA lead to marked reduction of cell viability in the MTT assay and increased LDH leakage. Also, LNG increased the cell proliferation and our findings proved that LNG markedly increased viable cell ratio. Additionally, LNG significantly reduced LDH levels (Fig. 1).

Oxidative Stress Results

SOD and CAT levels were markedly decreased in 6-OHDA group while MDA and ROS levels significantly increased in comparison to control group. Activities of SOD and CAT were significantly increased.
Fig 1. Cell viability test results. Results are mean ± SD. **p < 0.001 versus control, # p < 0.05 versus 6-OHDA, ##p < 0.001 versus 6-OHDA.

Fig 2. Oxidative stress results. Results are mean ± SD. **p < 0.001 versus control, # p < 0.05 versus 6-OHDA, ##p < 0.001 versus 6-OHDA.

in LNG groups, whereas MDA and ROS concentrations were markedly decreased in comparison with 6-OHDA group (Fig. 2).

mRNA Expressions of Caspase-3

The mRNA expression of Caspase-3 was markedly increased in the 6-OHDA group. LNG ad-
ministration significantly reduced caspase-3 expression in comparison with 6-OHDA group (Fig. 3).

DISCUSSION

In this research, the neuroprotective effects of LNG against 6-OHDA neurotoxicity in SH-SY5Y cells was examined for the first time.

In this study, we observed that 6-OHDA significantly reduced SH-SY5Y cell viability, and treatment with LNG increased cell viability. In addition to our observations of cell viability, we also demonstrated a significant reduction of apoptosis in LNG groups.

GLP-1, an incretin hormone which has been proven to be effective in neurodegenerative disorders like Alzheimer's disease and GLP-1 is immediately de-activated by DPP-4 enzyme. Thus, inhibition of DPP-4 is used for elevation of GLP-1. There are studies confirming that GLP-1 analogs improve neurodegeneration by reversing cognitive deficits in neurodegenerative disorders like Alzheimer's disease [19, 20]. Also, DPP-4 inhibition is supposed to exert neuroprotective effects by elevating GLP-1 levels in circulation. De-activation of DPP-4 has been shown to modulate the levels of glucose-dependent insulinotropic polypeptide, neuropeptide Y, brain natriuretic peptide, and stromal-derived factor-1, which have neuroprotective effects [21-23]. These data revealed that by inhibiting the DPP-4 enzyme, neuroprotective effects can be obtained in neurodegenerative diseases such as PD.

Oxidative damage is known to take part in pathological processes associated with neurodegenerative disorders like PD [24]. Previously, it has been proven that overproduction of ROS in PD can destroy neuronal cell function, cause oxidative DNA damage, disrupt the respiratory chain, and disrupt mitochondrial DNA mutations in the brain of patients with PD [25]. Inhibiting ROS formation and increasing antioxidant enzyme activity are valuable strategies to reduce oxidative stress. In this report, LNG decreased the ROS and MDA concentrations and elevated SOD and CAT activity. Besides, similar to our results, LNG has been reported to have a broad antioxidant effect by reducing ROS production and increasing the activities of antioxidant enzymes [16]. Also, it has been previously reported that LNG exerts an indirect antioxidant effect by increasing the level of circulating GLP-1, which has strong antioxidant, anti-inflammatory and neuroprotective effects in the central nervous system [9].

A substantial amount of evidence indicates that 6-OHDA also induces apoptosis through caspase activation following oxidative stress with excessive ROS increase. Caspase-3 is a substantial component of the cysteine protease class concerned with in the mitochondrial apoptotic pathway [26]. We found that LNG down-regulated caspase-3 expression and showed anti-apoptotic effects, confirming previous studies. Previously it has been reported that LNG has a marked neuroprotective, anti-apoptotic and cognitive improving properties in in-vitro cerebral ischemia model [27].

CONCLUSION

In the light of all these data, LNG may be a promising agent in Parkinson's disease with its anti-oxidant and anti-apoptotic properties.

Authors’ Contribution

Study Conception: IFO, UO; Study Design: IFO, UO; Supervision: IFO, UO; Funding: N/A; Materials: N/A; Data Collection and/or Processing: IFO, UO; Statistical Analysis and/or Data Interpretation: IFO, UO; Literature Review: IFO, UO; Manuscript Preparation: IFO and Critical Review: IFO, UO.
Conflict of interest

The authors disclosed no conflict of interest during the preparation or publication of this manuscript.

Financing

The authors disclosed that they did not receive any grant during conduction or writing of this study.

REFERENCES

20. Holscher C. Incretin analogues that have been developed to treat type 2 diabetes hold promise as a novel treatment strategy for Alzheimer's disease. Recent Pat CNS Drug Discov 2010;5:109-17.