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ABSTRACT

The aim of this paper is to establish a well-posedness result and the existence of finite- dimensional global
attractors for a model of a coupled suspension bridge as well as the regularity of global attractor is achieved.
This result generalizes the previous result in [6].
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1. INTRODUCTION

Taccoma Narrows bridge collapse is certainly the most impressive setback in the history. The
crucial event in the collapse was a sudden change from vertical to torsional oscillations .

From the physical point of view, the suspension bridge equation describes the transverse
deflection of road bed in the vertical plane. On the other hand, from the mathematical point the
suspension bridge model describes the vibration of the vertical plane.

The mathematical model appears necessarily a precise description of the instability and the
structural behavior of suspension bridge under the action of the load which reveals its lifelong, the
nonlinear behavior of suspension bridge, which is by now well established, also plays a crucial
role in causing oscillations. The reliable model for suspension should be nonlinear and it should
have enough degrees of freedom to display torsional oscillations.

To motivate our work let us start with some works for example a single equation of
suspension bridge, Messaoudi et al [8] suggested the following problem:
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(utt (x,y,t) + Sut(x,y,t) + pA2u(x,y,t) — ffm g(t—s)A2u(x,y,s)ds + h(u) = f € Q% (0,T)
1

u(0,y,t) = uxx(0,y,t) =0 for (y,t) € (—L,L) x (0,+c0)
! u(m,y, t) = uxx(m,y,t) = 0 for (y,t) € (—L,L) x (0,+c0)
luyy(x, £L,t) + Suxx(x,+L,t) =0 for (y,t) € (0,7) X (0,+o0)
uyyy(x, L, t) + (2 — §)uxxy(x, +L,t) =0 for (y,t) € (0,1) x (0, +0)
u(x,y,0) = ul0(x,y),ut(x,y, 0) = ul(x,y) inQ

where J,u >0 are constants, u(x,y,t) is the vertical displacement of the plate in the downward
direction, h(u) is a restoring force due to hangers of the suspension bridge, f € L2(Q) is an external
force which also includes the gravity. The memory kernel g : IR+ — IR+ is an absolutely
continuous function which may blow up at 0. They gave a rigorous well-posedness result and
established the existence of a global attractor.

Recently, Lazer and McKenna [5] studied the nonlinear oscillation problems in suspension
bridge and presented a (one-dimensional) mathematical model for a suspension as a new problem
of nonlinear analysis where they modeled a suspension bridge as a rectangular plate since the
plate is perfectly correct and corresponds mechanically to a vibrating suspension bridge. Gazzola
[3] suggested an equation with linearized stretching term

Au—-sAu=f in Q.
Here u = u(x;t) represents the vertical displacement of the plate, and f is an external force
including the gravity.
The plate is assumed to be suspended by its vertical edges
U(O,y) = Uxx(O,Y) = U(n’,y) = Uxx(n,y) =0,
and the horizontal edges are free
Uyy(X, 1) + ou(X, ) = Uyyy(X,El) + (2 — o) uxxy(X,2l) — uy(x, =) =0

forally € (-1,I) and all x € (0,z), where 0<o <! is the Poisson ratio.
It is well known that Ma and Wang [7] presented the following nonlinear problem which
describes a vibrating beam equation coupled with a vibrating string equation

{ utt + auxxxx + 81ut + k(u — v) + fB(u) = hB(xt) x € [0 L]
vtt — Bvxx + 82vt — K(u — v) + fs(v) = hS(x t) x €[0L]
with the simply supported boundary-value conditions

u(0,t) = u(L,t) = uxx(0,t) = uxx(L,t) =0, v(0,t) =v(L,t)=0,t>7

such that
(u—v)"—{u —v,ifu—v >0
1 0ifu—v<0

where k >0 denotes the spring constant of the ties, a >0 and g >0 are the flexural rigidity of
the structure and coefficient of tensile strength of the cables, respectively

61, 62 >0 are constants, the forces term hg, hs € L20cIR,L%(0,1)) the nonlinear functions fs(u),
fs(v) € CXIR R) represent the source terms.

They proved the existence of pullback D-attractors for the non-autonomous coupled
suspension bridge equations with suspended and clamped ends. Similar models have been studied
by several authors, we refer the readers to ([6],[9],[10]) and the references therein. For example
Jum-Ran Kang [4] investigated the long-time behavior of a solution to the following
thermoelastic suspension bridge equation with linear memory
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utt+0(A2u—Aut+Kuif0wu(s) A2u(t—s)ds+BAe

+f(w) = h(x) inQx (0,)
et—Ae—BAut—wak(s) Ae (t—s)ds in Q x (0,)
such th at

(u_v)+:{u —v,ifu-v >0
0,ifu—v<o0
where Q is a bounded domain in IR2. Here o is the flexural rigidity of the structure, and 5 >0
provides connection between deflection and temperature and depends on mechanical and thermal
properties of the material. They showed the existence of a compact global attractor.
In [12] the authors suggested the following problem of suspension bridges:

@

Mutt + Eluxxxx — Huxx + % %IOLH(Z, t)dz = f(x,t) in (0,L) X (0,+)
[ vtt + Clvxxxx — (C2 + Hwl2)vxx +}l{_ % foL v(z,t)dz = g(x,t) on (0,L) x (0, +)

such that M,E,A,w,H,C1,Cz | and "I are well determined in [12], by using a continuous model
of the suspension bridge and by a quasi stationary approach, a simple formula of the combined
vertical/torsional flutter wind speed is given. A good agreement is obtained comparing the
predictions from the proposed formula with the flutter speeds of three modern suspension or cable
stayed bridges. A more slightly sophisticated and complicated string-beam model was suggested
by Lazer-McKenna [5]. They treated the cable as a vibrating string coupled with the vibrating
beam of the roadway by piecewise linear springs having a spring constant k if expanded, but no
restoring force if compressed. The sustaining cable is subject to some forcing term such as the
wind or the motions in the towers. This leads to the following system:

{utt —cluxx + 8lut — K1(u —v)+ = f(x,t) in(0,L) x IR+

vtt + c2uxxxx + 82ut + K2(u —v)+= WO on (0,L) x IR+,
wfu—v,ifu—v >0

such that (u-v) —{0, fu—v<o0

where v is the displacement from equilibrium of the cable and u is the displacement of the
beam, both measured in the downward direction. d1, d2 are respectively positive constants and the
constants c1and cz represent the relative strengths of the cables and roadway respectively, whereas
Kiand Kz are the spring constants and satisfy K2 < Ki. The two damping terms can possibly be set
to 0, while f and Wo are the forcing terms. They proved the existence and multiplicity of periodic
solutions of mathematical model of nonlinearly supported bending beams, and they showed also
some nonlinear behaviors as observed in large-amplitude flexings in suspension bridges.

In the present paper, we consider a plate model that better describes torsional oscillations in
suspension bridges, we consider a variant of (1), we add to the equation the term hi(u), hz(v)
which represent the restoring force due to the hangers of the suspension bridge, and a convolution
term which means that the stress at any instant t depends on the whole history of strains, here f1
and f, are a nonlinear source terms .

We omit the space variables x,y of u(x,y,t), o(x,y,t), ui(x,y,t) and ov«(x,y,t) and for simplicity
denote u(x,y,t) = u, o(x,y,t) = o, u(x,y,t) = urand oi(x,y,t) = o, when no confusion arises also the
functions considered are all real valued, here ur = du(t)/0t, ux = 2u(t)/0f?, vt = do(t)/ot and vy =
v (t)/0F.

We consider the modified suspension bridge problem
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o

Mutt + EI A2 u — H Au + ut — fo p1(s)A2 u(x,y,t —s)ds + hi(u) = f(x,t) in (0,L) X (0, +o0)

10 vet + C1A2v — (C2 + HWOA2V + [I7 19(5)A2 v(x,y,t — s)ds + h2(v) = g(x, ) in (0,1) X (0, +e0)

U(0,y,t) = uxx(0,y,t) = 0 for (y,t) in (=L,L) X (0, +o0)
U(0,y,t) = vxx(0,y,t) =0 for (y,t) in (—L,L) x (0, +o0)
U(my,t) = uxx(my,t) = 0 for (y,t)in (=L,L) X (0, +o0)
v(m,y,t) = vxx(m,y,t) = 0 for (y,t)in (=L, L) X (0, +) )
Uyy(x, =L, t) + o uxx(x, L, t) = 0 for (xt)in (0,1) X (0,+)
Vyy(x, 2L, t) + o uxx(x, +L,t) = 0 for (x,t) in (0,1) X (0, +0)
uyyy(x, L, t) + (2 — o)uxxy(x, +L,t) —uy (x,+L,t) =0 for (x,t) in (0, 1) X (0,+0)
vyyy(x, L, t) + (2 — o)vxxy(x, L, t) — vy (x, £L,t) = 0 for (x,t) in (0, ) X (0, +)
ux,y,t) = u0(x,y), ut(x,y,0) = ul(x,y) inQ
v(x,y,t) = vO(x,y),vt(x,y,0) = vi(x,y) inQ

where Q = (0,7) x (—1,I) €IR?, f1,f2 € IL2(Q). The memory kernel ui: IR* — IR*i =12 is an
absolutely continuous function which may blow up at 0. A

We identify some parameters that arise in the equation (2) , for example x and y are the space
variables along the beam in the bounded domain Q.

e tdenotes the time variable.

e uand v denote respectively the vertical and torsional components of the oscillation of the
bridge.

e ut,vt represent the damping terms, the damping are produced by processes that dissipate
the energy stored in the oscillation.

e fl(x,y) and f2(xy) are the lift and the moment for unit girder length of the self-excited
forces

e hl(u) and h2(v) represent restoring force due to the hangers of the suspension bridge

o ul1(.), n2(.) represent the viscoelastic materials are a kind of materials that have the
properties of keeping past information (memories) and which will be used in the future.

e E and | are, respectively, the elastic modulus and the moment of inertia of the stiffening
girder so that El is the stiffness of the girder

e m denotes the mass per unit length

e |0 The polar moment of inertia of the girder section

e 2/ the roadway

e w=mg is the weight which produces a cable stress whose horizontal component is Huw,

e Cland C2 are, respectively the warping and torsion.

Motivated by the previous works, in the present paper, it is interesting to analyze the
influence of the viscoelastic, source on the behavior of (2). Under suitable assumptions on the
functions wi(.), fi(.,.)(i = 1.2), the initial data and the parameters in the equations, to the best of our
knowledge, there are no results concerning coupled suspension bridge in the presence of
memories terms and more general form of source terms, we establish several results concerning
existence and regularity of global attractor.

The scope of this paper is as follows: In Section 2, we give some preliminaries and main
result. In Section 3, we prove the existence of global attractor, firstly, we prove the existence of
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an absorbing set, then, establish the smoothness . In Section 4, we verify the regularity of global
attractors.

2. MAIN RESULT

For simplicity, one denotem=E=1=w=Hwy=1,Ci=1and C2=¢ =§
Now, we present the following conditions about memory kernel
Assumption (H)
i) pl,p2 €C1(0,+00)NL1(0,+0)
uf(s) <0< ul(s), Vs € (0,4)
p2(s) <0< p2(s), Vs € (0, +)

(ii) 11=1-["p1(s)ds =1~ uo>0, Vs € (0,4);
12=1-[," u2(s)ds =1 - uo>0, Vs € (0,+0);
(iii) p1(s) +dul(s)<0, Vs € (0,+w), &>0,
u2(s) +du2(s) <0, Vs € (0,4%), §>0,

Assumption (G)

Concerning the forcing term hi: IR — IR, i=1,2, we assume that

@) : hi(0) =0, |hi(u) —hi@)| <Ko(1 +|uP+[uP)u—T Vu,tEeE(0,+x)
where § >0 and p >0. The condition p >0 implies that such that

lim inf22 > =12
Isl—>o00 s ) (4)
|l|im sup —‘hl;(s)l =0,1i=1,2
sl—oo
Where 0<P<w

As in Dafermos [2], we introduce the relative displacement past history functions as
o1t(x,y,8) = uxy,t) —ulx,y,t—s), Vs=0
{d)Zt(X,y, s) =u(xy,t) —uxyt—s), Vs=0
Then
o1t(x,y,s) + 1s(x,y,s) —ut =0,01(x,y,0) =0
$10(x,y,s) = u0(x;y) — u(x,y,—s) = wl(s)
d2(x,y,s) + d1s(x,y,s) =Vt = 0,p2(x,y,0) = 0 (6)
$20(x,y,s) = VO(x,y) — V(x,y,—s) = w2(s)

®)

where w1,w2 represents the history of u, v. Consequently, the problem equivalent to
utt+ f7 ui(s)ds)A2 u— Au+ut + [ p1(s) A2 g1t(xy,s)ds + hi(s) = fi(x,y) in Q X (0, )
Vit + [7u2(s)ds)A2 V — AV + Ve + [["u2(s) A2 $2t(x,y, s)ds + h2(s) = f1(x,y) in 2 x (0, ) %
d1t(x,y,s) + d1s(x,y,s) —Vt =0
d1t(x,y,s) + d1ls(x,y,s) —Vt =0
with the boundary conditions
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u(0,y,t) = uxx(0,y,t) = 0, for (y,t) € (—L; L) x (0, )
u(0,y,t) = Vxx(0,y,t) = 0, for (y,t) € (—L,L) x (0, )
u(m,y, t) = uxx(m,y,t) = 0, for (y,t) € (=L, L) x (0, 0)
V(r,y,t) = Vxx(m,y,t) = 0,for (y,t) € (—L,L) x (0, )
uyy(x, £L,t) + duxx(x,+L,t) = 0 for (x,t) € (0, 1) X (0,00)
Vyy(x, £L,t) + 6Vxx(x, +L,t) = 0 for (x,t) € (0, 1) X (0, 0)
uyyyy(x, L, t) + (2 — H)uxxy(x, L, t) —uy(x, +L,t) = 0for (x,t) € (0, 1) x (0, )
Vyyyy(x,£L,t) + (2 — §)Vxxy(x, £L,t) — Vy(x, L, t) = Ofor (x,t) € (0, ) X (0, ) 8
$1(0,y,s) = d1xx(0,y,s) =0, for (y,s) € (—L,L) x (0,) (8)
$2(0,y,s) = $2xx(0,y,s) =0, for (y,s) € (—L,L) x (0,)
d1(m,y,s) = dlxx(m,y,s) =0, for (y,s) € (—L,L) x (0,)
$2(m,y,s) = d2xx(m,y,s) =0, for (y,s) € (—L,L) x (0,)
d1yy(0,+L,5) + dlxx(x,+L,s) =0, for (y,s) € (0,7) X (0,)
&2yy(0,1L,s) + §b2xx(x, +L,s) =0, for (x,s) € (0,7) X (0, )
$1yyy(0,£L,s) + (2 — 8)dblxxy(x, £L,s) = 0 — dly(x,+L,t) =0 for (y,s) € (0,m) X (0,0)
&2yyy(0,£L,s) + (2 — 8)d2xxy(x, £L,s) = 0 — db2y(x, £L,t) = 0 for (y,s) € (0,7)

and initial conditions given by
u(x,y,0) = u0(x,y),ut(x,y,0) = ul(x,y) in Q

V(x,y,0) = VO(x,y), Vt(x,y,0) = V1(x,y),in Q ©)
$10(%,y,s) = u0(x,y) — u(x,y,—s),in Q X (0, )
$20(x,y,s) = VO(x,y) — V(x,y,—s),in Q X (0, o)

We will use the standard functional space and denote (.,.) be a L2(€)- inner product and . llp

be Lp(Q) norm. Especially, we take
H=V0=12(Q), V=V1=V2=H2x*Q)
with
H2 %(Q) ={(eH2(Q), ¢=0 on {0,m}x{-L L}
equipped with the inner product and norm respectively
(u,v) = (Au,Av), lulv = 1Aul2
Define
D(A)={u,v € H4(Q) N H2 +(Q), (8) hold }
such that, Au = A2u, and equip this space with the inner product (Au, Av), and the norm
IAul2=(Au, Au). We have the following continuous dense injections
D(A) cVc H=Hx*c V*

are the dual spaces of H, V respectively.

Where H*and V*
$2 as new variables and we introduce the

We consider the relative displacement ¢1 ,
weighted IL?-space as follows
L2(R*, Vi)={¢i: R* - Vi /f0°° pi(s)lgi(s)l2ds< oo i=1,2}
which is a Hilbert space endowed with the inner product and norm
(u,v)Vi=f0oo pi(r) (u()V(r))vi dr
Tualyi,vi =f0°o pi(o)hu(r)l?vidr, i=1,2
espectively, where Vs=D(AZ). Finally, we introduce the following Hilbert spaces
HO=V x V x H x H x Lu(R*; V)x Lpa(R*; V)
H1=D(A) x D(A) x V x V x LA(IR*;D(A)) x L2.2(IR*;D(A)),
equipped with the norms

1354



The Existence of Global Attractors for ... / Sigma J Eng & Nat Sci 37 (4), 1349-1366, 2019

1U,V,Ut,$1,§2lH0=IAUI2HAVIZH Ut 2H V2l 1122+ § 2122
and
1U,V,Ut,§1,$2lH0= IAUIZHAVIZHAUt2H AV 22+ 12,082+ G212 peay?
We will assume a Poincare” inequality
Tl vl2< +lIA V2 V vEV

where t denotes the first eigenvalue of Av =tvin Q.
Using the semigroup theory (see [11]) we can conclude the following theorem

Theorem 2.1 Assume that assumption (H) hold and f1,f2 € L%(Q2). Then the problem (7) — (9) has
a weak solution (u,v,ut,\vt, $1 , $2) € C([0,T],H0) with the initial data (uo,vo,u1,v1, d1, $2) €Ho,
satisfying
(u,v)E L*(0,T; V); (utvt)e L=(0,T; V); ¢' € L°(0,T; L.A(R*;V)), i=1,2

and the mapping {u0, vO0, ul, vi, $10, $20} — {u(t),v(t),ur(t),ve(t),0 9%} is continuous in
Ho. In addition, if z"(t) = (u"(t),v"(t),u"t (t),vt"(t), ¢ ") is a weak solution of the problem (7) — (9)
corresponding to the initial data
Z"(0)=(uo", vo", u1", v1", g™ , then one has

Iza(t) — z2(t)lHo < €% 122(0) — Z2(0)lHo, te [0,T],
for some constant ¢ > 0.

The well-posedness of the problem (7) — (9) implies that the family of operators S(t) : Ho —
Ho defined by

S(t)(uo,vo,us,v1, $10, $20) = (u v ,ut vt, d1t, $2t), t>0,

where (u,v ,ut ,vt, d1t, ¢2t) is the unique weak solution of the problem (7) — (9), satisfies the
semigroup properties and defines a nonlinear Co-semigroup, which is locally Lipschitz continuous
on Ho.

Now, we recall some basic definitions and theorems concerning a global attractor.

Definition 2.1 A dynamical system (H,S(t)) is dissipative if it possesses a bounded absorbing set,

that is, a bounded set B c H such that for any bounded set B < H there exists ts > 0 satisfying
S(t)Bc B, V t>ts.

Definition 2.2 [10] Let X be Banach space and B a bounded subset of X. We call a function @(.,.)

which is defined on X xX a contractive function on B xB if for any sequence {Xn}ncn C B, there
is a subsequence {xnk}ken € {Xn}nen , Such that

lim mCD(xnk, xnl) = 0. (10)

k—oo -

Denote all such contractive functions on B x B by C.
Definition 2.3 [10] Let {S(t)}=0 be semigroup on a Banach space (X,I.I) that has a bounded
absorbing set Bo. Moreover, assume that for € > 0 there exist T=T(Bo, € ) and ®T (.,.) < C(Bo)
such that

IS(T)x-S(Tyl< €+ P1(Xy), V (X,y) € Bo

where ®T depends on T. Then {S(t)}=o is asymptotically compact in X i.e , for any bounded

sequence {yn}nen C X and {tn} with tn— o {S(tn)yn}nen is precompact in X.

Theorem 2.2 [6] A dissipative dynamical system (H, S(t)) has a compact global attractor if and
only if it is asymptotically smooth.
Our main result is the following:
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Theorem 2.3 Assume that assumptions (H) , (G) hold and h1,h2 € C1(IR,IR), f1,f2 € L%(Q), then
the dynamical system (Ho, S(t)) corresponding to the system (7) — (9) has a compact global
attractor AcHo, which attracts any bounded set in Ho with I.1no.

3. GLOBAL ATTRACTOR IN Ho

In this section, we would like to prove Theorem 2.3 by showing that the dynamical system
(Ho, S(t)) is dissipative, and verify the asymptotic compactness. Therefore, we get the existence of
compact global attractor by Theorem 2.2.

3.1. Existing of absorbing set
We formally take the scalar product in H of the first equation of (7) with ¢= ut + 6u and the
second w = v¢+0v after a computation we find

2 Il w2+ Aul2+ I AviHY ul2+HV vig?

+2 [H1(V)dx +2 [H2(V)dx — 2 [ f1(x,y)dx

-2 [f1(x, y)dx) +6 I1 IAul>+ © 1 IAVI? + 1V ul? (11)
+OIV v+ (1 — B)(Ut, @)+ +(1 — 8)(Vt, @)+(dL,u)ury

+(92, V) v+ 892, vt)2v + 0 [h1(Wu dx + 6 [h2(v)v dx

=2 [f1(x,y)udx -2 [ f2(x,y)vdx

Exploiting (H) and Halder inequality, we have

(1 -0)(ut,@) =1 - )2 -0(1 - O)(u, @),
(1 = O)(vtw) = (1 — O)lwl2—0(1 — O)(v , w),

And
@1,u)=(d1, plt+dls)= %% 191122+ [, pi(S)($1(5), 1s(s))v ds
= 2SI+ [ i(s) = 191 (5)17ds
= 2191122 Oo’u.(s) ||¢](s)Hv2dS (12)
>12 %n«pluzhg i u.(s) Ip1(hPds= 1 S 111222 141 (5)I2
@200z 5 1921242 19212
ogLupz 19112 =22 1l (13)
og2vvz =212 22 iavi?
We choose 8 small enough, such that

1.a-1ne _2ﬁ -

_ 1_ 1 a-126 6
- 21-0, (;-0= > |1 2>

: >1-0, (;-0)= -
hence, we conclude from Hélder, Young and Poincaré inequalities
o11(1-5=22) 1aul?+(1-0) Il 0(1 0)(u,)
> 9(1-4= “’ QDO JAul2+(1-0) Igl? - 1l Iglz?
C20) 18ul2H(1-0) lpla-( lAul2+ 2 lpl?) (14)
+(3-0) ||(p||2
2011 I8ul+ 3 lplZ?

> o(1- - 11)9

Analogously
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012(1-C=22) 1AVIZ+(1-0) WI-0(1-0)(v,w) 2012 1AVIZ+ > Iwlz? (15)
Combining (12) and (15), we have

i%(l\(pl\zz-*-llwl\zzﬂl 1AulZ+H21AVIZHV ulHIV vig2+H b L2+ b 2122

2 [H1(V)dx +2 [H2(V)dx — 2 [ f1(x,y)dx -2 [ f1(x,y)dx)

QI W42 0 11 (1-0) 10ul?++2 011 (1-0) 1Avl2

+2 0 18ul?+2 0 18012 +2 1911242 192172 (16)

+2 0 [h1(wWudx+ 26 [h2(v)vdx
=2 [f1(x,y)udx -2 [ f2(x,y)vdx <0

Put
Oo=min{ 2 0 11((1-0)-3); 20 12((1- 0)-; 2 ; 2}
Let
E()= lplz?+ Iwlz2+ 1 Aul AV HY ul2HV vizHd 1122+ 2I22
2 [H1(wdx +2 [H2(v)dx —2 [ f1(x,y)udx -2 [ f1(x, y)vdx an
And
)= 1gl2+ Iwl2+ I Aul2+ AVIZHY ul2HY vi2Hd 112212
2 [r1(wdx +2 [h2(v)dx — 2 [ f1(x,y)udx -2 [ f1(x, y)vdx (18)
We have
%E(t) + Bol()< 0 (19)

which implies that
E(t)<- 8o, 1()d¢ + E(0) (20)
Hence

E(0)= lul+6 ullz2%+ lul+0v0l2+ Iwl22+121Au0122+ 11Av0l2HVu0l22+HV10l2+H b 1 0122+ 2 0122
+2 [H1(u0)dx +2f H2(v0)dx — 2 [ f1(x,y)u0dx — 2 [ f1(x, y)v0dx

Noticing that (4) and (17) — (18), and using the compact Sobolev embedding theorem we get
§+ze §+28

E(M)2 Nl Iwl+(11-+22 ) IIAuIIzZ+(I1- ) 1AV

+||Vu||22++||VVI|22+||c]>1||22+||c])2||2 - @1)
Similarly

1> lllo2+ Iwll2+(11-222 ‘*28 ) ||Au||22+(|15+28 ) 1AVl

+I|Vu|I22++I|VvI|22+II¢1||22+||(1)2I|2 - 22)

where

:-3(||f1||2+(nf2u2 +2K11Q, therefore “—§9< 11,and 0< o< §(12)

“29 <11,and 0< @o< §(12-5), we have

L1- £+§e >0 (23)
£+20

L2-222> 0 (24)
And
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E(t)> llpla? liwllz2+ lAull2+ 1AV (25)
+HIVull2++1Vvil2+ 11 b 1241 p 21122 —M
1()> llpll2+ ||w||22+(|15+2—§9) ||Au||22+(|15+2—§9) IAVII2 (26)

+IVull22++1VviiZ2+ 1 L2241 p 21122 —M
So, we deduce from (25)- (26) and (20) that
Cu(lpl2?+ Iwl22H111Aul?H2IAVIZHVul22 Vi +Hid 1122
+HP21-M1) < 0 [1 (Ipls? + IwloH11Aul2+2IAvI2+Vulz? (27)
HUVI2HP 112+ P 212-M)dt+E(0)
Thus, for any &2 > % , there exists t0=to(B), such that
1(t0) 122+ IW(t0)I22+111Au (t0)122+121Av(t0) 122+ Vu(t0) 22 (28)
HVV(t0) 12+ P 1(t0) 12+ 2 (t0) 12 < &2

And we end up to
Lemma 3.1 Assume that assumptions (H) and (G) hold and h1,h2 € C(IR,IR), f1,f2€ L2(Q), then
the ball of Ho, Bo = BHo(0,p1), centered at O of radius p1, is an absorbing set in Ho for the group
S(t). For any bounded subset B in Ho, S(t)B = Bofor t > to, there exists a positive constant p2 > p1
such that vt > to we have

lepll2?+ Iwl2+H Aul2-+HAVIZHVUlZHVY viZ2+H B 12+ 212 < §2 (29)
3.2. Attractor

First, we prove the following important Lemma:
Lemma 3.2 Under the hypotheses of Theorem 2.3, there exists a constant p3> & , such that

lpl2?+ Iwl2HVAul?+HVAVIZ+H Vut 122

HUVH2HP L2 HP212 < ps Vit > t0 (30)
Proof. Multiplying (7)1 by —A¢ = —Aut—6Au, and (7)2by —Ay = —Avt—6Av and integrating over Q,
we get

Proof. Multiplying (7)1 by —A¢ = —Aut —0Au, and (7)2by —Aw = —Avt—6Av and integrating over Q,
we get
%%(I\Aul\zZHIAszZHl IVAUl2+12IVAVIZZ+H Vg 122+HVil22)
+0 11IVAul2?+ © 12IVAvI?+ OlAul+OlAvI2+(1-0)(ut ,- Au )
+(1-0)(vt ,- AV )+(¢1, ut)o(ad) + O (¢1, U)p(ad) +($2, Vi)oad) (31)
+(92, Vppy=(h1(u)-fl, Ag ) =(h2(v)-f1, A y)
Similar to previous estimates, we see that
(1 - 0)(ut ,~Ag) = (1 — O)IVcl2—6(1 — 6)(Vu, V),
(1 - O)(vt ~Ay) = (1 — O)IVyl2—0(1 — O)(Vv, V),

And
(61, ub)oesd = 31 TIod +2 Tt o)
(92, Vi)o(sd = 310210+ Ivtl o)
0 (01, U)odh = =191l - S22 1vAul?
0 (92, V)owdh = = 192l oad) - 22 19AVI2
We have
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@a-11)e
5

IVAulz2 +(1- ©) IVg I22- ©(1- ©)(Vu, Vo)
> O(1-6) IVAul? +§) IVg 122

and

IVAVI22 +(1- ) IV 3 122- ©(1- 0)(Wv, V y)
> O(1-0) IVAVI2 +§) e %

(1-12) e
5

Then we get from (31)

2 I8ulAHIAVIA IV AUl 2IVAVIA VG |22
VPl 1911 pad+ 1621 )
+0 (1-0)11IVAul2+ © (1-0)21VAVIZ+IVgl2 IVl (32)
+ OlAul2+OIAVI2 + 1911 ppd+ 1921 pad)
<(h1(u)-f1, Ac )+ (h2(v)-fL, A v)
Similarly, exploiting the bound lul2? < ¢ , Ivl2? < ¢ which implies that

IhlWl2<c, R2WIA<c
(h1(u)-f1, A urtOA u)

< (IhM1@)I2 + If11A (1A utl? + 1Aul? )< € (33)

(h2(u)-f2, A vt+OA v)

< (Ih2)12 +If212)( 1A vtl2 HAvI2 )< € (34)
So, .. have

L Il AHIAVIZ IV Aul 21V AVl
HVPl2+ 1911 ppd+ 1621 ead) )
+20 (1-0)I1IVAul+2 © (1-0)2IVAVI+2 VIVl (35)
+2 OlAul201AvIZ2 +2 111 o+ > 1021 pia) < 4C
Thus, denote
F(ty= (18ul22HAVIZHIVAUAH2IVAVIZHVG 124V I+ 1911 ppd+ 1621 b))
We deduce easily that

S +00F()< €
Where ©0 =min {2 © 11(1-6), 2 © 12(1-6), % , g } and C = 4c. By Gronwall lemma , we get

F()< exp (-Qo t)F(0)+ g_o
Using the fact that
F(O)= 1Autl?HAVt2HYVAulZHVAVIZ+ 1011 ped+ 1921 pead))

we obtain (30).

We present important lemmas to prove Theorem 2.3.
Lemma 3.3 (Stabilizability inequality) Under the hypotheses of Theorem 2.3, given a bounded set
B c Ho, let z1= (u, v, ut, vt, 1, ¢2) and z2 = (u, v, ut , v¢, &1, £1) be two weak solutions of
problem (7) — (9) such that z1(0) = (u0 , vO, ul, v1, $110, $220) and z2(0) = (w0 v0,ul, v 1,
£110, £220) arein B. Then, for all t > 0, we have
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I21(t)22(t)lo < exp (-vt) | 22(0)—22(0)lo+Cs [, exp (—v (¢ — 5))
(lu(s)=u(s) l2g-1y* Iv(s)—v (S)l2p+1))ds
where v >0 is a small constant and p, Czare positive constants.

(36)

Proof. Let us fix a bounded set B ¢ Ho. We setw =u -t \V=v —v and { = ¢1-¢1, p = ¢2-£2..

Then (w, {) and (V, p) satisfy

(wet + 1102w — Aw + wt + Jy wi()A2¢t(s)ds + hl(u) - h1(@) =
Vet + 11A2V — AV + Vt + fos ul(s)A2 pt(s)ds + h2(u) - h2(u) =

it=—-Is+wt
pt=—ps+Vt
With initial condition
W(0)=u(0)-u(0), wt(0)=ul-ul, {(0)= #10-£10
V(0)=v(0)-©(0), Vt(0)=V1-V1, p(0)=¢20- &20

@37)

We take the scalar product in H of (37)1with = wt+ 6w, and (37)2with y = Vt+ 8V, we get

2 S IUIAWIAH2IAVIZHT I+l HVWIITV 12 +O11Aul4-+OIAVIZ+OITY I2+(1-0)(wt, &)

+(1-0)(Vt, w)+(Ct, wtv +O (Lt, w)v+(pt, VEIv+O (pt, wt)v
+(h1(w) - h1(W), O+(h2(V) - h2(V), v )=0

The same as the previous calculations
(1-6)(wt, )=(1- ©) I{12%-6(1- ©) (W, {)
(1-6)(Vt, p) =(1- ©) W1>-6(1- ©) (V, )
1d 71248 2
O (Ct, wv= ﬂt 112 +% Iwtlz
= 242 2
O (pt, Vijv= - lplo®+ IVtl;
And
=22 jawi?

1AV 122

O ({t, wyv=> ‘— Igtl2+ D ©

O (ot V)vz — Hptl|22+(1 e

So, we have

olL(1 — S22 1awl2 +(1-0) 112 - ©(1-6) (w, {)
> 611 (1-0) lAwlZ+2 I¢l72
a-12)e 12)9 )
) IAV12 +(1-0) 12 - ©(1-0) (V, y)
z 012 (1-0) IAVIZ+2 | 12

ol2(1 -

Then, we have
11(11||Awn22+12|mvn22+||z||22+u1puzz+||vW 12HVV 122H 2+ p||22)

+0611 (1-0) IAwl?+ 011 (1 — ©) IVV 12+ = ||(||22+ ||{t||22+ lpl22
< h1(W) - h1(@), O+( h2(V) - h2(V), y/)
And
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- [L(h1(w) - h1(@))(wt+Ow)dx!
< KfQ (1+ulP+vIP) Iwllwt+Owldx
< Kfn (IQI% + Tula@+)P+ IVI2@p+1)®) Iwlap+1y (Iwtl?+ © Iwl2? ) (40)
< (KC+ 0) Iwl2 +2 15122
By the same technique , we get
- [,(h2(V) - h2(P)(VE+OV)dxl < (KC+ ©) V122 +§ 12 (1)

We have used the fact that Iwtl2?=I{-Owl2? , that IVtl2>=] w -OVI2?2  and ¢>0 is an embedding
constant for L2P*(Q)— L%(Q). Integrating (37), we get from (39) — (41)

%(ll||AW|\22+12|\AV|\22+||{||22+H1,[)H22+IIVW 12HTV 12+ tl2+H ptl2?)
+611 (1-0) IAwlz+ 2611 (1= 8) IV I2+(5 = DII2+(3 — Dl 42)
+261Vw 1:2+26IVV n22+§ uctuzz+§||ptuzz
| < (KC+ ) Iwlapy%+ (KC+ ©) Vizp+12

Choosing © small enough, such that

20(1-6) >0, (5-9>0
Here
E(t)= HLIAWIZH2IAVIZHE I2HY L2 HTW 12TV 12H 2+ ptl?
Hence
SEM+VLE®S C(Iwlprat VIzpe?)
Where vl=min {+ 26 (1 — ©), ( % — g) g} and C=KC+6 which implies that

E(t)< exp(-V1. t)E(O)+C(fOt exp(—V1(t — $)Iw lap+1)? HV l2p+1)%)ds
Invoking the fact that E(t)> lz1(t)—z2(t)IHo , we easly obtain (36).

Lemma 3.4 (Asymptotic smoothness) Under assumptions of Theorem 2.3, the dynamical system
(Ho, S(t)) corresponding to problem (7) — (9) is asymptotically smooth.

Proof. Let B be a bounded subset of Ho positively invariant with respect to S(t). Denote by C
several positive constants that are dependent on B but not on t. For ( 210, Z20) € B , S(t)
Z10=(U, Ut, ¢,) and S(t) Z20=(V, Vt, &) are the solutions of (7) — (9). Then given € > 0 from
inequality (41), we can choose T >0 such that
IS(t)Z210-S(t)Z20lHo < € + C fOT (lu(s) — U(s) lap+n>+V (s) — V(s) lap+1y?) %ds (43)
where Cg >0 is a constant which depends only on the size of B. The condition p >0 implies
that 2<2(p + 1)<c. Taking = i(l—pﬁ ) and applying Gagliardo-Nirenberg interpolation
inequality, we have

u(t) — wu(t) lap+r)? < CI Au(t) — a(t) lapray Y2 1u(t) — U(t) lapey)
WV (t) — V(1) lape22 < CLAV () — V(1) lapery 21V () — V(L) laery 12

Since IAwl2 and IAVI2? are uniformly bounded, there exists a constant C>0 such that
lu(t) — u(thp+n? < Clu(t) — u(t) 12¢+1 (44)
W () — V(1) lager? < CLV(E) — V(1) 120+ (45)

1361



M. Ferhat, F.Z. Mahdi, A. Hakem /Sigma J Eng & Nat Sci 37 (4), 1349-1366, 2019

Then, from (43) and (44) — (45) we obtain
IS(t)Z10-S(t)Z20lHo < € +¢T(Z10, Z20)
With
¢T(Z10,220) < e+ C fOT (lu(s) — u(s)l2p+n?TO+HV (s) — V(8) l2p+2)2t-Ods) 2
The following proof ®T € C namely ®T satisfies (10). Indeed, give a sequence Zn0=(U0n,
Uln, ¢0n) € B, let us write S(t)(Zn0)==(Un, Unt, ¢nt) is uniformly bounded in Ho. On the
other hand,(Un,Unt) is bounded in C([0,T],V x H),T >0. By the compact embedding V c H, the

Aubin lemma implies that there exists a subsequence (u™) that converges strongly in C([0,T],H).
Therefore ,

lim fOT 1Unk(s) — Unl(s)lap+y2XEO+1Vnk(s) — Vni(s) lap+2tOds =0

k—>oct-oo

This completes the proof.
4. THE REGULARITY
Our main result is the following theorem

Theorem 4.1 Under assumptions of Theorem 2.3, then the global attractor A is a bounded subset
Hi.

4.1. The semigroup decomposition

We fix a bounded set B < HO and for Z = (U0, U1, ¢0) € B, we decompose the solution S(t)Z
= (U, Ut, ¢) of problem (7) — (9) into the sum

S(t)Z = D(t)Z + K(t)Z,
where
D(t)Z=z1(t), K(t)Z=Z(1),
and
z=(U, Ut, ¢) =21+ 72,
furthermore,
U=w+w, V= vy, ¢l=(t+ Clt @2= pt+ £2t
Z1=(V, 1t, (1), 22=(w, wt, &),
where Z(t) satisfies

wtt + 1102 W — AW + wt+ [, pl(s)A2 {t(s)ds = 0

Ot + 1202 5 — AV +0t+ [ pl(s)A2pt(s)ds = 0 (46)
(t=—(s+wt
pt=—ps+ vt
wtt + 11A2 w— Aw + wt+ fooo ul(s)A2 {t(s)ds = 0

vtt + [2A2 v— Av +vt+ f; ul(s)A2 pt(s)ds = 0 (47)
(t=—(s+wt
pt=—ps+vt

The well-posedness of the problem (46) and (47) can be obtained by Faedo-Galerkin methods.
Combining with the previous estimate about the solution Z1(t) of equation (46) we obtain the
exponential decay of D(t)Z
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Lemma 4.1 Under assumptions of Theorem 2.3, there exists a constant K> 0, such that the
solution of (46) satisfies
ID(t)ZlIHo? < Cexp(-k.t)
where C is a constant.
About the solution of equation (47), we have the next result that provides the boundedness of
K(t)z in a more regular space.
Lemma 4.2 Under the assumptions of Theorem 2.3, there exists a constant N >0 such that the
solution of (47) satisfies
IK(t)Z1%n1 2< Cexp(-k.t)

Proof. Taking the scalar product in H of (47)1 with A= Awt+84w and (47)2with Ay = AVt+0A47,
we obtain

%(ll IAWIZH21AVIZHA 12 H AP 12 HTVAWIR2HVAV 122)

+011 1Awl2+ 812 IVVI2+6IVAWI2+BIVAV 12+(1-O)(wt, Aw)
+(L-O)(Vt, AW)HELL , WiH(EL , VE+ O (E1t, W)peay (48)
+0 (&2t, VIpwy+(h1(w), AD+ (h2(V), Ay)
=(f1, AOHf2, Ay)
It is the same as the previous estimate
(1-0)(wt, AD=(1- ©) IAl12-6(1- ©) (Aw, {)
(1-0)(Vt, Ay) =(1- ©) IAY12-6(1- ©) (AV, )
(1t Who= 2 101 thoa?+ Iwtlogy’
(G2t Vo= 55 102¢hoay+ IVtlogay’
And
217116 11)9 1Awlz?

1AV 122

O ({1t, W)ppy= — |I{1t||D(A)
0 (2t, Viow= = 12¢loa=-2=2° 12)9

We find from (48)

SANAWIZH2IAVIZHIA I A1 ITAWIHTAV 1241V Al )

+ 1¢1tlpy>HIg2tIbay?

+1-S520) 1w+ (1-5522) 14V12 +(1-0) 1A71274+(1-0) 1Ayl (49)
2171t I 102thn@?- ©(1- O)(AW.0)- 6(1- O)(AV, 1)

(h1(u), AQ)* (h2(V), Ay)
=(f1, AQH(2, Ay)

Furthemore
0 11 (1-5522) 1awl?+(1- ©) ) 1A712- 6(1- ©)(Aw , )
> oIl (1- e) lAwlZ2+3 1172 (50)
0 12 (1-522) 14VIZ+(1- ©)) Iaplz- O(1- O)(AV , ) (51)

> OI1 (1- 0) AV I+ 1Ayl

By Lemma 3.1 and the Sobolev embedding theorem we know that hi(u) and #’i(u) are uniformly
bounded in IL*that there exists a constant M >0, such that

[hi(w)| <M and|h’i(u)| < M.
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Combining with the Hélder, Young, Cauchy and (29), (30), it follows that

(h1(u), AZ)
=2 (h1(u), AW)+O (h1(u), Aw)

> £ (h1(w), Aw)+O (h1(U), Aw)
2 £ (h1(w), AW+ (h1(w), Aw)- © (0’1 (w)ut, Aw)

> % (h1(w), Aw)+6 (h1(u), Aw)- [, © h’1(u) lutl Awldx (52)
> < (h1(), Aw+0 (hl(w), Aw)-MI1 IAwlz?
> £ (hL(U), AW)+O (hl(), Aw)— 22 14wl =
Analogously
(h2(V), Ap) = < (h2(V), AVIO (h2(V), AV)— 22 1AVI2- 225 (53)
(F1, AQ= (fl, AWHHOAW) == (1, AW)+O (f1, Aw) (54)
(f2, Ap)= (F1, AVEHOAV) == (2, AV)+ (2, AV) (55)

Thus, collecting (50) — (55) from (49) yields

L IIAWRH2AVEHA LAYV AWV AV 12T A1)

+ 171tlp@ay>+H2tIbny? + 2(h1(u), AD+2 (h2(V), AV)

-(fL, AW)+(f2, AV)211 (6(1-8)-2 ) lAwlz?

212 (0(1-0)-2) 1AV LA+2A L4 A2+ 201V AV 201V Awl? (56)

A 1tlo@+212tIoe?2 © (1, Aw)-2 © (12, AV)
Me e

— el1 el2
Taking ©o=min { 26(1-6)-%,6, g ,%} we can obtain from (56)

%(11 LAWI2H21AVIZHAL 12 H APl 2HV AW HT AV 12V A1)
+ 11 tlo@HI2tloeay? + 2(hL(u), Aw)+2 (h2(V), AV) 7)
-2(f1, Aw)-2(f2, AV)H 100 1Awl2+ 12 1AV 12+ LAZI2H A2

HIVAWI2HIVAV 12

< M me
0l1 ol2

On the other hand, by the Hdder inequality, the Sobolev embedding theorem and (29), it
follows that

4 12 2 2 >
dtIIZAw+J:AV+ \/;hl(u)+ \/;hz(V)llz

% Jo 'h1(u) | 1h1(w)l futl dx % Jo h2(V) I I 1(V)l IVt dx (58)
> %u \EA\/\H \/%AV+ \/%hl(u)+ \/%hz(\/)llzz—‘;—“ff-%

S 1AWIZ-2(f1, Aw))= 2 \/%AW- \/%flllzz (59)
SEIAVIZ-2(f2, AV))= o \/%AV- \/éflezz (60)

Therefore, integrating with (58), we get from (57)
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amn 2. =4 MaAw (251 |2 2
S 1AWE2-2(f1, Aw)= 21 \ﬁ Aw \E f1 \E 2l

IAJ12HAYI2HYAWI2HTAV 12+ 1 o>+ 2t Ipeay? (61)

1 1Ay, |25 (2 z 2z 2
+00 | \ﬁ Aw+ \ﬁ AV. \E f1 \ﬁ f2+ \E hi(u)+ \E h2(V)l2< €

Where C>0
Applying the Gronwell lemma, there exists a constant N such that

IAWI2H AVIZHAWE2++HIAV tl2+H1 1 tlpay?+H I 2tIpay? < N
Completion of the proof of Theorem 4.1

By collecting Lemma 4.1 and Lemma 4.2, we get (UO0,V0, U1, V1, 410, $20) € H1 and
IAWI2H AVIZZHAWE12H+HAV E122+H 1t Iba)>HI 2t Ippay? < N
As u(t,x) satisfies (7) — (9) with initial data (U0O,V0, U1, V1, ¢10, $20), we easily obtain
I(U0,VO, U1, V1, 410, $20)IlHo< N

Thus A is a bounded subset of H1.
Which completes the proof.
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